Трехфазная нагрузка, соединенная по схеме «звезда»
Если нагрузки (приемники) соединены в трехфазную цепь по схеме «звезда» (рис.1), то к сопротивлениям нагрузки приложены фазные напряжения. Линейные токи равны фазным и определяются по закону Ома:
а ток в нейтрали равен векторной сумме этих токов: IN
=
IA
+
IB
+
IC
.
При симметричных напряжениях UA
,
UB
,
UC
и одинаковых сопротивлениях
RA
=
RB
=
RC
=
R
токи
IA
,
IB
,
IC
также симметричны и их векторная сумма (
IN
) равна нулю. Тогда
IЛ =
IФ
=
UԤR
;
IN
= 0.
Если же сопротивления фаз нагрузки неодинаковы, то через нулевой провод протекает некоторый ток IN
¹ 0. Это поясняется на векторных диаграммах (рис.2).
Мощность трёхфазной нагрузки складывается из мощностей фаз: SP =
PА +PВ +PС.
Когда нагрузка симметричная и чисто резистивная, имеем
SP = 3
PФ
=
3UФ×IФ
.
При смешанной (активно-индуктивной или активно-емкостной) нагрузке:
SP = 3
×UФ×IФ×cosj =Ö3×UЛ×IЛ×cosj
.
SQ = 3
×UФ×IФ×sinj
=
Ö3×UЛ×IЛ×sinj
.
SS = 3
×UФIФ =Ö3×UЛ×IЛ
.
Где купить
Максимально быстро приобрести устройства стабилизации можно в ближайшем специализированном магазине. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:
Стабилизатор напряжения на 1,5 кВт | табилизатор напряжения DELIXI 10 кВа | Стабилизатор напряжения 15 кВА |
Стабилизатор напряжения TM-15000VA | Стабилизатор напряжения HOME СНР 1/220 0.5кВА | Стабилизатор/регулятор напряжения |
Аварийные режимы трёхфазной цепи при соединении нагрузки в звезду
Аварийными являются режимы, возникают при коротких замыканиях в нагрузке или в линиях и обрыве проводов. Остановимся на некоторых типичных аварийных режимах.
Обрыв нейтрального провода при несимметричной нагрузке
В симметричном режиме IN
= 0, поэтому обрыв нейтрального провода не приводит к изменению токов и напряжений в цепи и такой режим не является аварийным. Однако, при несимметричной нагрузке
IN
¹ 0, поэтому обрыв нейтрали приводит к изменению всех фазных токов и напряжений. На векторной диаграмме напряжений точка «0» нагрузки, совпадающая до этого с точкой «
N
» генератора, смещается таким образом, чтобы сумма фазных токов оказалась равной нулю (рис.3). Напряжения на отдельных фазах могут существенно превысить номинальное напряжение.
Обрыв фазы при симметричной нагрузке в схеме с нулевым проводом
При обрыве провода, например, в фазе А ток этой фазы становится равным нулю, напряжения и токи в фазах В и С не изменяются, а в нулевом проводе появляется ток
IN =
IB +IC.
Он равен току, который до обрыва протекал в фазе А (рис. 4).
Обрыв фазы при симметричной нагрузке в схеме без нулевого провода
При обрыве, например, фазы А сопротивления RA и RB оказываются соединёнными последовательно и к ним приложено линейное напряжение UBC. Напряжение на каждом из сопротивлений составляет от фазного напряжения в нормальном режиме. Нулевая точка нагрузки на векторной диаграмме напряжений смещается на линию ВС и при RB = RC находится точно в середине отрезка ВС (рис.5)
Короткое замыкание
При коротком замыкании фазы нагрузки в схеме с нулевым проводом ток в этой фазе становится очень большим (теоретически бесконечно большим) и это приводит к аварийному отключению нагрузки защитой. В схеме без нулевого провода при замыкании, например, фазы А, нулевая точка нагрузки смещается в точку «А» генератора. Тогда к сопротивлениям фаз В и С прикладываются линейные напряжения. Токи в этих фазах возрастают в раз, а ток в фазе А – в 3 раза (рис. 6).
Короткие замыкания между линейными проводами и в той и в другой схеме приводят к аварийному отключению нагрузки.
Лабораторная работа №
13
Трёхфазная нагрузка, соединённая по схеме «ЗВЕЗДА»
Цель работы:
Исследовать трёхфазную цепь, соединённую по схеме «ЗВЕЗДА», в различных
Для трёхфазной цепи с соединением «ЗВЕЗДА» при симметричной и несимметричной нагрузках измерьте с помощью мультиметра действующие значения фазных и линейных напряжений и ток в нейтральном проводе. Вычислите линейные токи и мощности фаз. Постройте в масштабе векторные диаграммы напряжений и токов.
1.Соберите цепь с симметричной нагрузкой (RA= RB= RC=1кОм) согласно схеме.
2.Измерьте действующие значения напряжений и тока в нейтральном проводе согласно табл. 1 и вычислите токи и мощности фаз.
3.Повторите измерения и вычисления для несимметричной нагрузки (RA=1 кОм,
RB=680 Ом, RC=330 Ом).
4.Постройте в масштабе векторные диаграммы напряжений и токов.
Причины
Трехфазная сеть состоит из двух частей — высоковольтной и низковольтной. Между ними устанавливается обычно подстанция с понижающим трансформатором. В высоковольтной части фазы загружены равномерно, перекос возникает в низковольтной части и связан с особенностями распределения нагрузки между фазными шинами.
Существует два различных вида перекоса фаз:
- модули векторов напряжения различны по величине, угол между ними одинаковый (120°);
- значительно реже возникает на практике, когда кроме различных модулей напряжений, углы между ними также различны.
На диаграмме напряжений представлены параметры идеально работающей трехфазной цепи и их изменение при возникновении перекоса.
Падение/увеличение фазного напряжения согласно закона Ома возникает при увеличении/уменьшении сопротивления (нагрузки). Поэтому одной из причин возникновения перекоса будет разное по количеству и мощности число электрических приборов «сидящих» на каждой отдельной фазе.
В идеально работающих трехфазных цепях ток через нейтральный провод равен нулю. В случае возникновения перекоса на нем появляются токи, которые компенсируют асимметрию напряжений. Вот почему обрыв («отгорание») нулевого провода служит еще одной из причин появления перекоса.
Изображение с результатом «отгорания» нейтрального провода.
Короткое замыкание одной из фаз на землю, которая приводит к работе сети в режиме перекоса, редко встречается среди причин возникновения неравенства напряжений по фазам. В некоторых случаях допускается такая аварийная эксплуатация при необходимости обеспечения электроэнергией пользователей.
Признаки нестабильной работы электрических приборов, вызванные перекосом фаз
Независимо от причин перекоса необходимо знать и выявлять его признаки. В квартире или частном доме с электрическими приборами могут происходить следующие действия от несимметричности напряжения и не только:
- осветительные приборы типа ламп дневного света или других типов работающих по энергосберегающей технологии начнут мерцать;
- лампочки накаливания будут ярко гореть или наоборот тускнеть;
- бытовые приборы (утюг, телевизор и другие) перестанут включаться;
- выключатель стал на ощупь теплым;
- в розетке появились искры, послышались треск и щелчки;
- в щитке появились щелчки, срабатывают защитные автоматы.
При обнаружении вышеперечисленных признаков следует отключить все приборы из сети, лишь затем приступать к поиску причин. При отсутствии познаний в области электротехники лучше обратитесь к специалисту.
Отгорание нуля: случайность или неизбежность
Правильно справиться с проблемами электричества можно, если ознакомиться с отгоранием нуля Если вы слышали от знакомых фразу, что от перепада напряжения в квартире сгорели электроприборы и дорогая аппаратура, это означает, что у них в электросети появляется не 220В, а 380В. Откуда берется напряжение 380 Вольт в электросети? Зачастую, в этом виноват обрыв нуля, или, как принято в лексиконе электриков, отгорание нуля. Почему же отгорает ноль? Чтобы в этом разобраться, рассмотрим в общих чертах, что из себя представляет электрическая сеть. Электрическая сеть – это совокупность электрических установок, благодаря которым происходит передача и распределение электричества от электростанции к конечному потребителю.
Негативные последствия перекоса
Работа трехфазной сети с перекосом фаз приводит к следующим отрицательным действиям.
- Перекос вызывает рост уравнивающих токов, тем самым увеличивается расход электроэнергии на потребление оборудованием.
- Отклонение фазного напряжения, превышающее номинальное значение при отсутствии автоматических выключателей может вывести бытовое или промышленное электрооборудование из строя.
- Отклонение напряжения в меньшую сторону от нормального создаст для оборудования следующие проблемы: увеличится нагрузка на электромоторы, их мощность падает, для запуска необходимы еще более высокие пусковые токи, электроника будет работать со сбоями, некоторые устройства просто не будут включаться.
- Эксплуатационный срок работы оборудования в режиме перекоса фаз будет меньшим. Ресурсные показатели не будут соответствовать паспортным данным.
- Перекос фаз, вызванный обрывом нейтрального провода может резко повысить опасность получения электрического удара. Шина заземляющего устройства на трансформаторной подстанции теряет связь с местным контуром заземления, тем самым оставляя пользователя без защиты.
Нормы на перекос фаз
На практике не существует работающих трехфазных сетей, в которых отсутствует перекос фаз. Это связано с особенностями электрического оборудования, принцип работы которых с точки зрения экономической целесообразности исключает симметричное исполнение (сварочные аппараты, индукционные печи, потребители бытовой сферы). Кроме этого, например, в многоквартирных домах появляется вероятностный фактор, связанный с отсутствием какой — либо системы в подключении электрической бытовой техники. Наличие нескольких импульсных источников питания, например для компьютеров, делает их поведение непредсказуемым в трехфазной сети.
Помимо равномерного распределения нагрузки по фазам проектировщикам следует учитывать вышеперечисленные факторы для поставки пользователям определенного качества электроэнергии. В некоторых случаях трудноразрешимую задачу позволяют решить регламенты на допустимый перекос фаз, обозначенные в следующих нормативных документах: ПУЭ (Правила Устройства Энергоустановок), ГОСТ 31098 – 97 определяющим нормы качества электроэнергии и сводом правил СП31-110.
Параметры, превышение которых недопустимо:
- максимальное отклонение фазных токов: для измеренных во вводном распределительном устройстве (ВРУ) — 15 %,
- для измеренных в распределительном щите (РЩ) — 30 %.
- по обратной последовательности — 2 %,
Вышеуказанные нормативы должны соблюдаться на всех возможных режимах работы трехфазных электрических сетей. Исключения составляют режимы, вызванные Форс — Мажорными обстоятельствами.
Как определить перекос фаз
Самым простым и поэтому наиболее применяемым является контроль по максимальному отклонению фазных токов. С помощью токовых клещей измеряется сила тока при максимально полной нагрузке на каждом проводнике отдельной фазы в ВРУ или РЩ. Размеры клещей достаточно компактны, чтобы подлезть к любому проводнику, находящемуся в стесненных условиях среди других проводников.
После того как определите и зафиксируете показания следует выполнить легкий сравнительный расчет на отклонения фазных токов. Показания должны соответствовать нормам.
Устранение перекоса фаз
Если результаты замеров выявят наличие несимметричности напряжений фаз, следует принять меры чтобы устранить перекос. Защита от перекоса фаз в трехфазной сети выполняется следующими способами.
- На этапе проектирования следует равномерно распределить нагрузку по фазам. Приборы, имеющие однофазное питание не должны сосредотачиваться на одном проводнике, оставляя незагруженными другие. Кроме количественного распределения по фазам следует учитывать мощностные характеристики электрических устройств.
- В ранее введенных в эксплуатацию трехфазных сетях, где каждая фаза не рассчитывалась на перегрузку при возможности следует поменять схему потребления энергии. В условиях кризисной ситуации необходимо поменять мощность потребителя.
- Недостаточно эффективный способ обеспечить необходимое напряжение на каждой фазе трехфазной цепи это применение стабилизаторов напряжения.
Трехфазные стабилизаторы напряжения конструктивно включают в себя однофазные, которые реагируют на изменение параметров конкретно на своей фазе. Поднятие, опускание напряжения вызывает ответную реакцию на других. Это может в некоторых случаях вызвать вторичный перекос с уже другими параметрами. Невозможность 100 % гарантии защиты от последствий перекоса фаз основной недостаток стабилизаторов напряжения. - Использование в трехфазной системе питания симметрирующего трансформатора позволяет выравнивать напряжение не только на отдельной конкретной фазе, а обеспечивать симметричность напряжений на всех трех согласно требуемых норм.
Кроме этого прибор сглаживает напряжение переходного процесса при подключении в сеть мощных асинхронных двигателей, дросселей, трансформаторов и другого подобного оборудования.Устройство способно устранить фазный перекос в большом диапазоне значений напряжения. - Стабилизатор напряжения, симметрирующий трансформатор это дорогие устройства, не всегда есть возможность их применить. Существует достаточно простой и эффективный способ не допустить критического перекоса фаз — применение специального реле.
Если параметры трехфазной сети выходят за пределы установленного диапазона реле отключит источник питания. Когда параметры восстановятся до приемлемых значений, реле самостоятельно возобновит подачу питания.
Ответственное отношение к равномерному распределению нагрузки по фазам не гарантирует избежать перекос. От обрыва нулевого провода никто не застрахован, соединительный контакт может от перегрева «отгореть» в любой момент. Поэтому к рекомендациям по оборудованию трехфазной сети приборами защиты от перекоса следует прислушаться. Единовременные затраты сохранят работоспособность более дорогому электрическому оборудованию, работающему от трехфазной сети.
Необходимость проверки
Диэлектрические изделия проверяются на наличие проколов перед применением. Проверку перед каждым использованием следует осуществлять очень тщательно, так как даже едва заметный глазу дефект приводит диэлектрические перчатки в негодность, а человек, работающий в них, подвергает свою жизнь серьезному риску поражения электротоком. На отсутствие проколов изделие из латекса или резины осматривают перед работой визуально, а также надувая его воздухом путем закручивания. Но такой проверки явно недостаточно.
Перед работой требуется сделать осмотр перчаток на наличие на них внутренней и наружной поверхностях грязи или влаги – грязные или влажные средства защиты утрачивают свои диэлектрические свойства и не могут защитить человека от поражения электрическим разрядом тока.
После обработки перчатки-диэлектрики нужно очень хорошо просушить.
В некоторых случаях для дополнительной защиты латекса или резины на диэлектрические перчатки надевают сверху еще и кожаные краги либо защитные брезентовые рукавицы. В случае когда выполнять электромонтажные работы приходится в условиях минусовой температуры воздуха, внутрь под диэлектрическую защиту надевают трикотажные перчатки, которые помогут предотвратить переохлаждение и обморожение пальцев рук или ладони.
Цепи при соединении нагрузки в треугольник
Аварийный режим при соединении звездой с нейтральным проводом в случае обрыва нейтрали и одной из фаз. Схема аварийного случая. Векторные диаграммы токов и напряжений для такого случая. Последствия аварийного случая.
Аварийными являются режимы, возникают при коротких замыканиях в нагрузке
или в линиях и обрыве проводов. Остановимся на некоторых типичных аварийных
Обрыв нейтрального провода при несимметричной нагрузке
В симметричном режиме IN= 0, поэтому обрыв нейтрального провода не приводит
к изменению токов и напряжений в цепи и такой режим не является аварийным. Однако,
при несимметричной нагрузке IN¹ 0, поэтому обрыв нейтрали приводит к изменению всех
фазных токов и напряжений. На векторной диаграмме напряжений точка «0» нагрузки,
совпадающая до этого с точкой «N» генератора, смещается таким образом, чтобы сумма
фазных токов оказалась равной нулю (рис.8.4.1). Напряжения на отдельных фазах могут
существенно превысить номинальное напряжение.
Обрыв фазы при симметричной нагрузке в схеме без нулевого провода
При обрыве, например, фазы А сопротивления RA и RB оказываются
соединёнными последовательно и к ним приложено линейное напряжение UBC.
Напряжение на каждом из сопротивлений составляет 3 / 2 от фазного напряжения в
нормальном режиме. Нулевая точка нагрузки на векторной диаграмме напряжений
смещается на линию ВС, и при RB = RC она находится точно в середине отрезка ВС
Аварийный режим при соединении звездой с нейтральным проводом в случае обрыва одной из фаз при целой нейтрали. Схема аварийного случая. Векторные диаграммы токов и напряжений. Последствия аварийного случая.
Обрыв фазы при симметричной нагрузке в схеме с нулевым проводом
При обрыве провода, например, в фазе А ток этой фазы становится равным нулю,
напряжения и токи в фазах В и С не изменяются, а в нулевом проводе появляется ток
IN = IB + IC.Он равен току, который до обрыва протекал в фазе А (рис. 8.4.2).
Аварийный режим при соединении звездой с нейтральным проводом в случае короткого замыкания одной из фаз при целой нейтрали. Схема аварийного случая. Векторные диаграммы токов и напряжений. Последствия аварийного случая
При коротком замыкании фазы нагрузки в схеме с нулевым проводом ток в этой
фазе становится очень большим (теоретически бесконечно большим) и это приводит к
аварийному отключению нагрузки защитой. В схеме без нулевого провода при
замыкании, например, фазы А, нулевая точка нагрузки смещается в точку «А» генератора.
Тогда к сопротивлениям фаз В и С прикладываются линейные напряжения. Токи в этих
фазах возрастают в 3 раз, а ток в фазе А – в 3 раза (рис. 8.4.4).
Короткие замыкания между линейными проводами и в той и в другой схеме
приводят к аварийному отключению нагрузки.
Аварийный режим при соединении треугольником в случае короткого замыкания одной из фаз. Схема аварийного случая. Векторные диаграммы токов и напряжений. Последствия аварийного случая.
Аварийные режимы трёхфазной
цепи при соединении нагрузки в треугольник
При коротких замыканиях в фазах нагрузки или между линейными проводами токи
резко возрастают и происходит аварийное отключение установки защитой.
Обрывы фаз или линейных проводов при соединении нагрузки в треугольник не
приводят к перегрузкам по токам или напряжениям, как это иногда случается при
соединении нагрузки в звезду.
При обрыве одной фазы нагрузки (рис. 8.5.1) ток этой фазы становится равным
нулю, а в оставшихся двух фазах ток не меняется. Два линейных тока уменьшаются в 3
раз, т. е. становятся равными фазному току, а третий остаётся неизменным.
Аварийный режим при соединении треугольником в случае обрыва одного из проводов линии. Схема аварийного случая. Векторные диаграммы токов и напряжений. Последствия аварийного случая.
При обрыве линейного провода (например, В) фазные сопротивления RAB и RBC
оказываются соединёнными последовательно и включёнными параллельно с
сопротивлением RCA на напряжение UCA (рис. 8.5.2). Цепь фактически становится
70 Расчёт мощности в трёхфазных цепях, как для звезды, так и для треугольника. Расчёт для симметричных и несимметричных схем. Схемы с двумя и тремя ваттметрами. Их вид и использование.
Измерение активной мощности в трехфазных цепях производят с помощью трех, двух или одного ваттметров, используя различные схемы их включения. Схема включения ваттметров для измерения активной мощности определяется схемой сети (трех- или четырехпроводная), схемой соединения фаз приемника (звезда или треугольник), характером нагрузки (симметричная или несимметричная), доступностью нейтральной точки.
При несимметричной нагрузке в четырехпроводной цепи активную мощность измеряют тремя ваттметрами (рис. 3.18), каждый из которых измеряет мощность одной фазы – фазную мощность.
Активная мощность приемника определяют по сумме показаний трех ваттметров
Измерение мощности тремя ваттметрами возможно при любых условиях.
Область применения защитного зануления
Защитное заземление используется в электрических установках напряжением до 1 кВ:
- — в сетях постоянного электрического тока с заземленной средней точкой источника;
- — в однофазных электросетях переменного тока с заземленным выводом;
- — в трехфазных электросетях переменного тока с заземленным нулем (система TN – S; как правило, это сети 660/380, 380/220, 220/127 В);
Предназначено защитное зануление для защиты от возможного поражения электрическим током. Например возникла ситуация когда внутри электроустановки произошло повреждение изоляции и корпус установки (например стиральной машины или холодильника) оказался под напряжением. В этом случае возникает ток короткого замыкания на который реагирует защита (автомат или пробки) и мгновенно отключает электроустановку от сети. |
Образование цепи тока однофазного короткого замыкания (т.е. замыкания между нулевым и фазным защитными проводниками) происходит в случае замыкания фазного провода на зануленный корпус электропотребителя. Поврежденная электроустановка отключается от питающей сети вследствие срабатывания защиты, вызывающейся током однофазного короткого замыкания.
Для быстрого отключения находящейся электроустановки могут использоваться автоматические выключатели и плавкие предохранители, устанавливаемые для защиты от токов короткого замыкания. Также для этой цели применяются магнитные пускатели с тепловой защитой встроенного типа, контакторы с тепловыми реле, с помощью которых обеспечивается защита от перегрузки и др.
3.5.1. Обрыв фазы ab
Рассмотрим электрическую схему, изображённую на рис.3.20.
Рис.3.20. Электрическая схема трёхфазной системы, соединённой треугольником, с отключенной фазой
При обрыве фазы ab
вектор тока
, тогда выражения (3.14) преобразуются в следующий вид:
,
,
. (3.16)
На рис.3.21 приведена векторная диаграмма напряжений и токов при обрыве фазы аb
нагрузки, соединённой треугольником.
Рис.3.21. Векторная диаграмма напряжений и токов для нагрузки, соединённой треугольником, с отключенной фазой
3.5.2. Обрыв фаз ab и bc
Рассмотрим электрическую схему, изображённую на рис.3.22.
При обрыве фаз ab
и
bc
векторы токов
и
, тогда выражения (3.14) преобразуются в следующий вид:
,
,
. (3.17)
На рис.3.23 приведена векторная диаграмма напряжений и токов при обрыве фаз аb
и
bc
нагрузки, соединённой треугольником.
Рис.3.22. Электрическая схема трёхфазной системы, соединённой треугольником, с отключенными двумя фазами
Рис.3.23. Векторная диаграмма напряжений и токов для нагрузки, соединённой треугольником, с отключенными двумя фазами
3.5.3. Обрыв линейного провода
Рассмотрим электрическую схему, изображённую на рис.3.24. Пусть
.
Рис.3.24. Электрическая схема трёхфазной системы, соединённой треугольником, с отключенным линейным проводом
При обрыве линейного провода Аa
вектор тока
. Преобразуем схему рис.3.24 в схему рис.3.25.
Рис.3.25. Преобразование трёхфазной электрической схемы, соединённой треугольником, с отключенным линейным проводом в однофазную электрическую схему
Из преобразованной схемы следует:
,
,
. (3.18)
По первому закону Кирхгофа:
;
. (3.19)
Используя формулы (3.18) и (3.19), построим векторную диаграмму:
Рис.3.26. Векторная диаграмма токов преобразованной схемы
Подключение реле напряжения
Реле напряжения подключается по схеме, приведенной ниже:
Рис.6 Схема подключения реле напряжения
Это — стандартная схема. Линиями с стрелками показаны силовые цепи.
Если перестраховаться, то лучше в схеме подключения применить автомат-байпас, как это делается в стабилизаторах напряжения. Это делается для того, чтобы потребитель мог худо-бедно работать в случае выхода напряжения за пределы. Если это так необходимо. Подключается Байпас-автомат параллельно контактам внутреннего реле нашего реле напряжения, в данном случае на контакты «2» и «3»
Байпас также может быть полезен при выходе из строя самого реле напряжения.