Что такое изолированная нейтраль и где она используется

Электрические сети — это сложные системы. Схемы подключения генераторов и трансформаторов предполагает подключение глухозаземленной и изолированной нетрали. В нашей энергосистеме в основном используется система с глухозаземленной нетралью. Однако, существует оборудование, которое должно работать в условиях где применяется трехпроводная сеть с изолированной нейтралью.

Это передвижные установки, оборудование торфоразработок, при добыче калийных удобрений и угольных шахтах, то есть оборудование, работающее на напряжение 380-660 В и 3-35 Кв. Питающий кабель передвижных установок выполняется четырехпроводным кабелем. Отличие одного вида заземления от другого заключается в том, что общая точка вторичной обмотки трансформатора подключается непосредственно в трансформаторной подстанции к заземлителю.

Такая система с изолированной нейтралью получается при подключении вторичных обмоток трансформатора треугольником. В этом случае средней точки просто не существует. Это используется, когда по условия безопасности не допускают аварийное обесточивание при коротком замыкании на землю. Такие системы получили обозначение IT.

Система заземления IT или система заземления с изолированной нейтралью.

Обычно эта система описывается примерно так:

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

На этом всё описание системы IT обычно и ограничивается и совершенно не понятно как этим всем практически пользоваться? Как подключать потребителей, как подключать системы автоматизации?

Прежде всего, не понятно – если линейное напряжение 380 В, а фазное – 220, то как будет работать однофазная нагрузка? Ведь нуля нет, то есть фактически он оборван. А что произойдёт при обрыве нуля? Правильно, всё пойдёт в разнос – либо сгорит, либо просто не захочет работать. Как выходят из этого диссонанса в системе IT? Слушаем Василия дальше.

На эти вопросы я и постараюсь ответить.

Во-первых, где можно встретиться с этой системой?

Она широко используется на судах и всём, что считается судами, на морских нефтяных и газовых платформах, например. Не важно, что платформа стоит на дне моря, с точки зрения морского регистра она – судно :)

Недостатки

Это считается аварийным режимом, и он не предполагает длительной работы оборудования. Такой режим имеет следующие недостатки:

  • Обнаружить неисправный участок довольно непросто;
  • Изоляция электроприборов должна быть рассчитана на пробой от линейного напряжения;
  • При продолжительном замыкании увеличивается вероятность поражения обслуживающего персонала электричеством;
  • Вследствие постоянного воздействия дуговых перенапряжений и постоянного накопления дефектов, снижается срок службы изоляции;
  • Из-за появления дуговых перенапряжений возникают повреждения изоляции в разных местах;
  • Однофазное замыкание на землю в сетях с изолированной нейтралью затрудняет работу релейной защиты;
  • Возможное появление дуги малых токов в месте однофазного замыкания на землю.

Большое количество недостатков существенно снижает применение такой схемы в сетях до 1 000 В. Более широкое распространение такая система получила в высоковольтных сетях.

Как же подключить однофазную нагрузку в системе с изолированной нейтралью?

Здесь варианта два:

1) На нефтяных судах часто есть две параллельные трехфазные линии, линия 0,4 кВ 3 фазы и 230 В 3 фазы. Чтобы подключить прибор, предназначенный для использования в сети 230В, нужно включить его в сеть 230 В МЕЖДУ ДВУМЯ ФАЗАМИ, т.е. в линейное напряжение.

То есть, использовать не схему “звезда”, как это делается обычно для получения 220В, а схему “треугольник”, подключив нагрузку 220 В (которую язык почему-то не поворачивается уже назвать “однофазной”) к одной из сторон “треугольника”.

2) Использовать трансформатор, например понижающий 3Ф 400В / 3Ф 230 В. С трансформатором тоже два варианта, после него так же может быть система IT, либо трансформатор может обеспечить искусственную нейтраль на вторичной обмотке.

Обычно используют трансформатор 380 / 220 В, первичная обмотка которого подключена к любым двум фазам. Если нужно заземление, то один из выводов вторичной обмотки “глухо” заземляют, и получают систему TN-S (или, скорее TN-C-S). При правильном выборе защитного автомата и УЗО система обеспечит отличную защиту от КЗ и прямого прикосновения.

Однако, более безопасной будет система, в которой ни один из выводов трансформатора не подключается на корпус. Трансформатор может быть любым, главное, чтобы на его выходе было напряжение 220 В – не важно, линейное или фазное.

С подключением электродвигателей, клапанов и тому подобного, проблем обычно не возникает, а вот с автоматикой могут быть проблемы. Они связаны с тем, что не все приборы корректно работают при включении их питания в линейное напряжение 230 В (между фазами). Если столкнулись с этой проблемой, тут можно выйти из положения, либо заменой прибора, либо используя маломощный трансформатор с искусственным нолём после вторичной обмотки.

Теоретически да, прибору всё равно, откуда берётся напряжение 220В. А на практике, например, вместо измерения сигнала 4-20 мА какую-то ересь начинают показывать, при том, что датчики заведомо рабочие. Включаешь в обыкновенное фазное напряжение – всё работает. Видимо, что-то с архитектурой конкретных приборов не то. Не часто бывает, но мне пару раз попадалось.

Что это такое

Определение понятия «изолированная нейтраль» приведено в главе 1.7. ПУЭ, в пункте 1.7.6. и ГОСТ Р 12.1.009-2009. Где сказано, что изолированной называется нейтраль у трансформатора или генератора, не присоединенная к заземляющему устройству вообще, или, когда она присоединена через приборы защиты, измерения, сигнализации.

Нейтралью называется точка, в которой соединены обмотки у трансформаторов или генераторов при включении по схеме «звезда».

Среди электриков есть заблуждение о том, что сокращенное название изолированной нейтрали – это система IT, по классификации п. 1.7.3. Что не совсем верно. В этом же пункте сказано, что обозначения TN-C/C-S/S, TT и IT приняты для сетей и электроустановок напряжением до 1 кВ.

В той же главе 1.7 ПУЭ есть пункт 1.7.2. где сказано, что в отношении мер электробезопасности электроустановки делятся на 4 типа — изолированную или глухо заземленную до 1 кВ и выше 1 кВ.

Таким образом есть некоторые отличия в безопасности и применении такой сети в разных классах напряжения и называть линию 10 кВ с изолированной нейтралью «система IT» по меньше мере неправильно. Хотя схематически – почти тоже самое.

Пример схемы IT

Как пример практической схемы смотрите фрагмент схемы подключения шкафа выпрямителей постоянного тока. Обратите внимание, что питание осуществляется из сети 3 фазы 230 В, каждый из трех выпрямителей включён между фазами, в линейное напряжение.

Пример построения схемы с системой заземления IT

Фактически, провод защитного заземления есть, он приходит со стороны питающего генератора, но он служит только для заземления корпусов блоков питания.

В данном случае выходное напряжение – постоянное 12 В, но может быть любым! А “минус” всех блоков питания заземлён. Выходы каждого БП через защитные автоматы (не показаны) поступают на нагрузки.

Надеюсь, стало понятней как практически устроено подключение потребителей к системе IT. Спасибо за внимание.

Голосование за эту и другие статьи будет открыто примерно через месяц, следите за новостями в группе ВК СамЭлектрик.ру! Если кто не подписан – рекомендую, нас ждёт ещё много интересного!

Василий Васильевич, автор статьи про систему заземления IT

Описание изолированного устройства

Такое устройство защиты представляет собой систему, когда нулевой провод генератора или трансформатора не соединяют с заземлителем. Соединение с глухим заземлением допускается через аппаратуру сигнализации, защиты и устройства измерения, которые обладают большим сопротивлением.

В этом случае изолированная нейтраль представляет собой трехфазную сеть, подключенную от электрического оборудования к заземлению через резисторы.

При этом параллельно подключают систему с конденсаторами. Такая схема подключения нейтрали имеет две составляющие:

  • активную;
  • реактивную.

Активная схема предназначена для препятствия току утечки с помощью резисторов, которые благодаря большому сопротивлению понижают его значение до минимального. Реактивная система обладает конденсаторами, в которых одна обкладка соединяется с линией, а вторая — с землей.

Онлайн журнал электрика

Электронные сети могут работать с заземленной либо изолированной нейтралью трансформаторов и генераторов. Сети 6, 10 и 35 кВ работают с изолированной нейтралью трансформаторов. Сети 660, 380 и 220 В могут работать как с изолированной, так и с заземленной нейтралью. Более всераспространены четырехпроводные сети 380/220, которые в согласовании с требованиями правил устройства электроустановок (ПУЭ) обязаны иметь заземленную нейтраль.

Разглядим сети с изолированной нейтралью. На рисунке 1,а изображена схема таковой сети трехфазного тока. Обмотка изображена соединенной в звезду, но все произнесенное ниже относится также и к случаю соединения вторичной обмотки в треугольник.

Рис. 1. Схема сети трехфазного тока с изолированной нейтралью (а). Замыкание на землю в сети с изолированной нейтралью (б).

Вроде бы хороша ни была в целом изоляция токоведущих частей сети от земли, все таки проводники сети имеют всегда связь с землей. Связь эта двойственного рода.

1. Изоляция токоведущих частей имеет определенное сопротивление (либо проводимость) по отношению к земле, обычно выражаемое в мегомах. Это значит, что через изоляцию проводников и землю проходит ток не которой величины. При неплохой изоляции этот ток очень мал.

Допустим, к примеру, что меж проводником одной фазы сети и землей напряжение равно 220 В, а измеренное мегомметром сопротивление изоляции этого провода равно 0,5 МОм. Это означает, что ток на землю 220 этой фазы равен 220 / (0,5 х 1000000) = 0,00044 А либо 0,44 мА. Этот ток именуется током утечки.

Условно для наглядности на схеме сопротивления изоляции 3-х фаз r1, r2, r3 изображаются в виде сопротивлений, присоединенных каждое к одной точке провода. По сути токи утечки в исправной сети распределяются умеренно по всей длине проводов, в каждом участке сети они замыкаются через землю и их сумма (геометрическая, т. е. с учетом сдвига фаз) равна нулю.

2. Связь второго рода появляется емкостью про водников сети по отношению к земле. Как это осознавать?

Каждый проводник сети и землю можно представить для себя как две обкладки протяженного конденсатора. В воздушных линиях проводник и земля — это вроде бы обкладки конденсатора, а воздух меж ними — диэлектрик. В кабельных линиях обкладками конденсатора являются жила кабеля и железная оболочка, соединенная с землей, а диэлектриком — изоляция.

При переменном напряжении изменение зарядов конденсаторов вызывает появление и прохождение через конденсаторы переменных токов. Эти так именуемые емкостные токи в исправной сети умеренно распределены по длине проводов и в каждом отдельно взятом участке также замыкаются через землю. На рис. 1,а сопротивления емкостей 3-х фаз на землю х1, х2, х3 условно показаны присоединенными каждое к одной точке сети. Чем больше длина сети, тем огромную величину имеют токи утечки и емкостные токи.

Поглядим, что все-таки произойдет в изображенной на рисунке 1,а сети, если в одной из фаз (к примеру, А) произойдет замыкание на землю, т. е. провод этой фазы будет соединен с землей через относительно маленькое сопротивление. Таковой случай изображен на рисунке 1,б. Так как сопротивление меж проводом фазы А и землей не достаточно, сопротивления утечки и емкости на землю этой фазы шунтируются сопротивлением замыкания на землю. Сейчас под воздействием линейного напряжения сети UB через место замыкания и землю будут проходить токи утечки и емкостные токи 2-ух исправных фаз. Пути прохождения тока показаны стрелками на рисунке.

Замыкание, показанное на рисунке 1,б, именуется однофазовым замыканием на землю, а возникающий при всем этом аварийный ток — током однофазового замыкания.

Представим для себя сейчас, что однофазовое замыкание вследствие повреждения изоляции вышло не конкретно на землю, а на корпус какого-либо электроприемника — электродвигателя, электронного аппарата, или на железную конструкцию, по которой проложены электронные провода (рис. 2). Такое замыкание именуется замыканием на корпус. Если при всем этом корпус электроприемника либо конструкция не имеют связи с землей, тогда они получают потенциал фазы сети либо близкий к нему.

Рис. 2. Замыкание на корпус в сети с изолированной нейтралью

Прикосновение к корпусу равносильно прикосновению к фазе. Через человеческое тело, его обувь, пол, землю, сопротивления утечки и емкостные сопротивления исправных фаз появляется замкнутая цепь (для простоты на рис. 2 емкостные сопротивления не показаны).

Ток в этой цепи замыкания находится в зависимости от ее сопротивления и может нанести человеку тяжелое поражение либо оказаться для него смертельным.

Рис. 3. Прикосновение человека к проводнику в сети с изолированной нейтралью при наличии в сети замыкания на землю

Из произнесенного следует, что для прохождения тока через землю нужно наличие замкнутой цепи (время от времени представляют для себя, что ток «уходит в землю» — это ошибочно). В сетях с изолированной нейтралью напряжением до 1000 В токи утечки и емкостные токи обычно невелики. Они зависят от состояния изоляции и длины сети. Даже в разветвленной сети они находятся в границах нескольких ампер и ниже. Потому эти токи, обычно, недостаточны для расплавления плавких вставок либо отключения автоматических выключателей.

При напряжениях выше 1000 В основное значение имеют емкостные токи, они способны достигать нескольких 10-ов ампер (если не предусмотрена их компенсация). Но в этих сетях отключение покоробленных участков при однофазовых замыканиях обычно не применяется, чтоб не создавать перерывов в электроснабжении.

Таким макаром, в сети с изолированной нейтралью при наличии однофазового замыкания (о чем говорят приборы контроля изоляции) продолжают работать электроприемники. Это может быть, потому что при однофазовых замыканиях линейное (междуфазное) напряжение не меняется и все электроприемники получают энергию бесперебойно. Но при всяком однофазовом замыкании в сети с изолированной нейтралью напряжения неповрежденных фаз по отношению к земле растут до линейных, а это содействует появлению второго замыкания на землю в другой фазе. Образовавшееся двойное замыкание на землю делает суровую опасность для людей. Как следует, неважно какая сеть с наличием в ней однофазового замыкания должна рассматриваться как находящаяся в аварийном состоянии, потому что общие условия безопасности при таком состоянии сети резко ухудшаются.

Так, наличие «земли» наращивает опасность поражения электронным током при прикосновении к частям, находящимся под напряжением. Это видно, к примеру, из рисунка 3, где показано прохождение тока поражения при случайном прикосновении к токоведущему проводу фазы А и неустраненной «земле» в фазе С. Человек при всем этом оказывается под воздействием линейного напряжения сети. Потому однофазовые замыкания на землю либо на корпус должны устраняться в кратчайший срок.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]