Как проводится и назначение опыта короткого замыкания трансформатора, методика расчета данных

В электротехнике систематически проводятся испытания приборов и оборудования на устойчивость к электрическим и динамическим нагрузкам. Одной из таких проверок является опыт короткого замыкания трансформатора. В процессе проверки ток в первичной обмотке остается со своим первоначальным значением, а вторичной обмотке устраивается искусственное короткое замыкание. Данное мероприятие дает возможность определить номинальный ток во вторичной обмотке, потери мощности проводников, величину падения потенциала внутреннего сопротивления трансформаторного устройства. Опыты холостого хода и короткого замыкания позволяют установить не только электрические, но и магнитные потери.

Назначение опыта короткого замыкания

Испытание на обрыв при отсутствии нагрузки выполняется для определения потерь в сердечнике без нагрузки по току.

Суть испытания заключается в том, что обмотка высокого напряжения остаётся разомкнутой в то время, как выходная обмотка подключается к обычной сети потребителя. Туда же подсоединяются и необходимые измерительные приборы – ваттметр, амперметр и вольтметр. В результате такого соединения, внешнее напряжение, которое прикладывается к устройству, медленно увеличивается от нуля до своего номинального значения.

С этой целью в цепь подключается дополнительный автотрансформатор со скользящими контактами.

Показания всех приборов фиксируются в момент, когда напряжение тестирования достигает необходимого значения в выходной цепи. Физическая сущность результатов замеров такова:

  1. Амперметр показывает значение тока холостого хода, значение которого очень мало, и, следовательно, падением напряжения можно пренебречь.
  2. Входная мощность указывается ваттметром. Но другая сторона трансформатора разомкнута, следовательно, выходная мощность отсутствует, а показатель на ваттметре складывается только из значений потерь мощности, обусловленных степенью насыщения материала сердечника, и потерь в проводах.
  3. Вольтметр с высоким сопротивлением подключается через внешнюю обмотку устройства. Высоковольтная обмотка рассматривается как разомкнутая цепь, поскольку ток через вольтметр пренебрежимо мал.
  4. Результаты тестирования отличаются высокой точностью вследствие малости значений тока холостого хода и отсутствия потерь в элементах электрической цепи. Поэтому показания ваттметра гарантированно определят суммарные потери в сердечнике.

Виды КЗ у трансформаторов

При возникновении короткого замыкания, трансформатор вплотную подходит к предельному рабочему режиму. В этом случае на первичную обмотку поступает какое-то напряжение, а вторичная оказывается замкнутой.

Короткое замыкание трансформатора может быть аварийным или испытательным. В первом случае опасная ситуация возникает в режиме эксплуатации устройства, при подключении его к номинальному первичному напряжению. В обмотках появляется ток короткого замыкания, многократно превышающий номинал, и прибор выходит из строя. Как правило, основные детали сгорают, и вся схема просто разваливается на части.

Избежать подобных негативных последствий возможно с помощью защитной аппаратуры – автоматов, предохранителей, реле и т.д. Она производит отключение в максимально короткие сроки со стороны первичной обмотки и тем самым сохраняет устройство от разрушения.

В испытательном режиме, известном в качестве опыта короткого замыкания, подобная ситуация создается искусственным путем. С этой целью на первичную обмотку подается пониженное напряжение. При этом, токи в каждой обмотке не выходят за пределы номинала. Данный опыт позволяет точно установить наиболее важные параметры и характеристики трансформаторного устройства. Каждое из коротких замыканий следует рассмотреть более подробно, с точки зрения его физического воздействия на трансформатор.

Как проводится

Для высоковольтной обмотки задаётся паспортное значение холостого хода. Оно устанавливается по рекомендуемым величинам угла сдвига фаз (sinΦ0 и cosΦ0; индекс указывает на то, что мощность трансформатора определяется в режиме холостого хода).

Далее согласно показаниям вольтметра выполняется измерение параметров шунтирующих эквивалентных цепей. Они относятся к низковольтной обмотке, поэтому тестирование разомкнутой цепи устанавливает и потери в сердечнике, и параметры шунта эквивалентной цепи.

Правильная схема испытания предполагает, что при низком напряжения трансформатор находится в режиме КЗ. Ваттметр, вольтметр и амперметр подключены с высоковольтной стороны. Сигнал подается в силовую схему и увеличивается от нуля до тех пор, пока показания амперметра не будут равны номинальному току. В этот момент снимаются показания всех приборов, причём на амперметре будет показано значение первичного эквивалента тока полной нагрузки, а на ваттметре – потери мощности в проводниках и сердечнике.

Что делать, если измеренный ток КЗ слишком низкий?

Допустим, мы измерили прибором и получили значение тока КЗ в розетке (как правило, измерение проводят в самой удалённой точке). Как понять, что этот ток – слишком низкий? Это оценивается по критерию гарантированного срабатывания электромагнитного расцепителя автоматического выключателя в измеренной цепи. Логично, что для этого ток КЗ должен быть больше, чем верхний предел диапазона расцепления. Напоминаю, для характеристики “В” разброс 3…5 In, для “С” – 5…10 In, для “D” – 10…20 In. Чтобы сказать точнее, обратимся в ПУЭ (п.7.3.139):

7.3.139. В электроустановках до 1 кВ с глухозаземленной нейтралью в целях обеспечения автоматического отключения аварийного участка проводимость нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или нулевой защитный проводник возникал ток КЗ, превышающий не менее чем в 4 раза номинальный ток плавкой вставки ближайшего предохранителя и не менее чем в 6 раз ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику.

При защите сетей автоматическими выключателями, имеющими только электромагнитный расцепитель (без выдержки времени), следует руководствоваться требованиями, касающимися кратности тока КЗ и приведенными в 1.7.79.

Как я понял, в первой части 7.3.139 говорится только о тепловом расцепителе – его номинальный ток должен быть по крайней мере в 6 раз меньше тока КЗ. Во второй части этого пункта, а также в п.1.7.79 говорится о максимальном времени отключения при КЗ (0,4 с), которое должно быть обеспечено только электромагнитным расцепителем. При этом четко не указано о выборе АВ с учетом его характеристики отключения.

Из-за этой расплывчатости формулировки пользуются правилом, изложенным в ПТЭЭП (проверка срабатывания защиты при системе питания с заземленной нейтралью, п.28.4), где говорится о том, что при замыкании на нулевой защитный проводник ток КЗ должен быть не менее “1,1 верхнего значения тока срабатывания мгновенно действующего расцепителя”.

То есть, для автомата В10 ток КЗ в конце линии, которую он защищает, должен быть не менее 10х5х1,1 = 55 А. Если же установлен автомат С25, ток КЗ должен быть не менее 25х10х1,1 = 275 А.

Если же ток КЗ меньше, допустимое время срабатывания отнюдь не гарантируется. Что же делать? Тут два выхода:

  1. увеличивать ток КЗ, для этого нужны затраты на прокладку новой питающей линии (по крайней мере, её самого слабого звена),
  2. уменьшать номинал автомата (например, 25 А на 16) и букву характеристики отключения (с “С” на “В”) в ущерб максимальной мощности нагрузки.

Читайте подробнее, почему для групповых автоматов всегда предпочтительнее ставить не “С”, а “В”.

Методика расчёта напряжения, потерь и сопротивления КЗ

Расчёты ведутся в следующей последовательности:

  1. Определяются оба компонента тока холостого хода:

Iμ = I0sinΦ0 и Iw = I0cosΦ0.

  1. Устанавливаются значения реактивного X0 и активного R0 сопротивлений в эквивалентных цепях, которые относятся к низковольтной обмотке:

X0 = V1 / Iμ и R0 = V1 / Iw.

Здесь V1 – показания вольтметра на обмотке низкого напряжения.

  1. Рассчитывается итоговое значение мощности:

W1 = 2IμR0 и W2 = 2IwХ0

W = (W21 + W22)0,5

Менее точно мощность W может устанавливаться непосредственно по показаниям ваттметра.

Объясняется это тем, что напряжение, приложенное для появления тока полной нагрузки, хоть и мало по сравнению с номинальным, но всё же присутствует на обмотках.

  1. Определяется значение эквивалентного сопротивления Zeq трансформатора:

Zeq2 = R02 + X02.

Полученные данные соответствуют тем, которые относятся к стороне высокого напряжения трансформатора. Таким образом, в результате испытания на КЗ определяются потери в проводниках а, а также его приблизительные эквивалентное и реактивное сопротивление.

В результате анализа полученной информации можно определить зависимость потерь от тока холостого хода и напряжения на вторичной обмотке.

Важно также, что общие потери трансформатора зависят от его реактивного сопротивления, и не зависят от значений фазового угла между напряжением и током.

Физические процессы при аварийном замыкании

С технической точки зрения любой трансформатор должен обязательно разрушиться в результате замыкания и действия высоких токов. Основной причиной выступает незначительное сопротивление проводов и обмоток, которое многократно превышается сопротивлением подключенной нагрузки.

Следует учитывать и резкое повышение температуры в обмотках, достигающей 500-600 градусов в течение 1-2 секунд. Этого вполне достаточно, чтобы они полностью сгорели. Нельзя забывать о механических усилиях, возникающих между обмотками во время работы, и стремящихся сдвинуть их в осевом и радиальном направлениях. Эти усилия существенно увеличиваются при возрастании силы тока, что теоретически должно привести к мгновенному разрушению трансформатора. Тем не менее, на практике все происходит по-другому.

Трансформаторные устройства оказываются способными выдержать токи коротких замыканий в течение малого временного промежутка, пока не сработает защита и они не будут отключены от сети. Было выявлено какое-то дополнительное сопротивление, ограничивающее высокие токи в обмотках. Оно образуется благодаря магнитным потокам рассеяния, отходящим от основного потока и замыкающимся вокруг витков соответствующей обмотки.

Величина и разница этого рассеяния практически не поддается точному измерению, в основном, из-за различных путей, используемых для замыкания магнитных потоков. В связи с этим, его оценка производится по влиянию, оказываемому на ток и напряжение в обмотках. Была выявлена закономерность, в соответствии с которой при возрастании тока в обмотках, увеличиваются и магнитные потоки. В нормальном рабочем режиме они составляют незначительную часть основного потока, поскольку лишь частично связаны с витками. Основной же поток оказывает влияние на все без исключения витки обмоток.

Таким образом, действие дополнительного сопротивления позволяет свести до минимума потери КЗ трансформатора. Все негативные параметры снижаются во много раз и не наносят вреда. То есть, прибор сам способен защититься от высоких токов, возникающих при замыканиях. Подобные ситуации возникают достаточно редко, но все равно к ним нужно готовиться заранее, своевременно осуществляя необходимые защитные мероприятия.

Примеры расчётов

Многообразие ситуаций, при которых целесообразно проводить тест короткого замыкания, рассматривается на страницах журнала Voltland.

Исходными данными для расчётов являются:

  • Падение напряжения UI, отнесённое к конкретному типу устройства. Обычно его значения находятся в диапазоне от 4,5% (для устройств с реактивной мощностью 300 … 500 кВА) до 5,7% – для более мощных типов изделий;
  • Количество полюсов синхронных двигателей, питание на которые подаётся через трансформатор (от 6 до 14);
  • Предельного коэффициента потерь мощности (устанавливается производителем, и приводится в инструкции).

Полагаем, что подвод потенциала подводится пошагово, до тех пор, пока на подключенном амперметре не будет достигнуто значение тока полной вторичной нагрузки.

Приведём результаты применительно к трёхфазному трансформатору, рассчитанному на напряжение U = 480 В, с реактивной мощностью 100 КВА и реактивным напряжением 13800 В.

Полный ток короткого замыкания во вторичной цепи:

I = 1000 / 1,732 × U = 1,202 (А).

При показании вольтметра U1 =793,5 В процент потерь значений полного сопротивления будет

Δ Z = 793,5 / 13800 = 0,0575.

Следовательно, процент потерь составляет 5,75%. Это показывает, что в случае неисправности трёхфазного соединения на вторичной обмотке появится максимальный ток короткого замыкания, величина которого:

Iкз = 1,732× I = 2,0903 (A)

Максимальный ток повреждения Imax на вторичных клеммах:

Imax = Iкз/Δ Z = 2,0903/0,0575 = 36,5437 (А)

По вычисленному значению Imax выбираются характеристики средств защиты агрегата от перегрузки, в частности, главного выключателя, который должен быть установлен в цепи вторичной обмотки.

Скачать

Эта же статья, красиво свёрстанная и опубликованная в бумажном журнале “Электротехнический рынок”:
• Ток КЗ: размер имеет значение / Статья про ток КЗ, опубликованная в журнале Элек.ру, pdf, 4.45 MB, скачан: 604 раз./

Респект и уважение, если дочитали досюда и намереваетесь скачать книги по этой теме! Вы серьёзный человек!
• Шабад_М.А._Расчеты_релейной_защиты_и_автоматики / Шабад М.А. Расчеты релейной защиты и автоматики. Хорошая книга 1985 г, в которой рассказывается про устройство электросетей — от оборудования подстанций до селективности защитных автоматов, pdf, 38.87 MB, скачан: 1044 раз./ • Беляев А.В. Выбор аппаратуры, защит и кабелей 0,4 кВ / Беляев А.В. Выбор аппаратуры, защит и кабелей 0,4 кВ — книга для теоретического расчета тока короткого замыкания. СПб 2008, pdf, 17.39 MB, скачан: 812 раз./ • РД 153-34.0-20.527-98 / Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования РД 153-34.0-20.527-98. Руководящие указания предназначены для использования инженерами-энергетиками при выполнении ими расчетов токов короткого замыкания (КЗ) и проверке электрооборудования (проводников и электрических аппаратов) по режиму КЗ. МЭИ, 1998, pdf, 3.61 MB, скачан: 761 раз./ • Электрическая часть электростанций и ТП / Электрическая часть электростанций и подстанций. Подробное описание схем и расчетов с примерами. Учебное пособие. Н.В.Коломиец, Томский политех, 2007, pdf, 1.37 MB, скачан: 703 раз./ • Выбор электрооборудования и расчеты трансформаторных подстанций / Выбор электрооборудования и расчеты трансформаторных подстанций среднего и низкого напряжения. АВВ, учебно-методическое пособие, pdf, 9.16 MB, скачан: 660 раз./ • Харечко В.Н., Харечко Ю.В. Автоматические выключатели модульного исполнения / Харечко В.Н., Харечко Ю.В. Автоматические выключатели модульного исполнения: Справочное пособие. В справочном пособии изложены требования ГОСТ Р 50345-99 (МЭК 60898-95) к автоматическим выключателям бытового назначения, предназначенным для защиты от сверхтока, рассмотрена конструкция автоматических выключателей, даны характеристики и приведена их классификация. Разбираются ошибки, которые частично исправлены в новой версии ГОСТ Р 50345-2010, pdf, 7.17 MB, скачан: 1062 раз./
Жду вопросов и замечаний в комментариях!

Холостой ход трехфазного трaнcформатора

Функционирование такого прибора в рассматриваемом режиме зависит от устройства его магнитной системы. Если используется прибор по типу группы однофазных трaнcформаторов либо бронестержневая система, третья гармоническая составляющая для каждой фазы будет замыкаться в отдельном сердечнике, набирая значение до 20% активного магнитопотока. Создается добавочная электродвижущая сила, способная достичь очень высокого показателя – 0,5-0,6 от главной ЭДС. Подобные процессы способны вызвать нарушение целостности изоляции, за которым последует поломка электрической установки. Лучшим вариантом является система с тремя стержнями, тогда третья составляющая не будет идти по магнитопроводу, а замкнется в воздушной или иной среде с низким показателем магнитной проницаемости (например, масляной). В этом случае массивная добавочная ЭДС, вносящая серьезные искажения, развиваться не будет.

Схема опыта холостого хода трехфазного двухобмоточного трaнcформатора

Проверка работы

Главное назначение данного опыта в сочетании с экспериментом короткозамкнутого состояния – нахождение коэффициента полезного действия трaнcформирующего устройства. После постановки трaнcформатора в надлежащий режим проводятся следующие измерения:

  1. Данные напряжения, направляемого на первую обмотку, и затем – на выводы второй. Можно это делать не только парой вольтметров, но и мультиметром, установив соответствующий режим работы. Если для замеров используются вольтметры, на вторую катушку ставят аппарат с большим значением сопротивления, чтобы поддерживать нулевой ток. Замерив оба показателя, можно найти коэффициент трaнcформации, разделив значение первичной катушки на таковое для вторичной.
  2. Ваттметр для регистрации потрeбляемой мощности ставят в первичную электроцепь. В нее же подсоединяют амперметр, он показывает токовую силу прибора, работающего на холостом ходу.

Измерение напряжения трaнcформатора мультиметром

Параметры трaнcформатора по опытам холостого хода

В паспорте аппарата указывают ряд величин, способных помочь в расчете таких эксплуатационных показателей, как максимальное получаемое на пpaктике значение электротока короткого замыкания, энергетические потери, амплитуда вариабельности напряжения приемника при меняющемся токе. Эти величины делятся на две группы. Первая принадлежит работе в холостом режиме: сюда относятся показатель токовой силы в процентах от номинальной и мощностные потери магнитопровода. Вторая – обмоточные потери при коротком замыкании и напряжение (тоже указываемое относительно номинального) в этом состоянии.

Принцип работы трaнcформатора в режиме холостого хода

Когда на обмотку прибора подают напряжение синусоиды, в ней возникает слабый ток, как правило, не превышающий 0,05-0,1 от номинального значения (это и есть холостой ток). Его создает обмоточная магнитодвижущая сила, именно из-за ее действия в замкнутом магнитопроводном элементе возникают ведущий магнитный поток (обозначается Ф) и рассеивающийся поток Ф1, замкнутый вокруг обмоточного тела. Значение магнитодвижущей силы равно произведению холостого тока на число обмоточных витков.
Как рассчитать потрeбление электрической энергии
Ведущий поток создает в приборе две электродвижущие силы: самоиндукционную у первой обмотки и взаимной индукции – у второй. Ф1 продуцирует у первой катушки ЭДС рассеяния. Она имеет очень небольшую величину, ведь создающий ее поток замыкается, по большей части, по воздушным массам, ведущий поток Ф – по магнитопроводу. Поскольку главный поток имеет гораздо большие масштабы, то и генерируемая им для первичной катушки электродвижущая сила тоже имеет намного большее значение.

Важно! Так как подаваемое напряжение имеет вид синусоиды, такие же хаpaктеристики имеют главный поток и создаваемые им обмоточные электродвижущие силы. Но по причине магнитного насыщения имеющийся в приборе поток непропорционален электротоку, создающему намагничивание, так что последний синусоидальным не будет. Пpaктикуется замена его реальной кривой соответствующей ей синусоидой с таким же значением. Искажение тока связано с третьей гармонической составляющей (величина, определяемая вихревыми потоками и магнитопроводным насыщением).

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]