Как рассчитать мощность стабилизатора напряжения для дома самому


Правильный подбор стабилизатора напряжения необходимо выполнять по основному параметру – общей мощности электроприборов, которые необходимо защитить от чрезмерной нагрузки и перепадов напряжения, подключенных к определенной сети питания.

Однофазные устройства устанавливают чаще всего для создания качественных параметров напряжения в небольшом офисе, квартире. Чтобы правильно рассчитать мощность стабилизатора, необходимо сначала сложить мощность всех электрических устройств. Кроме мощности по паспорту устройства, оснащенного электродвигателем, нужно учесть пусковой ток. Для этого к расчету добавляют около 30% мощности.

Наличие в цепи стабилизатора напряжения дает возможность обеспечить защиту бытовой техники. Через стабилизатор можно подключить отдельные приборы, однако эффективнее всего будет выбор прибора, через которое будет работать все оборудование

Алгоритм расчёта мощности стабилизатора

При подборе необходимой модели стабилизатора напряжения его неправильно рассчитанная мощность может привести к следующим последствиям:

  • стабилизатор с выходной мощностью, меньшей, чем требуется, будет постоянно отключаться или вообще не запустится, а возможно и выйдет из строя;
  • приобретение устройства с мощностью, намного превышающей требуемое значение, будет бесполезной тратой средств. Прибор в процессе работы будет недозагружен, что снизит его КПД.

Для определения актуальной мощности стабилизатора и правильного выбора подходящей модели рекомендуем придерживаться алгоритма, состоящего из трёх действий:

  1. Выяснить мощность нагрузки.
  2. Прибавить запас к значению мощности, потребляемой нагрузкой.
  3. Подобрать по итоговой величине подходящую модель стабилизатора.

Разберём три указанных пункта и проанализируем наиболее распространённые ошибки, сопутствующие каждому из них.

Вы здесь

Главная › Инженеру-конструктору › 3. Электрооборудование, электроустановки › 3. Раздел 3.

Для получения более постоянного напряжения на нагрузке при изменении потребляемого тока к выходу выпрямителя подключают стабилизатор, который может быть выполнен по схеме, приведенной на рис. 1. В таком устройстве работают стабилитрон V5

и регулирующий транзистор
V6
. Расчет позволит выбрать все элементы стабилизатора, исходя из заданного выходного напряжения

и максимального тока нагрузки

. Однако оба эти параметра не должны превышать параметры уже рассчитанного выпрямителя. А если это условие нарушается, тогда сначала рассчитывают стабилизатор, а затем — выпрямитель и трансформатор питания. Расчет стабилизатора ведут в следующем порядке.

1. Определяют необходимое для работы стабилизатора входное напряжение (Uвып)

при заданном выходном
(Uн)
:

Uвып = Uн + 3

,

Здесь цифра 3, характеризующая минимальное напряжение между коллектором и эмиттером транзистора, взята в расчете на использование как кремниевых, так и германиевых транзисторов. Если стабилизатор будет подключаться к готовому или уже рассчитанному выпрямителю, в дальнейших расчетах необходимо использовать реальное значение выпрямленного напряжения Uвып

.

2. Рассчитывают максимально рассеиваемую транзистором мощность:

Рmах = 1,3 (Uвып — Uн) Iн

,

3. Выбирают регулирующий транзистор. Его предельно допустимая рассеиваемая мощность должна быть больше значения Рmax

, предельно допустимое напряжение между эмиттером и коллектором — больше
Uвып
, а максимально допустимый ток коллектора — больше

.

4. Определяют максимальный ток базы регулирующего транзистора:

Iб.макс = Iн / h21Э min

,

где: h21Эmin — минимальный коэффициент передачи тока выбранного (по справочнику) транзистора.

.


5. Подбирают подходящий стабилитрон. Его напряжение стабилизации должно быть равно выходному напряжению стабилизатора, а значение максимального тока стабилизации превышать максимальный ток базы Iб max

.

6. Подсчитывают сопротивление резистора R1

:

R1 = (Uвып — Uст) / (Iб max + Iст min)

,

Здесь R1 — сопротивление резистора R1, Ом; Uст — напряжение стабилизации стабилитрона, В; Iб.max — вычисленное значение максимального тока базы транзистора, мА; Iст.min — минимальный ток стабилизации для данного стабилитрона, указанный в справочнике (обычно 3…5 мА).

.

7. Определяют мощность рассеяния резистора R1

:

PR1 = (Uвып — Uст)2 / R1

,

Может случиться, что маломощный стабилитрон не подойдет по максимальному току стабилизации и придется выбирать стабилитрон значительно большей мощности — такое случается при больших токах потребления и использовании транзистора с малым коэффициентом h21Э

. В таком случае целесообразно ввести в стабилизатор дополнительный транзистор
V7
малой мощности (рис. 2), который позволит снизить максимальный ток нагрузки для стабилитрона (а значит, и ток стабилизации) примерно в
h21Э
раз и применить, соответственно, маломощный стабилитрон.

В приведенных здесь расчетах отсутствует поправка на изменение сетевого напряжения, а также опущены некоторые другие уточнения, усложняющие расчеты. Проще испытать собранный стабилизатор в действии, изменяя его входное напряжение (или сетевое) на ± 10 % и точнее подобрать резистор R1 по наибольшей стабильности выходного напряжения при максимальном токе нагрузки.

Выясняем мощность подключенной к стабилизатору нагрузки

Мощность нагрузки равняется сумме мощностей всех подключённых к стабилизатору устройств. Перед расчетом суммарного значения мощности необходимо выяснить энергопотребление каждого из потребителей. Это сделать очень просто: мощность электроприборов обычно указывается в технической документации и дублируется на заводской табличке, прикреплённой к изделию.

Несмотря на видимую простоту действия, на данном этапе можно совершить несколько серьёзных ошибок, которые повлекут за собой выбор стабилизатора, не подходящего под ваши задачи.

Особое внимание стоит обратить на оборудование, для которого указывается несколько мощностей: насосы, обогревательная, звуковая, климатическая техника и т.д. Важно различать мощность электрическую и мощность, выдаваемую изделием при выполнении своих прямых задач, например, тепловую – для нагревательных котлов, охлаждения – для кондиционеров, звуковую – для аудиосистем.

Обратите внимание!

При выборе стабилизатора следует опираться исключительно на величину мощности, потребляемой нагрузкой от электросети! В паспорте электроприбора данный параметр может быть назван: «потребляемая мощность», «присоединительная мощность», «электрическая мощность» и т.п. Всё перечисленное является отражением одной величины – активной мощности, которая измеряется в Ваттах (Вт или W).

Обратите внимание!

Производители стабилизаторов обычно выстраивают модельный ряд своих стабилизаторов на основе другой величины – полной мощности, которая измеряется в Вольт-Амперах (ВА или VA). Важно понимать, что Ватты и Вольт-Амперы не одно и то же, и соответственно 1000 Вт не равны 1000 ВА!

У электроприборов, конструкция которых содержит ёмкостные компоненты или электродвигатели, активная и полная мощности могут существенно различаться. Поэтому приобретение рассчитанного на 1000 ВА стабилизатора при нагрузке в 1000 Вт может стать неверным решением – прибор окажется перегружен со всеми вытекающими отсюда последствиями.

Во избежание данной ошибки, следует перевести Ватты в Вольт-Амперы и проанализировать не только активную, но и полную мощность нагрузки. Перевод из Ватт в Вольт-Амперы осуществляется делением значения в Ваттах на специальный параметр – коэффициент мощности или cos(φ): ВА=Вт/cos(φ).

Сos(φ) отражает зависимость активной мощности устройства от полной. Чем ближе величина cos(φ) к единице, тем меньше энергии рассеивается в виде электромагнитного излучения и тем больше преобразуется в полезную работу.

Численное значение cos(φ) обычно (но не всегда) указанно в технической документации прибора, потребляющего переменный ток (может обозначаться как «cos(φ)», «Power Factor» или «PF»). Если производитель не предоставил информацию о коэффициенте мощности своего изделия, то для бытовой техники допустимо принять cos(φ) в пределах 0,7-0,8, кроме устройств, преобразующих электроэнергию в свет и тепло (лампы накаливания, электрочайники, утюги и т.д.), для них интервал значений коэффициента мощности – 0,9-1.

Современная техника, в первую очередь компьютеры, часто оснащается блоком питания с коррекцией коэффициента мощности, которая приближает данный параметр к единице – 0,95-0,99. Если уверенности в наличии такой функции (обозначается «PFC» или «ККМ») нет, то для cos(φ) рекомендуется применить значение из указанного в предыдущем абзаце типового диапазона.

Полную мощность нагрузки следует рассчитывать с использованием только значения коэффициента мощности оборудования, соответствующего этой нагрузке, а не с использованием значения входного коэффициента мощности стабилизатора!

Обратите внимание!

Устройства, имеющие в своей конструкции электродвигатель, отличаются высокими пусковыми токами. К этой категории относятся: насосы, стиральные и посудомоечные машины, холодильники, кондиционеры, станки и компрессоры. Величина потребляемой из электросети энергии, в момент включения любого из названых приборов, может в несколько раз превысить величину, характерную для номинального режима работы.

Производители указанной техники иногда приводят максимальное энергопотребление непосредственно в характеристиках каждой модели, а иногда наоборот – дают только номинальное значение мощности, стараясь не привлекать внимание к неминуемым скачкам тока. Рекомендуем внимательно изучить сопутствующую любому оборудованию документацию и поискать информацию о фактической мощности, потребляемой устройством при пуске и в различных режимах работы. Мощность нагрузки определяется с использованием наибольшего из приведённых для каждого устройства значений!

Помимо механизмов с электродвигателями, высокие пусковые токи характерны и осветительным приборам. Причем не только с галогенными лампами и лампами накаливания, но и с популярным в последнее время светодиодными. Светодиоды не имеют пусковых токов, но большинство светильников, реализованных на их базе, снабжены конденсаторами, включение которых вызывает резкое увеличение потребляемого тока.

При выборе стабилизатора для защиты крупной светотехнической системы следует учесть, что значение мощности, возникающее при запуске такой системы, может многократно превышать номинальное.

Принцип работы стабилитрона

Полупроводниковые приборы отличаются нелинейной реакцией при работе с разными токами (напряжениями). Для изучения функциональности пользуются вольтамперной характеристикой (ВАХ), которая наглядно демонстрирует взаимное влияние базовых параметров и особенности определенной конструкции.


ВАХ диода

Так как стабилитрон является одной из разновидностей диода, изучение принципов работы можно начать с рассмотрения типичного электронно-дырочного (n-p) полупроводникового перехода. В правой части показано включение диода в прямом направлении. Хорошо видно, как от порогового уровня Uп дальнейшее повышение напряжения сопровождается практически линейным увеличением тока в цепи. Определенные потери можно учесть при составлении электрической схемы.

При обратном включении источника питания (левая часть рисунка) увеличение напряжения до показанного значения незначительно изменяет ток. Далее (при значении Uпр) возникает пробой, который определяется особенностями перехода:

  1. тепловой,
  2. лавинный;
  3. туннельный.

Первый из отмеченных в перечне вариантов означает чрезмерное повышение температуры и разрушение полупроводникового прибора. Третий – сопровождается увеличением тока, образованного парными зарядами. Для стабилизации подходит лавинная реакция в переходе. Как показано на графике, напряжение в этом режиме изменяется незначительно.

Прибавляем запас по мощности

Правильно выбранный стабилизатор должен иметь выходную мощность, превышающую мощность, необходимую для электропитания нагрузки. Разница между мощностью стабилизатора и фактическим энергопотреблением нагрузки называется запасом мощности.

Рекомендуемый запас составляет 30% от величины энергопотребления нагрузки. Данное значение позволит:

  • подключить к устройству в процессе эксплуатации дополнительные приборы, мощность которых не учитывалась при изначальном расчёте нагрузки;
  • избежать перегрузки в случае сильного падения напряжения в электросети.

Дадим разъяснение по второму пункту. Дело в том, что мощность стабилизатора при выходе питающего напряжения из определённых пределов (рабочего диапазона) уменьшается. В частности, при 135 В в сети, стабилизатор вместо заявленных 500 ВА выдаст только 400 ВА и, соответственно, не сможет запитать предельную к его номиналу нагрузку.

Для некоторого оборудования рекомендуется заложить запас мощности свыше 30%. Это, например, кондиционеры или IT-техника. В первом случае, данное решение объясняйся ростом потребляемой кондиционером мощности в процессе эксплуатации устройства (вызвано неизбежным загрязнением фильтрующей сетки). Во втором случае – тенденцией к постоянному увеличению мощностей телекоммуникационного оборудования.

Литература

  • Вересов Г. П.
    Электропитание бытовой радиоэлектронной аппаратуры. — М.: Радио и связь, 1983. — 128 с.
  • Китаев В. В.
    Электропитание устройств связи. — М.: Связь, 1975. — 328 с. — 24 000 экз.
  • Костиков В. Г., Парфенов Е. М., Шахнов В. А.
    Источники электропитания электронных средств. Схемотехника и конструирование: Учебник для ВУЗов. — 2. — М.: Горячая линия — Телеком, 2001. — 344 с. — 3000 экз. — ISBN 5-93517-052-3.
  • Штильман В. И.
    Микроэлектронные стабилизаторы напряжения. — Киев: Техніка, 1976.
  • Лепаев Д. А.
    Электрические приборы бытового назначения. — М.: Легпромбытиздат, 1991. — 272 с. — 20 000 экз.

Подбираем модель стабилизатора

Для определения подходящей по мощности модели необходимо сверить мощностной ряд предлагаемых производителем стабилизаторов с энергопотреблением нагрузки – ближайшее в большую сторону значение в мощностном ряду и будет необходимой мощностью стабилизатора.

Обратите внимание!

Выбор стабилизатора со значением мощности, ближайшим к энергопотреблению нагрузки в меньшую сторону, либо снизит заложенный ранее запас по мощности, либо в худшем случае приведёт к приобретению стабилизатора с несоответствующими нагрузке выходными параметрами.

Обратите внимание!

Для трехфазного стабилизатора нагрузка на каждую фазу должна составлять не более 1/3 от номинальной. Например, трехфазный стабилизатор с номиналом 6000 ВА запитает трехфазную нагрузку в 4200 ВА (мощность потребляемая от одной фазы составит 1400 ВА), но подключение к отдельной фазе этого стабилизатора нагрузки в 2500 ВА вызовет перегрузку, так как максимально допустимое значение по одной фазе составляет: 6000/3=2000 ВА.

Пример подбора стабилизатора по мощности

Стабилизатор приобретается для одновременной защиты трех однофазных потребителей. Не будем акцентировать внимание на конкретном виде устройств, назовем их просто: потребитель 1, потребитель 2 и потребитель 3.

Согласно заводским паспортам:

  • номинальная мощность потребителя 1 составляет 600 Вт, потребителя 2 – 130 Вт, потребителя 3 – 700 Вт;
  • коэффициент мощности потребителей 1 и 2 равен 0,7, потребителя 3 – 0,95.

Определяем мощность нагрузки. Пусть потребитель 1 относится к категории оборудования, характеризующегося наличием высоких пусковых токов. При расчёте используем не его номинальную мощность, а максимальную – пусковую, равную согласно технической документации 1800 Вт. Используя вышеуказанную формулу, переведём мощность каждого потребителя из Вт в ВА:

  • 1800 / 0,7 = 2571,4 ВА – для потребителя 1;
  • 130 / 0,7 = 185,7 ВА – для потребителя 2;
  • 700 / 0,95 = 736,8 ВА – для потребителя 3.

Теперь определим суммарную потребляемую мощность планируемой нагрузки в Вт и ВА:

  • 1800 + 130 + 700 = 2630 Вт;
  • 2571,4 + 185,7 + 736,8 = 3493,9 ВА.

Дальнейший выбор стабилизатора будем проводить, учитывая, что полная мощность нагрузки на устройство составит 3493,9 ВА, а активная – 2630 Вт (обратите внимание на разницу значений в Вт и ВА).

Далее определяем запас мощности. Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:

  • 2630 х 0,3 = 789 Вт – запас активной мощности;
  • 34,939 х 0,3 = 1048,17 ВА – запас полной мощности.

Следовательно мощность нагрузки с учётом запаса составит:

  • 2630 + 789 = 3419 Вт;
  • 3493,9 + 1048,17 = 4542,07 ВА.

Теперь выберем модели однофазного стабилизатора с необходимой мощностью для электропитания нашей нагрузки (с учетом запаса), используя стандартный мощностной ряд однофазных инверторных стабилизаторов производства ГК «Штиль»:

Полная мощность, ВААктивная мощность, Вт
350300
550400
800600
1000800
15001125
20001500
25002000
30002500
35002750
50004500
70005500
80007200
100009000
1200011000
1500013500
2000018000

Ближайшая с большей стороны к расчётным значениям мощность – 5000 ВА и 4500 Вт, следовательно, именно такой стабилизатор подходит для подключения потребителя 1, потребителя 2 и потребителя 3.

Предположим, что потребителя 1, потребителя 2 и потребителя 3 необходимо подключить не к однофазному, а к трехфазному стабилизатору. Стандартный мощностной ряд ГК «Штиль» для подобных устройств следующий:

Полная мощность, ВААктивная мощность, Вт
60005400
100008000
1500013500
2000016000

Нагрузку со значением полной мощности в 4542,07 ВА и активной – в 3419 Вт, возможно подключить к одной фазе трехфазного стабилизатора с выходной мощностью 15000 ВА / 13500 Вт, в котором отдельная фаза выдаст максимально – 5000 ВА / 4500 Вт.

Выбрать менее мощную модель стабилизатора позволит распределение нагрузки, то есть подключение каждого потребителя к отдельной фазе. Наибольшая нагрузка будет на фазе, питающей потребитель 1, энергопотребление которого – 1800 Вт / 2571,4 ВА.

Рассчитаем необходимый потребителю 1 запас мощности (примем рекомендованное значение запаса в 30%):

  • 1800 х 0,3 = 540 Вт – запас активной мощности;
  • 2571,4 х 0,3 = 771,4 ВА – запас полной мощности;
  • 1800 + 540 = 2340 Вт – активная мощность потребителя 1 с учётом запаса;
  • 2571,4 + 771,4 = 3342,8 ВА – полная мощность потребителя 1 с учётом запаса.

Значит, максимально возможная нагрузка на одну фазу стабилизатора при условии подключения трех потребителей к различным фазам может составить: 3342,8 ВА / 2340 Вт.

Выберем модель стабилизатора с выходной мощностью 10000 ВА / 8000 Вт, в которой допустимая нагрузка на одну фазу приблизительно равна 3333 ВА / 2666 Вт. В данном случае допустимо выбрать стабилизатор с полной мощностью чуть меньшей, чем расчётная – фактически это снизит запас по мощности для потребителя 1 на 1-2%.

Обратите внимание!

Существуют стабилизаторы топологии «3 в 1», то есть с трехфазным входом и однофазным выходом. Подобная схема позволяет равномерно нагрузить трехфазную сеть при подключении однофазной нагрузки.

Parametric stabilizer

Инженерная программа, предназначенная для расчёта параметрических стабилизаторов на кремниевых или газоразрядных стабилитронах, используемых в источниках питания. Методика расчёта была разработана автором программы и опубликована в статье «Москатов Е. Расчет параметрических стабилизаторов. — Радиомир, 2006, №7, с. 22 — 25».

В справке по программе даны ответы на типовые вопросы, приведены справочные данные кремниевых и газоразрядных стабилитронов. Статус лицензии — donationware (класс freeware), то есть программу можно использовать свободно, и оплата не обязательна. Все представленные для скачивания материалы выполнены на русском языке.

Загрузить материалы Дополнительная информация
В данной финальной версии программы были введены дополнительные проверки на переполнение исходных данных. Введено сохранение данных. Интерфейс программы стал более эргономичным. Все доступные рисунки, пиктограммы и значки были переделаны с целью удаления из исполняемого файла, файла справки и инсталлятора любых материалов, созданных другими авторами.

Программа создана в ОС Windows XP Home Edition с использованием лицензионного ПО. Были использованы программы: Borland C++Builder 6.0 personal (для написания части кода и отлаживания реализации алгоритма), Borland Turbo C++ 10.0 (для компиляции исполняемого файла), Microsoft Office Visio (для начертания принципиальных схем и рисунков), OpenOffice.org (для написания справки по программе), Sea Monkey (для создания html-файлов справки при помощи «компоновщика»), htm2chm (для компиляции html-файлов в chm-файл справки), IrfanView (для уменьшения числа цветов в растровых изображениях), Slow View (для придания эффекта 3D-кнопки на рисунках), Inno Setup (для создания инсталлятора), FET XP Authenticode (для электронной подписи файлов).

Расширение запакованного файла — EXE, размер — 782 Кбайт.

Известные проблемы и особенности работы.

1. В безопасном режиме текст меню на русском языке отображается не верно (спецсимволами); в остальных частях программы текст отображается корректно. Решение проблемы: не использовать программу в безопасном режиме или использовать англоязычную версию программы, если такая существует.

2. В Windows 95 программа работать будет, однако будет нельзя просмотреть файл справки встроенными в ОС средствами. Использование средства просмотра chm-файла решит данную проблему.

3. Если разрешение изображения монитора будет менее 800 × 600 точек, то элементы интерфейса программы будут сдвинуты на форме. Решение проблемы: не использовать программу при столь низком разрешении монитора.

Файл справки по программе «Parametric stabilizer 4.0.0.0». Его можно распечатать. Расширение файла — PDF, размер — 135 Кбайт.
Исходные тексты программы «Parametric stabilizer 4.0.0.0», которые можно проанализировать в среде Borland Developer Studio. Расширение файла — ZIP, размер — 134 Кбайт.
История основных версий программы «Parametric stabilizer». Расширение файла — TXT, размер — 3,5 Кбайт.

Рекомендуемые требования к оборудованию

Компьютер с процессором семейств Intel Pentium / Celeron или совместимым с ними процессором, тактовая частота которого составляет не менее 200 МГц, или более мощным.

Оперативная память: 32 Мбайт.

Свободное место на диске: 2 Мбайт.

Видеоплата и монитор с разрешением не менее 800 × 600 точек.

Клавиатура, мышь или другое указательное устройство.

Рекомендуемые требования к системному программному обеспечению

Операционная система Microsoft Windows 98 Second Edition, Microsoft Windows Millennium, Windows 2000 Professional, Windows XP Home Edition, Windows XP Professional, Windows 2003 Server, Windows Vista Starter, Windows Vista Home Basic, Windows Vista Home Premium, Windows Vista Business, Windows Vista Enterprise, Windows Vista Ultimate.

Так как программа имеет русскоязычный интерфейс, операционная система должна обеспечивать необходимую языковую поддержку.

Скриншот программы «Parametric stabilizer 4.0.0.0»

Подводим итог

Во избежание ошибок при определении мощности стабилизатора и траты денег на прибор, который в итоге окажется бесполезным, необходимо:

  • использовать при расчёте мощности нагрузки значение мощности, потребляемой электроприбором из сети, а не значение мощности, характеризующей полезную работу этого электроприбора;
  • использовать при расчёте полной мощности нагрузки коэффициент мощности, соответствующий этой нагрузке, а не входной коэффициент мощности стабилизатора;
  • рассчитывать мощность нагрузки с обязательным учётом пусковых токов для всех устройств, характеризующихся их высоким значением;
  • при необходимости переводить Вт в ВА и анализировать мощность нагрузки в единицах измерения соответствующих единицам, на основе которых выстроен мощностной ряд стабилизаторов;
  • выбирать мощность стабилизатора с учетом необходимого запаса;
  • выбирать стабилизатор с номинальной мощностью выше, чем расчётная мощность нагрузки (допустимо лишь небольшое округление нагрузочной мощности в меньшую сторону, при условии наличия предварительно заложенного запаса мощности);
  • выбирать трехфазный стабилизатор для однофазной нагрузки, анализируя не только номинальную выходную мощность устройства, но и мощность отдельной фазы.

Внимательность при расчетах и соблюдение всех вышеприведённых правил поможет подобрать модель стабилизатора, отвечающую требованиям вашей нагрузки. В случае возникновения любых сложностей и вопросов рекомендуем проконсультироваться со специалистами!

Выводы

Итак, подведем краткие итоги.

  1. В подавляющем большинстве случаев напряжение сети укладывается в допустимые рамки и стабилизатор не нужен. И с вашей розеткой, наверняка, тоже все в порядке.
  2. Если с напряжением действительно беда, то берем однофазный релейный стабилизатор мощностью 10-15 кВт. В 90% случаев этого будет достаточно. Более точные расчеты можно сделать по приведенной выше методике.
  3. Если вас раздражают громкие щелкающие звуки и моргающий свет в моменты переключения стабилизатора, тогда вместо релейного покупаем электромеханический, у которого плавная регулировка.
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]