Ток короткого замыкания и его расчет. Ударный ток короткого замыкания

Проверка электронной аппаратуры и всех видов шин может производится разными способами. Например, чтобы выявить степень электродинамической устойчивости, применяется ударный ток короткого замыкания (iуд), значение которого определяется путем расчетов. По своей сути, данная величина является максимальным мгновенным значением полного тока КЗ. Рассчитать указанную характеристику можно на стадии между отсутствием тока в предыдущем режиме и максимальным показателем апериодической компоненты.

Составные части короткого замыкания

Прежде чем рассуждать об ударном токе, необходимо рассмотреть из каких частей вообще состоит полный ток короткого замыкания. Известно, что его основными составляющими являются свободная апериодическая часть и вынужденная периодическая компонента. Своей максимальной отметки ток КЗ достигает при наивысших значениях обеих составных частей.

Апериодический ток в самом начале появления становится максимальным в момент нулевого значения тока в предыдущем режиме, представляющем собой холостой ход. Непосредственно при наступлении КЗ, вынужденный ток с периодической составляющей проходит свою максимальную отметку. Данное условие становится показателем, используемым в расчетах. Полный ток КЗ с максимальным мгновенным значением и есть ударный ток короткого замыкания.

На практике этот показатель рассчитывается при максимальной величине апериодической части. С этой целью выбирается режим, предшествующий аварии, называемый холостым ходом. Данной состояние сети считается одним из наиболее сложных по сравнению с индуктивным или активно-индуктивным доаварийным током, при которых показатель апериодической части будет ниже.

Условия, при которых образуется апериодическая составляющая, приведены на рисунке. Они полностью зависят от предыдущего состояния тока до аварийного режима. Красный вектор соответствует доаварийному току, синий – периодическому току КЗ. Вектор зеленого цвета показывает разницу между ними, выдающую величину апериодического тока в начальной стадии.

ÐопÑлÑÑное изложение закона Ðма

ÐезавиÑимо Ð¾Ñ Ñого, каков ÑаÑакÑÐµÑ Ñока ÑлекÑÑиÑеÑкой Ñепи, он Ð²Ð¾Ð·Ð½Ð¸ÐºÐ°ÐµÑ ÑолÑко в Ñом ÑлÑÑае, еÑли ÑÑÑеÑÑвÑÐµÑ ÑазниÑа поÑенÑиалов (или напÑÑжение, ÑÑо Ñо же Ñамое). ÐÑиÑода ÑÑого ÑÐ²Ð»ÐµÐ½Ð¸Ñ Ð¼Ð¾Ð¶ÐµÑ Ð±ÑÑÑ Ð¾Ð±ÑÑÑнена на пÑимеÑе водопада: еÑли еÑÑÑ ÑазноÑÑÑ ÑÑовней, вода ÑеÑÐµÑ Ð² каком-Ñо напÑавлении, а когда Ð½ÐµÑ â она ÑÑÐ¾Ð¸Ñ Ð½Ð° меÑÑе. Ðаже ÑколÑникам извеÑÑен закон Ðма, ÑоглаÑно коÑоÑомÑ, Ñок Ñем болÑÑе, Ñем вÑÑе напÑÑжение, и Ñем менÑÑе, Ñем вÑÑе ÑопÑоÑивление, вклÑÑенное в нагÑÑзкÑ:

I = U / R,

где:

I â велиÑина Ñока, коÑоÑÑÑ Ð¸Ð½Ð¾Ð³Ð´Ð° назÑваÑÑ Â«Ñилой Ñока», ÑоÑÑ ÑÑо не ÑовÑем гÑамоÑнÑй пеÑевод Ñ Ð½ÐµÐ¼ÐµÑкого ÑзÑка. ÐзмеÑÑеÑÑÑ Ð² ÐмпеÑÐ°Ñ (Ð).

Ðа Ñамом деле Ñилой (Ñо еÑÑÑ Ð¿ÑиÑиной ÑÑкоÑениÑ) Ñок Ñам по Ñебе не обладаеÑ, ÑÑо как Ñаз и пÑоÑвлÑеÑÑÑ Ð²Ð¾ вÑÐµÐ¼Ñ ÐºÐ¾ÑоÑкого замÑканиÑ. ЭÑÐ¾Ñ ÑеÑмин Ñже ÑÑал пÑивÑÑнÑм и ÑпоÑÑеблÑеÑÑÑ ÑаÑÑо, ÑоÑÑ Ð¿ÑеподаваÑели некоÑоÑÑÑ Ð²Ñзов, ÑÑлÑÑав из ÑÑÑ ÑÑÑденÑа Ñлова «Ñила Ñока» ÑÑÑ Ð¶Ðµ ÑÑавÑÑ Â«Ð½ÐµÑд». «Ркак же Ð¾Ð³Ð¾Ð½Ñ Ð¸ дÑм, идÑÑие Ð¾Ñ Ð¿Ñоводки во вÑÐµÐ¼Ñ ÐºÐ¾ÑоÑкого замÑканиÑ? â ÑпÑоÑÐ¸Ñ Ð½Ð°ÑÑÑÑнÑй оппоненÑ, — ЭÑо ли не Ñила?» ÐÑÐ²ÐµÑ Ð½Ð° ÑÑо замеÑание еÑÑÑ. Ðело в Ñом, ÑÑо идеалÑнÑÑ Ð¿Ñоводников не ÑÑÑеÑÑвÑеÑ, и нагÑев Ð¸Ñ Ð¾Ð±ÑÑловлен именно ÑÑим ÑакÑом. ÐÑли пÑедположиÑÑ, ÑÑо R=0, Ñо и Ñепло Ð±Ñ Ð½Ðµ вÑделÑлоÑÑ, как ÑÑно из закона ÐжоÑлÑ-ÐенÑа, пÑиведенного ниже.

U â Ñа ÑÐ°Ð¼Ð°Ñ ÑазниÑа поÑенÑиалов, назÑÐ²Ð°ÐµÐ¼Ð°Ñ Ñакже напÑÑжением. ÐзмеÑÑеÑÑÑ Ð² ÐолÑÑÐ°Ñ (Ñ Ð½Ð°Ñ Ð, за гÑаниÑей V). Ðго Ñакже назÑваÑÑ ÑлекÑÑодвижÑÑей Ñилой (ЭÐС).

R â ÑлекÑÑиÑеÑкое ÑопÑоÑивление, Ñо еÑÑÑ ÑпоÑобноÑÑÑ Ð¼Ð°ÑеÑиала пÑепÑÑÑÑвоваÑÑ Ð¿ÑоÑÐ¾Ð¶Ð´ÐµÐ½Ð¸Ñ Ñока. У диÑлекÑÑиков (изолÑÑоÑов) оно болÑÑое, ÑоÑÑ Ð¸ не беÑконеÑное, Ñ Ð¿Ñоводников â малое. ÐзмеÑÑеÑÑÑ Ð² ÐмаÑ, но оÑениваеÑÑÑ Ð² каÑеÑÑве ÑделÑной велиÑинÑ. Само Ñобой, ÑÑо Ñем ÑолÑе пÑовод, Ñем он лÑÑÑе пÑÐ¾Ð²Ð¾Ð´Ð¸Ñ Ñок, а Ñем он длиннее, Ñем ÑÑже. ÐоÑÑÐ¾Ð¼Ñ ÑделÑное ÑопÑоÑивление измеÑÑеÑÑÑ Ð² ÐмаÑ, ÑмноженнÑÑ Ð½Ð° квадÑаÑнÑй миллимеÑÑ Ð¸ деленнÑÑ Ð½Ð° меÑÑ. ÐÑоме ÑÑого, на его велиÑÐ¸Ð½Ñ Ð²Ð»Ð¸ÑÐµÑ ÑемпеÑаÑÑÑа, Ñем она вÑÑе, Ñем болÑÑе ÑопÑоÑивление. ÐапÑимеÑ, золоÑой пÑоводник длиной в 1 меÑÑ Ð¸ ÑеÑением в 1 кв. мм пÑи 20 гÑадÑÑÐ°Ñ Ð¦ÐµÐ»ÑÑÐ¸Ñ Ð¾Ð±Ð»Ð°Ð´Ð°ÐµÑ Ð¾Ð±Ñим ÑопÑоÑивлением 0,024 Ðма.

ÐÑÑÑ ÐµÑе ÑоÑмÑла закона Ðма Ð´Ð»Ñ Ð¿Ð¾Ð»Ð½Ð¾Ð¹ Ñепи, в нее введено внÑÑÑеннее (ÑобÑÑвенное) ÑопÑоÑивление иÑÑоÑника напÑÑÐ¶ÐµÐ½Ð¸Ñ (ЭÐС).

Расчеты ударного тока КЗ

Предварительные расчеты показывают, что апериодическая компонента примет максимальное первоначальное значение в том случае, когда фазное напряжение в момент включения при коротком замыкании будет равным нулю. В некоторых случаях угол напряжения может превышать нулевую отметку.

В это же время фаза периодической части будет равна 90 градусам, и ток начнет терять свое максимальное амплитудное значение. Следовательно, возникает отставание тока от напряжения как раз на эти 900. Причиной такого состояния выступают активные сопротивления короткозамкнутой цепи с очень малыми значениями.

При достижении фазой напряжения 90 градусов, ток периодической компоненты выйдет из нулевой отметки, что приведет к выполнению закона коммутации. В данном случае апериодического тока не будет, поэтому не возникнет и ударный ток.

На приведенном рисунке хорошо видно возникновение ударного тока короткого замыкания, отмеченного зеленой кривой. Она еще не дошла до точки затухания, а синяя кривая, соответствующая периодическому току, проходит через нее и точку своего амплитудного значения. При этом обе кривые в этот момент принимают общий знак с положительным показателем. Подобная ситуация возникает на второй половине периода от начала замыкания, то есть, примерно через 0,01 с.

Рассчитать ударный ток можно при помощи следующей формулы:

В которой Ку является ударным коэффициентом, а Inmax – амплитудным значением периодического тока короткого замыкания. Изменения Ку происходят в пределах меньше 1 и больше 2, тогда как электромагнитная постоянная времени Та может изменяться от 0 до бесконечности, характеризующая скорость затухания апериодической компоненты. По мере уменьшения Та, ускоряется затухание свободной составляющей, одновременно наступает снижение ударного коэффициента.

В сетях высокого напряжения она полностью исчезает уже через 0,1-0,3 секунды, а при низком напряжении затухание также происходит очень быстро из-за наличия высокого активного сетевого сопротивления.

Опасность и последствия

Практически все короткие замыкания приводят к негативным последствиям различной степени тяжести. Если кратко, то наибольшую опасность представляет возможное возгорание, нередко переходящее в полноценный пожар. В аварийной ситуации сила тока значительно увеличивается, а в проводниках в большом количестве выделяется теплота, оказывающая разрушающее действие на изоляцию.

В большинстве случаев, особенно в быту, при возникновении дугового КЗ между проводниками и местом замыкания образуется электрический разряд большой мощности, способный легко воспламенить находящиеся рядом предметы. Резкое выделение тока и тепла представляет особую опасность для людей, проживающих в доме, и обслуживающего персонала предприятий.

Аварийные ситуации с замыканиями называются просадочными из-за значительных понижений напряжения в данной сети. Особенно большие просадки образуются непосредственно в месте КЗ. Подобные скачки отрицательно влияют на электроприборы и оборудование, особенно с электрическими двигателями. Чувствительные устройства нередко попадают под воздействие сильных электромагнитных волн.

Предотвратить разрушительные последствия, определяемые термином коротких замыканий, вполне возможно при помощи различных защитных средств. Они определяются еще на стадии проектирования в индивидуальном порядке для каждой электроустановки.

Использование ударного коэффициента

Ударный коэффициент в режиме короткого замыкания играет важную роль, поэтому его следует рассмотреть более подробно. Этот показатель, применяемый в расчетах, можно выразить короткой формулой: Ку = iy/inm. Здесь iy является ударным током КЗ, а inm представляет собой амплитуду периодической составной части.

Данный коэффициент применяется при расчетах ударного тока. Если в формуле амплитуду inm заменить на действующий ток, получится следующее выражение: Ку = iy√2inm. Следовательно, формула для вычисления ударного тока приобретет следующий вид: iy = Ку√2inm. На практике значение ударного коэффициента КЗ принимается за 1,8 в электроустановках более 1 кВ; величина 1,3 берется при возникновении КЗ за участком кабельной линии большой протяженности.

Этот же показатель используется для вторичной стороны понижающего трансформатора с мощностью, не превышающей 1000 кВА и сетей с напряжением до 1 кВ. Для ускорения расчетов существует таблица, содержащая коэффициенты для аварийных ситуаций, встречающихся чаще всего.

Оборудование и установкиПостоянная времени ТаУдарный коэффициент Ку
Турбогенераторы0,1-0,31,95
Блок, состоящий из генератора и трансформатора0,041,8
Высоковольтная ЛЭП0,011,3
Короткая низковольтная ЛЭП0,001

Теоретически, при отсутствии в цепи активных сопротивлений и постоянной времени, равной бесконечности, затухание периодической компоненты вообще бы не наступило, и она сохранила бы свое начальное значение на весь период КЗ до момента отключения аварийного участка. При этом, ударный коэффициент достиг бы своего максимума и составил Ку = 2.

Если короткое замыкание наступило в местах, удаленных от источника питания на значительные расстояния, токи, появляющиеся в этой точке, будут небольшими, сравнительно с номинальным током этого источника питания. В процессе КЗ изменения номинала будут практически незаметными, а напряжение на клеммах следует принять за постоянную величину.

Схема

Еще один способ изучения принципа токового действия это построение схемы. На данный момент для этого можно применить специальную программу. Благодаря ей можно не только понять, в какой ситуации случится короткое замыкание, но и попробовать его предотвратить, построив правильную электросхему и используя затем качественные материалы.

Обратите внимание! Стоит указать, что кроме дистанционного способа, есть возможность сделать схему самостоятельно, используя соответствующие учебные пособия. В результате такого действия можно сделать проверку вводного автоматического выключателя, имеющего средний номинальный ток на коммутационную способность в силовой кабельной линии

Благодаря схеме будет несложно определяться в токовых значениях.


Схема электротока

В целом, электроток короткого замыкания — разрушительная энергия, которая зависит от числа фотонов, спектра излучения, оптического свойства и прочего. Измерение его мощности можно произвести через специальную формулу. Имеет свой график и схему, которые представлены выше.

Методы защиты

В первые же годы бурного развития электротехники, когда человечество еще отважно экспериментировало, внедряя гальванические приборы, изобретало различные виды генераторов, двигателей и освещения, возникла проблема защиты этих устройств от перегрузок и токов короткого замыкания. Самое простое ее решение состояло в последовательной с нагрузкой установке плавких элементов, которые разрушались под воздействием резистивного тепла, в случае если ток превышал установленное значение. Такие предохранители служат людям и сегодня, их главные достоинства состоят в простоте, надежности и дешевизне. Но есть у них и недостатки. Сама простота «пробки» (так назвали держатели плавких ставок за их специфическую форму) провоцирует пользователей после ее перегорания не мудрствовать лукаво, а заменять вышедшие из строя элементы первыми попавшимися под руку проволочками, скрепками, а то и гвоздями. Стоит ли упоминать о том, что такая защита от токов короткого замыкания не выполняет своей благородной функции?

На промышленных предприятиях для обесточивания перегруженных цепей автоматические выключатели начали использовать раньше, чем в квартирных щитках, но в последние десятилетия «пробки» были в основном заменены ими. «Автоматы» намного удобнее, их можно не менять, а включить, устранив причину КЗ и дождавшись, когда тепловые элементы остынут. Контакты у них иногда подгорают, в этом случае их лучше заменить и не пытаться почистить или починить. Более сложные дифференциальные автоматы при высокой стоимости не служат дольше обычных, но функционально их нагрузка шире, они отключают напряжение в случае минимальной утечки тока «на сторону», например при поражении человека током.

В обыденной же жизни экспериментировать с коротким замыканием не рекомендуется.

Причины опасной ситуации

Аварийная ситуация и короткое замыкание цепи не может возникнуть просто так.

В каждом конкретном случае имеются определенные причины и негативные факторы:

  • Высокий уровень напряжения при замыкании. Обычно возникает в результате резкого скачка, при котором наблюдается превышение всех допустимых норм. Вероятность пробоя изоляции или всей схемы становится очень высокой. Повышаются токовые утечки с одновременным повышением температуры дуги. При коротком замыкании большое напряжение всегда создает кратковременный дуговой разряд.
  • Старые изношенные слои изоляционного покрытия. Подобные ситуации чаще всего встречаются, когда замена проводки не проводилась в течение длительного времени. Слабая изоляция оказывается наиболее подверженной электрическому пробою, чему причина – выработка своего ресурса.
  • Внешние механические воздействия. Защитная оболочка проводников постепенно перетирается, а изоляционное покрытие оказывается нарушенным. Жилы проводов также подвержены повреждениям, вызывающим не только КЗ, но и возгорания.
  • В электрическую цепь иногда попадают посторонние предметы – пыль, мусор и т.д. Попадая на проводник, они создают собственную дополнительную цепочку, способную вызвать ток короткого замыкания источника.
  • Удары молний, создающие высокое напряжение, легко пробивающее всю электрическую схему или изоляцию проводников.

Две простых, но важных формулы

Понять причину, по которой возникает ток короткого замыкания, невозможно без усвоения еще одной нехитрой формулы. Мощность, потребляемая нагрузкой, равна (без учета реактивных составляющих, но о них позже) произведению тока на напряжение.

P = U x I,

где:

P – мощность, Ватт или Вольт-Ампер;

U – напряжение, Вольт;

I – ток, Ампер.

Мощность бесконечной не бывает, она всегда чем-то ограничена, поэтому при ее фиксированной величине при увеличении тока напряжение уменьшается. Зависимость этих двух параметров рабочей цепи, выраженная графически, называется вольт-амперной характеристикой.

И еще одна формула, необходимая для того, чтобы произвести расчет токов короткого замыкания, это закон Джоуля-Ленца. Она дает представление о том, сколько тепла выделяется при сопротивлении нагрузке, и очень проста. Проводник будет греться с интенсивностью, пропорциональной величинам напряжения и квадрата тока. И, конечно же, формула не обходится без времени, чем дольше раскаляется сопротивление, тем больше оно выделит тепла.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]