Алгоритм встречно-направленной логической защиты шин


До развития микропроцессорной техники для защиты подстанций напряжением свыше 1000 вольт применялись различные системы на реле. Они потребляли огромное количество энергии для собственных нужд, были сложны в настройке и не отличались надёжностью. Сегодня эту задачу выполняют системы логической защиты шин, построенные на электронных блоках.

Защита и автоматика ввода

Релейная защита и автоматика

РЗиА – это система, предназначенная для защиты подстанции от аварийного режима работы. Она представляет собой сложнейший комплекс электрических и электронных устройств. Релейная защита и автоматика непрерывно контролируют состояние сети и, при необходимости, производят в ней различные переключения.

Любая РЗиА обладает селективностью (избирательностью). Т.е. она отключает именно тот участок энергосистемы, на котором возник ненормальный или аварийный режим работы. Соответственно, без напряжения остаётся часть потребителей, а не все сразу. Особенно это необходимо в случаях, когда отключение подразумевает нарушение тех. процессов предприятий, сопровождающихся риском возникновения ЧС или финансовых убытков.

Также релейная защита характеризуется быстродействием. Под этим свойством подразумевают время, затраченное на отключение повреждённого участка линии. Быстродействие тесно связано с селективностью. Уставка допустимого времени протекания аварийной ситуации учитывается в настройках терминала РЗиА, и от него зависит, на каком именно участке линия будет отделена от общей системы.

Дополнительная информация. Быстродействие защиты является её важнейшей характеристикой. Для правильной настройки нужна золотая середина. Если выдержки времени подобраны так, что они слишком короткие или продолжительные, то система будет отключать линии, которые в этом не нуждаются, т.е. будут происходить ложные срабатывания.


Терминал РЗиА

Дифференциальная защита трансформаторов РЗЛ-05.T2, РЗЛ-05.T3

Широкий спектр функций защиты и автоматики

Цифровой осцилограф Журнал событий

Интеграция в SCADA-системы

Температура эксплуатации -40°C. +55°C

Возможность программирования логики (под заказ)

Назначение

Микропроцессорные устройства релейной защиты и автоматики серии РЗЛ-05.Т предназначены для выполнения функций основной защиты двухобмоточного (РЗЛ-05.Т2) или трехобмоточного (либо двухобмоточного с расщепленной обмоткой) (РЗЛ-05.Т3) трансформатора или автотрансформатора с высшим напряжением 35-110 кВ.

Устройства предназначены для установки в релейных отсеках КСО, КРУ, КРУН, а также на панелях, в шкафах управления электрических станций и подстанций 35-110 кВ.

Скачать подробное описание РЗЛ-05.T

Функции

  • Две ступени продольной дифзащиты − дифференциальная токовая отсечка (ДТО) и чувствительная дифференциальная токовая защита (ДТЗ) с торможением от сквозного тока и отстройкой от бросков тока намагничивания (с блокировкой по второй, третьей и пятой гармонике при броске намагничивающего тока). ДТО работает без каких-либо блокировок и не имеет торможения. Для ступени ДТЗ торможение выполняется от всех фазных токовых каналов.
  • Контроль исправности токовых цепей (КТЦ). Для своевременного выявления неисправности токовых цепей дифференциальной защиты, например, вследствие нарушения изоляции или неправильного соединения токовых цепей предусмотрена сигнализация небаланса в плечах дифференциальной защиты.
  • 5 ступеней максимальной токовой защиты, в т.ч. токовая отсечка (ТО) и защита от перегрузки трансформатора (ЗОП) с независимой и зависимой времятоковой характеристикой, с блокировкой от броска намагничивающего тока, с выбором срабатывания по направлению мощности. Есть возможность реализовать для ступеней МТЗ комбинированный пуск по току и минимальному напряжению (вольтметровая блокировка).
  • Логическая защита шин (ЛЗШ) для быстрого отключения выключателя ВВ НН при возникновении повреждения на шинах.
  • 3 ступени защиты от замыканий на землю в цепях ВН трансформатора по измеренному и расчётному току нулевой последовательности 3I0 стороны ВН.
  • Защита от неполнофазного режима (ЗОФ) по току обратной последовательности.
  • Внешняя (газовая) защита трансформатора. Срабатывания газовой защиты трансформатора происходит по сигналам от назначенных дискретных входов и действуют на реле отключения или сигнализацию.
  • Дуговая защита (ДгЗ) с ВОД-датчиками с возможностью контроля тока.
  • Резервирование отказов выключателя (УРОВ).
  • Свободно-программируемая логика (СПЛ), позволяющая свободно запрограммировать все дискретные входы, выходы и светодиоды устройства.
  • Энергонезависимый журнал событий (256 событий).
  • Аварийный осциллограф. При срабатывании защиты устройство производит запись мгновенных значений входных аналоговых (по выбору пользователя) и дискретных сигналов (входных, выходных, признаков работы защит).
  • Контроль температуры внутри устройства.
  • Контроль состояния дискретных входов устройства.


Тормозная характеристика дифференциальной защиты
Характеристика срабатывания (тормозная характеристика) определяет соотношение дифференциального (Idiff) и тормозного (Irest) токов. Ломанная линия А-В-С-Д

делит плоскость на две части – область срабатывания и несрабатывания. Все, что лежит выше ломанной, является
областью срабатывания
.

Из чего состоит ЛЗШ

Дифференциальная защита

Отвечая на вопрос «ЛЗШ защита что это», можно сказать, что она включает в себя сложный комплекс аппаратных и программных средств, предназначенный для отключения линии при внештатном режиме работы. Все их условно можно разделить на 3 категории:

  1. Датчики – устройства, считывающие в реальном времени информацию о состоянии энергосистемы. Например, ток и напряжение на силовых шинах, частоту, сдвиг фазы и cosф нагрузки, а также температуру трансформаторов, окружающего воздуха и тому подобные показатели. Вся эта информация поступает в контроллер.
  2. Микропроцессорные терминалы – вычислительный орган системы. С натяжкой его можно назвать компьютером. Внешне представляет собой небольшую коробку с экраном, отображаемым состояние сети, и множеством кнопок для настройки прибора и его взаимодействия с человеком.
  3. Исполнительные органы – по аналогии с ПК это периферийные устройства. К ним относятся высоковольтные выключатели, вентиляторы и насосы систем охлаждения, различные приводы для коммутирующих устройств.

Упрощённо всё это работает следующим образом. На шинах подстанции возникает какая-либо внештатная ситуация, например, короткое замыкание. Трансформаторы тока регистрируют критическое превышение этого параметра. С них сигнал передаётся в микропроцессорный терминал, который его обрабатывает. При этом учитывается ток короткого замыкания, его продолжительность и ряд других характеристик. Затем терминал подаёт сигнал на исполнительный орган – вакуумный выключатель, который отключает участок линии, поражённый коротким замыканием.


Трансформаторы тока

Применение

Несмотря на некоторые недостатки, защита минимального напряжения тесно связана с производственными процессами, обеспечивает надежное функционирование техническому оборудованию.

Применяется для обеспечения защиты на электростанциях, обеспечивает работу важных механизмов при кратковременном исчезновении собственного питания. Устанавливается на проблемных участках электросети и подстанциях, отключая в первую очередь потребителей третьей категории. Обеспечивает сохранение напряжения на жизненно-важных объектах (больницы, железная дорога, связь, водопровод, канализация).

Схемы организации ЛЗШ

Дуговая защита

Большинство комплексов логической защиты шин реализуется по последовательной или параллельной схеме. Каждая из них имеет свои достоинства и недостатки, но принцип работы ЛЗШ похож в обоих случаях.

При последовательной схеме отдельные контакты следуют друг за другом. Пока все из них замкнуты, на вход блокировки ЛЗШ поступает сигнал, предотвращающий срабатывание защиты. Если хоть один контакт релейного терминала разомкнётся, то общая цепочка будет нарушена.


Последовательная схема ЛЗШ

В случае с параллельной схемой контакты изначально находятся в нормально разомкнутом положении. Для срабатывания ЛЗШ также необходимо, чтобы один из них изменил своё состояние, т.е. замкнулся.


Параллельная схема ЛЗШ

Поведение ЛЗШ при внешнем КЗ

Максимальная токовая защита

Принцип действия логической защиты шин основан на отсечке линии при возникновении в ней тока короткого замыкания. В данном случае подразумевается, что КЗ произошло где-то за пределами подстанции. Пока линия находится в нормальном режиме работы, контакты ЛЗШ формируют сигнал блокировки. Он препятствует срабатыванию защиты, поэтому система находится под напряжением. Как только происходит КЗ или серьёзная перегрузка по току, контакты ЛЗШ размыкаются. Происходит включение защиты. Расчёт времени отключения линии напрямую зависит от интенсивности КЗ и настроек, внесённых наладчиком в терминал РЗиА.

Дополнительная информация. На воздушных линиях электропередач возможны неустойчивые короткие замыкания. Они могут быть вызваны перехлёстом проводов из-за ветра. В таком случае замыкание носит кратковременный характер, после его исчезновения линия снова включается в работу устройством автоматического повторного включения (АПВ).

Классификация реле

Согласно СИПам реле управления включается прямо в электрическую цепь и предназначено для частных подключений. Оно относится к самым распространенным электротехническим изделиям, и широко применяются в качестве комплектующих.

Классификация реле проводится по нескольким различным критериям, а именно, таким как:

  • По назначению;
  • Принципу действия;
  • Замеряемой величине;
  • Мощности управления;
  • Времени срабатывания.

Защитное реле применяется для включения и отключения защиты устройств – вентиляторов, электродвигателей и других приборов, имеющих термоконтакты. Защитительный аппарат может автоматически отключиться, если контакты разомкнутся. Повторное включение питания сети, возможно, исключительно после того, как двигатель хорошо остынет до требуемой температуры.

По принципу воздействия, устройство подразделяется на:

  • Электромеханическое;
  • Индукционное;
  • Магнитное;
  • Электронное;
  • Фотоэлектронное.

Электрическими реле называются аппараты, приводящие в действие одну или сразу несколько управляемых электрических цепей при воздействии на него определенных электрических сигналов. Самыми распространенными считаются электромеханические реле, которые наиболее часто применяются в устройствах телемеханики, автоматики, вычислительной техники.

Работа ЛЗШ при КЗ на шинах

Другая цель применения ЛЗШ – это отключение напряжения при возникновении короткого замыкании на шинах. При этом речь идёт о КЗ, происходящем непосредственно на территории распределительного устройства (РУ) или подстанции. Данная ситуация имеет особенность. Замыкание происходит в непосредственной близи от трансформатора. Сопротивление шин до точки КЗ имеет минимальное значение. Ток замыкания будет крайне высоким, вплоть до десятков тысяч ампер. Терминал РЗиА, регистрируя такое большое значение, соберёт цепочку ЛЗШ быстрее, чем, если бы авария сформировалась где-то далеко от подстанции. Если по каким-либо причинам данный каскад защиты не отработает, то питание отключится тем, который стоит выше по цепи. При этом из работы выйдет вся секция. Срабатывание будет неселективным, что является нежелательным.

Основные требования к защитным устройствам

Итак, по отношению к РЗА предъявляются следующие требования:

  1. Селективность. При возникновении аварийной ситуации должен быть отключен только тот участок, на котором обнаружен ненормальный режим работы. Все остальное электрооборудование должно работать.
  2. Чувствительность. Релейная защита должна реагировать даже на самые минимальные значения аварийных параметров (заданы уставкой срабатывания).
  3. Быстродействие. Не менее важное требование к РЗА, т.к. чем быстрее реле сработает, тем меньше шанс повреждения электрооборудования, а также возникновения опасности.
  4. Надежность. Само собой аппараты должны выполнять свои защитные функции в заданных условиях эксплуатации.

Надежность ЛЗШ

ЛЗШ, с точки зрения тестирования на работоспособность, имеет отличие от прочих видов защит. Она редко срабатывает при испытаниях сотрудниками измерительных лабораторий. Объясняется это тем, что ЛЗШ отводится менее значимая роль, соответственно, она имеет более длительные по времени выдержки срабатывания и просто не успевает опередить другие виды защит.

Чаще всего логическая защита шин даёт сбой вследствие КЗ трансформатора тока либо его виткового замыкания. К счастью, происходит такое довольно редко. В этом случае трансформатор просто не в состоянии корректно измерить протекающий через контролируемую им шину ток. Поэтому не может сформироваться сигнал блокировки защиты ЛЗШ, что приводит к её непреднамеренному срабатыванию.

Важно! Перед отключением проводов от трансформатора тока его выводы требуется замкнуть между собой. В противном случае в обмотке ТТ возможно наведение высоковольтного потенциала, который опасен для жизни обслуживающего персонала и может привести к повреждению оборудования.

ЛЗШ является сравнительно простой и действенной системой по обеспечению бесперебойной работы энергосистемы. Её применение ощутимо снижает негативные последствия аварийных ситуаций, а также существенно уменьшает риск их возникновения.

Классификация реле

При рассмотрении данной темы нельзя не остановиться на видах релейной защиты. Классификация реле представлена следующим образом:

  • Способ подключения: первичные (включаются в цепь оборудования напрямую) и вторичные (подключение осуществляется через трансформаторы).
  • Вариант исполнения: электромеханические (система подвижных контактов расцепляет схему) и электронные (отключение происходит с помощью электроники).
  • Назначение: измерительные (осуществляют замер напряжения, силы тока, температуры и других параметров) и логические (передают команды другим устройствам, осуществляют выдержку времени и т.д.).
  • Способ воздействия: релейная защита прямого воздействия (связана механически с отключающим аппаратом) и косвенного воздействия (осуществляют управление цепью электромагнита, который отключает питание).

Что касается самих видов РЗА, их множество. Сразу же рассмотрим, какие бывают разновидности реле и для чего они используются.

  1. Максимальная токовая защита (МТЗ), срабатывает если ток достигает заданной производителем уставки.
  2. Направленная максимальная токовая защита, помимо уставки осуществляется контроль направления мощности.
  3. Газовая защита (ГЗ), используется для того, чтобы отключать питание трансформатора в результате выделения газа.
  4. Дифференциальная, область применения – защита сборных шин, трансформаторов, а также генераторов за счет сравнения значений токов на входе и выходе. Если разница больше заданной уставки, релейная защита срабатывает.
  5. Дистанционная (ДЗ), отключает питание, если обнаружит уменьшение сопротивления в цепи, что происходит в том случае, если возникает ток КЗ.
  6. Дистанционная защита с высокочастотной блокировкой, используется для отключения ВЛ при обнаружении короткого замыкания.
  7. Дистанционная с блокировкой по оптическому каналу, более надежный вариант исполнения предыдущего вида защиты, т.к. влияние электрических помех на оптический канал не такое значительное .
  8. Логическая защита шин (ЛЗШ), также используется для выявления КЗ, только в этом случае на шинах и фидерах (питающих линиях, отходящих от шин подстанции).
  9. Дуговая. Назначение – защита комплектных распределительных устройств (КРУ) и комплектных трансформаторных подстанций (КТП) от возгорания. Принцип работы основан на срабатывании оптических датчиков в результате повышения освещенности, а также датчиков давления при повышении давления.
  10. Дифференциально-фазная (ДФЗ). Применяются для контроля фаз на двух концах питающей линии. Если ток превышает уставку, реле срабатывает.
Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]