Какие бывают изоляторы ВЛ и для чего они предназначены?


Основные технические характеристики, по которым выбираются изоляторы

Согласно действующим нормативам, подбор электрических изоляторов осуществляется по следующим техническим характеристикам:

  • сухоразрядному напряжению – этот параметр определяет, при каком количестве вольт возможно замыкание изолирующего элемента с несущей конструкцией, при условии сухих поверхностей;
  • мокроразрядному напряжению – аналогичная по значению характеристика, но в ситуации, когда поверхности увлажнены под воздействием дождя (при угле наклона струй до 45 градусов); в данной ситуации сопротивление электротоку сводится к минимуму – от 9,5 до 10,5 кОм см; данная характеристика всегда уступает сухоразрядной;
  • напряжению пробоя – числу вольт, при котором произойдет разряд между полюсами; в зависимости от конструктивного устройства, полюса могут представлять собой стержень и шапку или шину и фланец;
  • механической прочности – способности противостоять изгибу, разрыву или срезу головки; данные показатели определяют, закрепив изолятор и приложив соответствующую нагрузку до полного разрушения материала;
  • термической устойчивости – способности сохранять свойства при попеременном нагреве и охлаждении до определенных температур, затем подают напряжение множественными разрядами;

Из партии произведенных на заводе изоляторов, испытаниям подвергают только 0,5 % продукции. Все изготовленные элементы проверяют подачей перекрывающего напряжения на три минуты, с образованием искровых разрядов.

Также читайте: Технические характеристики кабеля – ШВВП

Конструкция

Конструктивно все электрические изоляторы различаются способами крепления к несущей конструкции и крепления кабеля. Главной задачей этого изделия является предотвращение электрических разрядов, для этого они выполняются в виде тарелок или стержней с ребрами. Эти ребра нужны для того, чтобы разряд развивался под углом к силовым линиям поля. На рисунке ниже вы видите примеры типовых изделий разных форм и конструкций:

Классификация

Надежность работы электрических установок и сетей можно при условии использования изолирующих элементов соответствующей конструкции и характеристик. Предусмотрено несколько принципов, по которым классифицируют изоляторы.

По напряжению

В зависимости от номинальной величины напряжения, изолирующие элементы подразделяют на 14 классов по значению данной характеристики в линиях или электроустановках от 1 до 1 150 кВт.

По назначению

С учетом назначения, изолирующие элементы могут быть:

  • стационарными – предполагают механический крепеж токоведущих стержней и ошиновку для электрических установок; данные изоляторы бывают опорными, выполняя несущую функцию для размещения шин в ячейках, и проходными – если токоведущие линии проходят сквозь стены или другие элементы строительных конструкций;
  • аппаратными(белым цветом на фото) – по назначению сходны со стационарными, но применяются в составе различного оборудования; к примеру, такие детали используют для выпрямительных блоков, силовых приборов, комплексных подстанций и прочих электроустановок;

  • линейными – предусматривают использование в качестве изолирующих элементов наружных высоковольтных линий или для ошиновки распределительных устройств.

Данный вид классификации определяет особенности применения изоляторов.

По материалу

Корпус изолятора может быть выполнен из следующих материалов:

  • фарфора – выдерживает значительные механические нагрузки при сжатии, но не рассчитан на динамическое воздействие; прочность изделия дополнительно повышают, покрывая поверхность снаружи глазурью, чтобы исключить проникновение в поверхностный слой влаги, пыли и грязи;
  • полимеров – применяют конструкции, обладающие упругой деформацией и с монолитной структурой; удельная прочность полимерного материала значительно превышает аналогичные характеристики фарфоровых корпусов; недостаток – разрушение под воздействием ультрафиолетового излучения, поэтому такие изоляторы применяют внутри помещений и установок;
  • стекла – уступают в прочности другим разновидностям, возможны сколы при ударах; но устойчивы к агрессивной среде, легче по весу, проще в уходе и обслуживании, по сравнению с изделиями из фарфора.

Также читайте: Технические характеристики кабеля – АВБбШв

Для каждого материала характерны свои плюсы и минусы, что влияет на характер использования.

По способу крепления

В зависимости от способа крепежа, изоляторы бывают:

  • штыревыми(а) – фиксируют на металлическую ось;
  • подвесными(б) – в виде тарельчатых элементов, собранных гирляндой; количество отдельных деталей зависит от необходимого класса напряжения;
  • стержневыми(в) – сплошной стержень, выполняющий опорную функцию или подвешиваемый за крепежный кронштейн.

Каждый из перечисленных видов отличается собственным конструктивным устройством.

Прочие принципы классификации

Также изоляторы, с учетом условий эксплуатации, различают на наружные, используемые на открытом воздухе, и внутренние – устанавливаемые внутри помещений или электроустановок.

Полимерные изоляторы

Опорные линейные стержневые кремнеорганические изоляторы ОЛСК-6-10, ОЛСК-12,5-10, ОЛСК-16-20, ОЛСК-12,5-35 предназначены для крепления и изоляции неизолированных и защищенных изоляцией проводов типа СИП-3 (SАX), ПЗВ и ПЗВГ на промежуточных, промежуточно-угловых и иных опорах воздушных ЛЭП и РУ электростанций и подстанций переменного тока напряжением 6-35 кВ частотой до 100 Гц при температуре окружающего воздуха от — 60° до + 50°С. Провод может быть закреплен в желобе или на шейке изолятора. Крепление к металлоконструкциям опор (траверсам) осуществляется при помощи болтового соединения М20, М24. Конструкция изоляторов модификации «А» позволяет осуществлять раскатку проводов СИП-3, ПЗВ и ПЗВГ непосредственно по изоляторам без применения раскаточных роликов. Это сокращает время монтажа и уменьшает его стоимость. После раскатки проводов по изоляторам модификации «А» они должны быть закреплены в желобе или на шейке изолятора на прямых участках линии и на шейке при повороте линии. Изготавливаются : — ОЛСК 6(12,5)-10 по ТУ 3494-005-82442590-2008; — ОЛСК 16(12,5)-20(35) по ТУ 3494-005-82442590-2009.

Преимущества опорных линейных изоляторов над штыревыми:

  • снижена стоимость траверс;
  • снижены затраты на транспортировку траверс;
  • снижена трудоемкость монтажа, 100%-я заводская готовность к монтажу на траверсе одной гайкой;
  • непробиваемость при любых формах воздействий напряжений;
  • повышена надежность изоляционного узла, исключены из конструкции наиболее слабые элементы (штыри, колпачки);
  • использование для крепления проводов спиральных связок, унифицированных со штыревыми изоляторами.

Опорные линейные стержневые кремнеорганические изоляторы ОЛСК 6-10, ОЛСК 12,5-10, ОЛСК 16-20, ОЛСК 12,5-35 представляют собой сплошное изоляционное ребристое тело из фарфора или комбинации композитных материалов, армированное в нижней части стальным фланцем. Принципиальное отличие стержневых изоляторов от штыревых — их «непробиваемость» при всех видах электрических воздействий, так как толщина твердой изоляции между проводом и заземленным фланцем соизмерима с длинами пути разряда по воздуху и по поверхности, и ее электрическая прочность несоизмеримо выше прочности воздушного промежутка. Такой изолятор может быть перекрыт при грозовых перенапряжениях на ВЛ, но не пробит как это зачастую происходит со штыревыми изоляторами. Изоляционное тело стержневых изоляторов несет не только электрическую нагрузку, но и полностью определяет механическую прочность изоляционного узла. Развитая поверхность изоляторов обеспечивает влагоразрядные характеристики изоляторов, превышающие требования ПУЭ для районов допустимой степени загрязнения.

Расшифровка условного обозначения опорного линейного стержневого кремнеорганического изолятора:

ОЛСК— Опорный Линейный Стержневой Кремнеорганический
6; 12,5— Нормированная разрушающая сила на изгиб, кН
10;20;35— Номинальное напряжение, кВ
А; Б— Индекс модификации оголовка изолятора
2; 4— Индекс модификации изоляционной детали изолятора
ТипРис. №Номинальное напряжение, кВНормированная разрушающая сила на изгиб, кННормированная механическая разрушающая сила при растяжении, кНСтроительная высота Н, ммИзоляционная высота L, ммДлина пути утечки, ммВыдерживаемое напряжение, кВРазрядное напряжение 50 Гц в загрязненном и увлажненном состоянии, кВУдельная поверхностная проводимость слоя загрязнения, мкСмДопустимая степень загрязнения по ПУЭМасса, кг
полного грозового импульса50 Гц в сухом состоянии50 Гц под дождем
ОЛСК 6-10-А(Б)-21106,04,02131602901208045131021,5
ОЛСК 6-10-А(Б)-424103041,6
ОЛСК 12,5-10-А(Б)-2312,510,01552801021,9
ОЛСК 12,5-10-А(Б)-444003042,0
ОЛСК 16-20-А(Б)-452016,012,03402807801509060263043,3
ОЛСК 12,5-35А(Б)-253512,510,0400340960210165120421024

Обслуживание и эксплуатация изоляторов

Изоляторы подбирают по конструкции и характеристикам, с учетом условий эксплуатации. В процессе применения, эти элементы воздушных линий или электроустановок осматривают вместе с остальным оборудованием.

Периодичность осмотров устанавливают, в зависимости от особенностей элементов. Проверку проводят не реже одного раза в полгода, если речь идет о наружных линиях электропередач. Изолирующие элементы в установках можно проверять реже, в регламентные сроки освидетельствования агрегатов.

Если линия электропередач проходит через места сильных загрязнений или ответственные участки (промышленные районы, жилые массивы и пр.), периодичность осмотров сокращают до 1 раза в квартал.

В ходе осмотра необходимо убедиться в целостности изоляторов, надежности крепления, очистить детали от пыли и загрязнений. Дефектные элементы заменяют на целые. Ревизию проводят при отключении подачи электроэнергии.

Электрические изоляторы – незаменимые элементы линий электропередач и электрооборудования. Но для их надежной эксплуатации требуется правильный подбор и соблюдение действующих норм при проверке и обслуживании.

4.2. Требования надежности

4.2.1. Надежность изолятора определяют среднегодовым уровнем отказов, вероятностью безотказной работы и гамма-процентным сроком службы.

За отказ в нормальном эксплуатационном режиме принимают разрушение изолятора или снижение его электрических параметров, приводящее к перекрытию при рабочем напряжении.

Среднегодовой уровень отказов выбирают из ряда: 0,000005, 0,00001, 0,00005, 0,0001.

Нормированное значение среднегодового уровня отказов должно быть указано в технических условиях на изолятор конкретного типа.

Вероятность безотказной работы Р

вычисляют по формуле

P

(
t
) = 1 —
At
, (1)

где t

— время с начала эксплуатации, год;

А

— среднегодовой уровень отказов, 1/год.

4.2.2. Гамма-процентный срок службы изоляторов с вероятностью 0,999 должен быть не менее 30 лег.

4.3. Требования к составным частям изоляторов

4.3.1. Оконцеватели изоляторов должны соответствовать требованиям ГОСТ 12393 и ГОСТ 27396.

4.3.2. Наружная и внутренняя поверхности оконцевателей должны быть оцинкованы горячим способом.

Покрытие должно соответствовать требованиям ГОСТ 9.307. Толщина покрытия — не менее 70 мкм.

Для получения установленного размера допускается после нанесения покрытия производить механическую обработку внутренней резьбы.

4.3.3. Резьба оконцевателей фиксаторных изоляторов должна соответствовать ГОСТ 6357 и подвергаться консервации смазкой по ГОСТ 1033.

4.6. Упаковка

Упаковка изоляторов — по типу С/КУ-1, сочетание внутренней упаковки с транспортной тарой — ТЭ-0, 1, 3, К/ВУ-0 по ГОСТ 23216 для условий транспортирования и допустимых сроков сохраняемости, указанных в разделе 8.

Ящики для изоляторов должны удовлетворять требованиям ГОСТ 2991.

Масса ящиков с упакованными изоляторами — не более 110 кг.

Полимерные материалы, используемые для изготовления защитной оболочки изоляционной части изоляторов, по стойкости к горению должны относиться к категории ПВ-0 по ГОСТ 28157.

6.2. Приемо-сдаточные испытания

6.2.1. Приемо-сдаточные испытания проводят по показателям, в последовательности и объеме, указанным в таблицах 4 и 5.

Таблица 4

Наименование показателя Номер пункта Объем выборки
Технические требования Методы испытаний
1. Качество поверхности изоляционной части 4.1.2 7.2 100 %
2. Механическая растягивающая испытательная сила в течение 1 мин 4.1.4
3. Отклонения от номинальных размеров и массы 3.5 По таблице 5
4. Разрушающая механическая сила при растяжении 4.1.3 7.3
5 Качество цинкового покрытия 4.3.2 7.5

Таблица 5

В штуках

Размер партии N Объем выборки
До 100 включ. 3
От 101 до 500 включ. 5
Св. 500
Примечание — Если расчет не дает целого числа, то выбирают следующее целое число.

6.2.2. Испытания по пунктам 1, 2 таблицы 4 проводят по плану сплошного контроля.

Изоляторы, не удовлетворяющие одному из показателей, бракуют.

6.2.3. Испытания по пунктам 3-5 таблицы 4 проводят по плану выборочного контроля. При выборочном контроле выборку комплектуют методом случайного отбора по ГОСТ 18321.

При получении удовлетворительных результатов испытаний на всех изоляторах первой выборки партию принимают.

При получении неудовлетворительных результатов испытаний на двух или более изоляторах первой выборки партию бракуют.

При получении неудовлетворительных результатов испытаний на одном изоляторе первой выборки проводят повторные испытания на удвоенной выборке изоляторов, отобранных от той же партии. При получении удовлетворительных результатов испытаний на всех изоляторах второй выборки партию принимают.

При получении неудовлетворительных результатов испытаний на одном изоляторе второй выборки партию бракуют.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]