Вопрос №9: «Что такое источник тока и чем он отличается от источника напряжения?»


Работа тока

Сразу введем новое определение.

Работа тока — это работа, которую совершают силы электрического поля, создающего электрический ток.

В процессе этой работы энергия электрического тока переходит в другие различные виды энергии (механическую, внутреннюю и др.). Более подробно мы говорили об этом, когда рассматривали действия тока.

От чего зависит работа тока?

Логично предположить, что работа тока будет зависеть от того, какой заряд протекает по цепи за определенное время. То есть, работа тока будет зависеть от силы тока.

Проверим это на простом опыте. Соберем цепь, состоящую из ключа, источника тока, амперметра и подключенной к проводам натянутой никелевой проволоки (рисунок 1).

Рисунок 1. Повышение температуры проволоки при увеличении силы тока в цепи

Используя один источник тока, в цепи была определенная сила тока. Проволока нагрелась.

Если же мы заменим источник тока, который даст нам большую силу тока, чем предыдущий, то заметим определенные изменения. Наша проволока нагревается намного сильнее. Вот вам наглядное доказательство того, что тепловое действие (а значит, и работа тока) проявляется сильнее с увеличением силы тока в цепи.

Но дело в том, что сила тока — не единственная характеристика, от которой зависит работа тока. Другая (и не менее важная) величина называется электрическим напряжением или просто напряжением.

Реальный генератор

Главное различие между реальным и идеальным устройством — наличие внутреннего сопротивления. Чем выше данный параметр, тем ближе элемент к улучшенному варианту. Из этого следует, что напряжение и мощность значения конечные, т. е имеют определенный рабочий диапазон. При этом система также обладает ограничением по присоединяемой нагрузке. При решении задач, реальное устройство изображают в качестве идеального, с подключенным в параллель внутренним сопротивлением.

Эксплуатация данного агрегата возможна при холостом ходе (без внешней нагрузки) вследствие того, что имеем замкнутый контур за счет внутреннего сопротивления. Ток на выходе во время такого режима снижается до нулевого значения. При подключении накоротко (режим короткого замыкания) получим максимальную величину, а выходное напряжение опустится до 0.

В качестве примера такого устройства, обратимся к катушке индуктивности. Это положение справедливо в момент размыкания цепи. Так разность потенциалов в таком режиме резко увеличивается по сравнению с предыдущим состоянием. Все дело в ЭДС самоиндукции возникающей в этом элементе. При увеличении напряжения катушка накапливает энергию, при снижении отдает ее в сеть.

Еще одним примером является вторичная обмотка трансформатора тока, которая в нормальных условиях работы всегда должна быть закорочена. В противном случае, если в ней произойдет разрыв, то она станет генератором. Все дело в законе сохранения энергии, так мощность на первичной и вторичной обмотке должна быть одинаковой. Параметры первичной обмотки неизменны, вследствие конструктивных особенностей трансформатора (обмотка имеет один виток). При обрыве во вторичной обмотке, упорядоченного движения заряженных частиц не будет, соответственно напряжение резко возрастет.

Электрическое напряжение

Напряжение — это физическая величина, характеризующая электрическое поле.

Обозначается электрическое напряжение буквой $U$.

Давайте рассмотрим опыт, который наглядно нам покажет, как же эта величина может описать нам электрическое поле.

Соберем электрическую цепь, состоящую из ключа, источника тока, электрической лампы и амперметра. За источник тока возьмем небольшую батарейку (гальванический элемент), а электрическую лампу возьмем от карманного фонарика (рисунок 2).

Рисунок 2. Свечение лампы от карманного фонарика от батарейки

А теперь соберем похожую цепь. Заменим лампочку от фонарика большой лампой для освещения помещений. Батарейку тоже заменим. Теперь источником тока у нас является городская осветительная сеть (рисунок 3).

Рисунок 3. Свечение лампы для помещений от городской осветительной сети

Взгляните на показания амперметров в этих двух цепях. Они одинаковы!

Сила тока в цепях одинакова, но ведь большая лампа дает намного больше света и тепла, чем маленькая лампочка от фонарика. Вот здесь и появляется наша новая величина — напряжение.

Закон Джоуля-Ленца

Еще одним заданием, которое может ввести в ступор даже более-менее опытного студента – это определить силу тока, если известно время, сопротивление и количество выделенного тепла проводником. Для этого вспомним закон Джоуля-Ленца.

В качестве заключения предлагаем закрепить полученную информацию на нескольких примерах задач, в которых нужно найти силу тока.

1 задача: Рассчитать I в цепи из двух резисторов при последовательном соединении и при параллельном соединении. R резисторов 1 и 2 Ома, источник питания на 12 Вольт.

Из условия ясно, что нужно привести два варианта ответа для каждого из вариантов соединений. Тогда чтобы найти ток при последовательном соединении, сначала складывают сопротивления схемы, чтобы получить общее.

При параллельном соединении двух элементов Rобщее можно рассчитать так:

2 задача: рассчитать ток при смешанном соединении элементов. На выходе источника питания 24В, а резисторы на: R1=1 Ом, R2=3 Ома, R3=3 Ома.

В первую очередь нужно найти R общее параллельно соединенных R2 и R3, по той же формуле, что мы использовали выше.

Теперь вы знаете, как найти силу тока, зная мощность, сопротивление и напряжение. Надеемся, предоставленные формулы и примеры расчетов помогли вам усвоить материал!

Мнение эксперта

It-Technology, Cпециалист по электроэнергетике и электронике

Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Как найти силу тока через мощность, сопротивление и напряжение Рассчитывая схемы и решая задачи по нахождению значений электрических параметров, необходимо использовать эквивалентные сопротивления. Спрашивайте, я на связи!

Связь работы тока и напряжения

Проведенные нами опыты объясняются следующим.

При одинаковой силе тока работа тока на этих участках цепи при перемещении электрического заряда, равного $1 \space Кл$, различна.

Получается, что эта работа тока и определяет нашу новую физическую величину — электрическое напряжение.

Теперь мы может объяснить до конца наши опыты. Напряжение, которое создается батарейкой в первой цепи, меньше напряжение городской осветительной сети. Поэтому лампа, подключенная к сети, дает больше света и тепла. При этом сила тока в обеих цепях одинакова. Вся причина различий — в создаваемом напряжении.

Напряжение показывает, какую работу совершает электрическое поле при перемещении единичного положительного заряда из одной точки в другую.

Постоянный ток: возрождение старой технологии

Сегодня, спустя 86 лет после смерти Эдисона, есть признаки того, что великий изобретатель не так уж и ошибался относительно постоянного тока, как когда-то считали люди. Идеи Эдисона становятся снова актуальными, так как ряд последних событий делает постоянный ток более привлекательным.

Раньше электричество производилось переменным током в генераторах крупных угольных или атомных электростанций, а также в гидротурбинах. Они распределяют энергию через сеть переменного тока. Трансформаторы позволяют увеличить напряжение до нескольких сотен тысяч вольт, удерживая ток в кабелях. Но сейчас ряд поставщиков электроэнергии становятся на путь использования постоянного тока. К ним относятся, например, солнечные электростанции, которые обычно поддерживаются батареями или электрохимическими системами хранения. Преобразование постоянного тока в переменный неизбежно связано с потерями, что делает сеть постоянного тока лучшим выбором для этих поставщиков.

Формула для расчета напряжения

Если мы знаем работу тока $A$ на рассматриваемом участке цепи и весь электрический заряд $q$, который прошел по нему, то мы можем рассчитать напряжение $U$. По физическому смыслу, мы определим работу тока при перемещении единичного электрического заряда.

$U = \frac{A}{q}$ Напряжение равно отношению работы тока на данном участке к электрическому заряду, прошедшему по этому участку.

Из этой формулы мы также будем использовать два ее следствия:

$A = Uq$, $q = \frac{A}{U}$.

Расчет смешанного соединения резисторов.

Расчет начинают от дальнего участка цепи по отношению к источнику питания. Определяют участок с параллельным или последовательным соединением двух резисторов и высчитывают их общее сопротивление Rобщ

. Затем полученное сопротивление складывают с рядом стоящим резистором и т.д.

количества элементов в цепи с целью упрощения схемы

и, соответственно, упрощению расчета общего сопротивления.

Разберем схему смешанного соединения из семи резисторов

Самым дальним участком схемы оказались резисторы R6

Вычисляем их общее сопротивление используя формулу параллельного

Теперь если сравнить первоначальную схему с получившейся, то здесь мы видим, что она уменьшилась на один элемент и вместо двух резисторов R6 и R7 остался один R6

Продолжим расчет и следующим дальним участком схемы оказались резисторы R5

Вычисляем их общее сопротивление используя формулу последовательного

соединения. Сопротивление резистора R5 составляет 27 Ом, а R6 = 30,709 кОм, поэтому для удобства расчета килоомы переводим в Омы (1 кОм = 1000 Ом):

Схема уменьшилась еще на один элемент и приняла вид:

Теперь дальним участком оказались резисторы R4

Первоначальная схема опять изменилась и теперь состоит всего из четырех резисторов соединенных последовательно

. Таким образом мы максимально упростили схему и привели ее к удобному расчету.

Теперь все просто. Складываем сопротивления оставшихся четырех резисторов, используя формулу последовательного

соединения, и получаем общее сопротивление всей цепи:

Вот в принципе и все, что хотел сказать о смешанном соединении резисторов и расчете смешанного соединения. Удачи!

Мнение эксперта

It-Technology, Cпециалист по электроэнергетике и электронике

Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Идеальный источник ЭДС Если цепь состоит из нескольких потребителей, то при параллельном их соединения общая мощность тока во всей цепи равна сумме мощностей отдельных потребителей. Спрашивайте, я на связи!

Единица измерения напряжения

Если единица силы тока была названа в честь ученого, то и с единицей измерения напряжения у нас такая же история.

Она названа вольтом в честь итальянского ученого Алессандро Вольта (рисунок 4).

Рисунок 4. Алессандро Джузеппе Антонио Вольта (1745 — 1827) — итальянский физик, химик и физиолог, изобретатель гальванического элемента

Единица напряжения — это такое электрическое напряжение на концах проводника, при котором работа по перемещению электрического заряда в $1 \space Кл$ по этому проводнику равна $1 \space Дж$: $1 \space В = 1 \frac{Дж}{Кл}$.

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали – остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Значение напряжения для некоторых устройств и природных явлений

В таблице 1 представлены для ознакомления некоторые значения напряжения.

Устройство$U$, $В$
Гальванический элемент1,25
Городская электросеть220
Электролампы20 — 250
Телевизор100 — 600
Холодильник150 — 600
Компьютер400 — 750
Утюг500 — 2000
Электромоторы550 — 1700
Обогреватель1000 — 2400
Кондиционер1000 — 3000
Циркулярная пила1800 — 2100
Насос высокого давления2000 — 2900
Линии высоковольтной электропередачи (ЛЭП)500 000
Разряд молнииДо 1 000 000

Таблица 1. Напряжение в некоторых технических устройствах и природе

Опасные и безопасные значения напряжения

Все знают, что большое (высокое) напряжение опасно для жизни. Проведем простую аналогию для лучшего понимания.

Например, напряжение между проводом высоковольтной линии передачи и землей составляет $100 \space 000 \space В$. Соединим этот провод с землей. Получается, что при прохождении по нему заряда всего в $1 \space Кл$ совершается работа в $100 \space 000 \space Дж$. Такая же работа будет совершена грузом массой $1000 \space кг$, если он упадет с высоты в $10 \space м$. Похожие разрушения, может вызывать высокое напряжение.

Обычно безопасным считают напряжение не более $42 \space В$. Такое напряжение создают, например, гальванические элементы.

Наверное, многие помнят, как в детстве родители запрещали засовывать пальцы в розетку. Да и разбирать самостоятельно лучше не стоит. Доверять такие работу лучше специалистам. Почему? Ток в такой сети идет от генераторов, и напряжение обычно составляет $220 \space В$. Такое напряжение может нанести существенный вред здоровью.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]