Определение внутреннего сопротивления и ЭДС источника электрического тока


Величина, характеризующая количество энергетических потерь, возникающих при протекании тока через его источник, определяется как внутреннее сопротивление источника тока. Как и обычное сопротивление, имеет единицу измерения, равную 1 Ом. Ток, двигаясь через источник, теряет часть своей энергии, которая переходит в тепло, точно так же, как на любом нагрузочном сопротивлении. Это значит, что величина напряжения на выводах источника зависит от величины тока, а не от ЭДС.

Зависимость напряжения между его выводами от тока источника

Если рассмотреть замкнутую электрическую цепь, в которую включён источник тока (батарейка, аккумулятор или генератор), и нагрузку R, то ток течёт и внутри источника. Внутреннее сопротивление источника, обозначаемое буквой r, ему препятствует.

У генератора r – это внутреннее сопротивление обмоток статора, у аккумулятора – сопротивление электролита.

Измерение сопротивления петли фаза-нуль

Петля «фаза – нуль» – это электрическая цепь переменного тока, которая может возникнуть в результате короткого замыкания между проводами: «фаза» и «ноль» или «фаза» и «фаза». Разрушение изоляции, механические повреждения или случайное соединение оголённых участков кабеля между собой могут стать этому причиной. В установках с глухо заземлённой нейтралью нулевой проводник физически связан с нейтралью трансформатора, она подключена к контуру заземления. При замыкании на корпус или соединении фаз между собой образуется цепь (петля).

Главная задача проводимых измерений – узнавать, каким будет величина тока через петлю при КЗ. Это обязательно для расчёта и подбора защитного оборудования. Хорошим результатом будет маленькое сопротивление петли, тогда ток Iк.з. будет наибольшим. От его величины зависит, как быстро сработает защитный автоматический выключатель.

Чем меньше времени будет затрачено на отключение повреждённой или закороченной цепи, тем больше шансов предотвратить пожар от возгорания кабельной сети. При попадании человека под удар электрического тока в результате прикосновения или короткого замыкания автоматическое снятие напряжения спасёт ему жизнь.

На предприятиях ежегодно проводится комплекс измерений защитного заземления и сопротивления петли фаза – ноль. При неудовлетворительных результатах проводится ряд мероприятий:

  • заменяются участки провода, не отвечающие требованиям по диаметру сечения;
  • перекручиваются болтовые соединения с обязательной установкой врезных шайб;
  • вскрываются контуры защитных заземлений и осматриваются на предмет целостности сварных соединений и состояния элементов заземления;
  • при необходимости в контур защитного заземления добавляются дополнительные элементы;
  • исключается последовательное подключение корпусов устройств к общей шине заземления.

После выполнения комплекса мероприятий измерения проводятся повторно.


Проверка сопротивления петли «фаза – ноль»

Ток, сила тока в цепи.

Проанализируем, что будет происходить если под действие электрического поля попадут заряженные частицы, например, электроны. Рассмотрим проводник, к которому приложено определенное напряжение:

Из направления напряженности электрического поля (E) мы можем сделать вывод о том, что \phi_1 > \phi_2 (вектор напряженности всегда направлен в сторону уменьшения потенциала). На каждый электрон начинает действовать сила:

F = Ee

где e − это заряд электрона.

И поскольку электрон является отрицательно заряженной частицей, то вектор силы будет направлен в сторону противоположную направлению вектора напряженности поля. Таким образом, под действием силы частицы наряду с хаотичным движением приобретают и направленное (вектор скорости V на рисунке). В результате и возникает электрический ток.

В итоге получаем, что ток — это упорядоченное движение заряженных частиц под воздействием электрического поля.

Важным нюансом является то, что принято считать, что ток протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, несмотря на то, что электрон перемещается в противоположном направлении.

Носителями заряда могут выступать не только электроны. Например, в электролитах и ионизированных газах протекание тока в первую очередь связано с перемещением ионов, которые являются положительно заряженными частицами. Соответственно, направление вектора силы, действующей на них (а заодно и вектора скорости) будет совпадать с направлением вектора E. И в этом случае противоречия не возникнет, ведь ток будет протекать именно в том направлении, в котором движутся частицы.

Для того, чтобы оценить ток в цепи, существует такая величина как сила тока. Итак, сила тока (I) — это величина, которая характеризует скорость перемещения электрического заряда в точке. Единицей измерения силы тока является Ампер. Сила тока в проводнике равна 1 Амперу, если за 1 секунду через поперечное сечение проводника проходит заряд 1 Кулон.

Мы уже рассмотрели понятия силы тока и напряжения, теперь разберемся, каким образом эти величины могут бы связаны. И для этого нам предстоит понять, что же из себя представляет сопротивление проводника.

Нахождение внутреннего сопротивления

Сопротивление тока: формула

Его можно находить двумя путями: рассчитать или измерить. Первым путём идут при работе с электрическими схемами, второй – выбирают, занимаясь с реальными устройствами.

Простой расчёт производится с использованием формулы Закона Ома для участка полной цепи:

I = ε / (r + R).

Чтобы узнать силу тока, нужно напряжение ЭДС делить на сумму сопротивлений.

Выразив отсюда r, получают формулу для его вычисления:

r = (ε / I) – R,

где:

  • r – внутреннее сопротивление источника;
  • ε – ЭДС источника;
  • I – сила тока в полной цепи;
  • R – сопротивление в полной цепи.

Комплекс измерений этого параметра у настоящего устройства не подразумевает непосредственных замеров. Тестируются напряжения на нагрузочном сопротивлении в двух режимах тока: холостом и КЗ.

Так как не любой источник может выдержать даже кратковременный режим замыкания, берётся метод измерения без вычислений.

В схему включается внешнее сопротивление нагрузки в виде подстроечного резистора Rн. Выставляется такое значение, при котором падение напряжения на резисторе равнялось бы 1/2 U холостого хода. Тогда измеренное омметром Rн будет соответствовать внутреннему сопротивлению источника.


Внутреннее сопротивление источника тока

Определение и формула ЭДС

Определение

Скалярная физическая величина, которая равна работе сторонних сил по перемещению единичного положительного заряда, называется электродвижущей силой (ЭДС)

, действующей в цепи или на участке цепи. ЭДС обозначается $\varepsilon$ . Математически определение ЭДС запишем как:
$$\varepsilon=\frac{A}{q}(1)$$
где A – работа сторонних сил, q – заряд, над которым производится работа.

Электродвижущая сила источника численно равна разности потенциалов на концах элемента, если он разомкнут, что дает возможность измерить ЭДС по напряжению.

ЭДС, которая действует в замкнутой цепи, может бытьопределена как циркуляция вектора напряжённости сторонних сил:

$$\varepsilon=\oint_{L} \bar{E}^{*} d \bar{l}(2)$$

где $\bar{E}^{*}$ — напряженность поля сторонних сил. Если напряженность поля сторонних сил не равна нулю только в части цепи, например, на отрезке 1-2, тогда интегрирование в выражении (2) можно вести только по данному участку. Соответственно, ЭДС, действующая на участке цепи 1-2 определяется как:

$$\varepsilon=\int_{1}^{2} \bar{E}^{*} d \bar{l}(3)$$

Формула (2) дает самое общее определение ЭДС, которое можно использовать для любых случаев.

Реактивное внутреннее сопротивление

Полное сопротивление

Кроме гальванических и электролитических двухполюсников, существуют источники питания, схемы которых включают в себя реактивные элементы. При определении их внутреннего сопротивления используют метод комплексных амплитуд. Он подразумевает использовать при расчётах комплексные сопротивления элементов, включённых в схему. Величины токов и напряжений заменяются значениями их комплексных амплитуд. Сам алгоритм вычисления такой же, как при расчёте активного сопротивления.

Процесс измерений r-реактивного немного отличается от измерения активной составляющей сопротивления. Методы зависят от того, какие параметры этой комплексной функции нужно узнать: отдельные составляющие или комплексное число.

На эти параметры влияет частота, поэтому, чтобы при тестировании добиться информации о внутреннем реактивном значении r, нужно убрать частотную зависимость. Это достигается комплексом замеров на всём диапазоне частот, генерируемых таким двухполюсником.

Эффективные значения

Среднее арифметическое значение напряжения, скорости изменения заряда за период равно нулю, поэтому его нельзя использовать для характеристики колебательного процесса. Квадраты этих величин, их средние значения всегда положительны.

Квадрат среднего значения силы тока равен половине квадрата амплитудного значения:

Is2 = Im2/2.

Is – среднее значение. Его называют еще эффективным (другое название – действующим):

Is = Im/√2.

Квадрат силы тока пропорционален количеству энергии, образующейся в проводнике: Q ~ Is2.

Эффективное значение величины переменного тока равно величине постоянного, при котором за время t = T образуется такое же количество теплоты. Для действующего значения напряжения формула аналогична:

Us = Um/√2.

Именно эффективные значения показывают измерительные приборы.

Большое внутреннее сопротивление

Пьезоэлектрические датчики, конденсаторные микрофоны и другие источники импульсов обладают повышенным внутренним импедансом. Чтобы эффективно использовать такие устройства, нужно правильно согласовать схему считывания сигнала. При неудачном согласовании неизбежны потери.

Важно! Удачное согласование по напряжению получается при использовании для снятия сигнала устройства, с большим входным сопротивлением, чем у источника сигнала. В случае высокоомного источника для считывания сигнала применяется буферный усилитель.

Двухполюсник и его эквивалентная схема

Двухполюсник представляет собой электрическую цепь, содержащую две точки присоединения к другим цепям. Бывает два вида электрических цепей:

  • цепи, содержащие источник тока или напряжения;
  • двухполюсники, не являющиеся источниками.

Первые характеризуются электрическими параметрами: силой тока, напряжением и импедансом. Для расчёта параметров таких двухполюсников предварительно производят замену реальных элементов цепи на идеальные элементы. Комбинация, которая получается в результате подобной замены, называется эквивалентной схемой.

Внимание! При работе со сложными электрическими схемами с учётом того, что устройство работает на одной частоте, допустимо преобразовывать последовательные и параллельные ветви до получения простой схемы, доступной для расчёта параметров.

Второй вид двухполюсников можно охарактеризовать только величиной внутреннего сопротивления.

Источник ЭДС

Источник ЭДС(идеальный источник напряжения) — это элемент электрической цепи, напряжение на зажимах которого не зависит от протекающего через него тока. ЭДС источника м.б. задана либо как постоянная величина, либо как функция от врмени или внешнего управления. Идеальный источник ЭДС имеет следующее графическое обозначение на электрических схемах: На практике, идеальных источников ЭДС не существует. Попробуем убедится в этом: Запишем закон Ома для полной цепи: Заметим, что при уменьшении внешнего сопротивления до нуля, получим бесконечный рост силы тока, что физически невозможно. По этой причине вводят понятие реального источника напряжения Реальный источник напряжения — это элемент электрической цепи, имеющий сопротивление r, на котором действует ЭДС. Обозначается: Реальный источник напряжения м.б. представлен как последовательное соединение источника ЭДС и резистра r:


// тут нужно дописать о выборе направления ЭДС //

Влияние внутреннего сопротивления на свойства двухполюсника

Чем оно выше, тем меньшую мощность выдаёт источник при подключении нагрузки. Определить мощность в нагрузке можно по формуле:

PR = E2/(r+R)2*R,

где:

  • E – напряжение ЭДС;
  • R – сопротивление нагрузки;
  • r – активное внутреннее сопротивление двухполюсника.

Формула применима к двухполюсникам, не отдающим энергию.

К сведению. Когда величина внутреннего сопротивления двухполюсника приближается по своему значению к сопротивлению нагрузки, передача мощности достигает максимума.

Разрядная емкость источника

Величина, зависящая от силы тока разряда, называется разрядной ёмкостью источника. Это электрический заряд, который отдаёт источник в процессе эксплуатации в зависимости от тока нагрузки. Эту величину можно считать постоянной условно. Так, стартерный аккумулятор, имеющий разрядную ёмкость С = 55 А*ч, при токе разряда 5,5 А проработает 10 часов. При запусках холодного или имеющего неисправность автомобиля аккумулятор можно разрядить за несколько минут.

Для того чтобы найти остаточную разрядную ёмкость, производят циклы «заряд – разряд». Они выполняются при помощи нагрузочных сопротивлений. Разряд на нагрузочное сопротивление производят до минимально допустимых значений плотности электролита. При этом замеряется время работы под нагрузкой. Это актуально при сезонном обслуживании аккумуляторов для выявления процессов саморазряда.


Разрядная ёмкость автомобильного аккумулятора

Внутреннее сопротивление источников тока – важная величина. Методы, применяемые для её снижения, являются прямыми путями увеличения отдаваемой мощности источника, значит, повышения производительности двухполюсников. Правильное измерение и вычисление импеданса эквивалентных схем позволяют приблизить двухполюсник к идеальному источнику.

Параллельное соединение конденсаторов

Независимо от вида конденсатора, материалов его изготовления он всегда состоит из двух главных частей: обкладок. Их форма не имеет значения, но они могут состоять из набора пластин, скатаных в рулон.

Для большинства типов конденсаторов обкладки равноправны. Полярность подключения источника тока важна для электролитических приборов.

Способность накапливать, удерживать заряды характеризуют физической величиной – электроемкостью. Ее определяют как отношение заряда на обкладках к разности потенциалов между ними:

C = q/Δφ.

Обозначения:

  • C – электрическая емкость, единица измерения – фарады (Ф);
  • q – заряд, измеряют в кулонах (Кл);
  • Δφ – разность потенциалов, измеряют в вольтах (В).

На практике эту величину чаще называют напряжением:

Δφ = φ2 – φ1 = U.

Электроемкость накопителя заряда зависит от размера обкладок, величины промежутка между ними, материала диэлектрика. Для конденсатора в виде двух пластин она выглядит так:

C = (εε0S)/d.

Обозначения:

  • ε – диэлектрическая проницаемость материала, расположенного между обкладками;
  • ε0 – одна из физических постоянных (электрическая постоянная);
  • d – расстояние от одной обкладки до другой (толщина диэлектрика);
  • S – их площадь.

При спайке параллельно напряжение между обкладками одинаково. Для системы из двух элементов:

Ugen = U1 = U2;

  • Полученные заряды:

q1 = C1U, q2 = C2U;

  • Общий заряд:

qgen = q1 + q2;

  • Тогда общая емкость:

Cgen = qgen/Ugen = (q1 + q2)/Ugen = q1/U1 + q2/U2 = C1 + C2.

При подключении параллельно емкость системы находят как сумму емкостей отдельных накопителей заряда.

Конденсаторы имеют еще одну характеристику: напряжение, на которое они рассчитаны. Оно зависит от свойств диэлектрика, его толщины.

Возможно параллельное сопряжение конденсаторов с различными емкостями, с различными рабочими напряжениями. Работоспособность батареи определяет элемент с наименьшим напряжением.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]