Делаем стабилизатор тока для светодиодов своими руками

См. также: Электронный балласт для светодиодной лампы. Схемотехника.

Статья-ликбез по стабилизаторам тока светодиодов и не только. Рассматриваются схемы линейных и импульсных стабилизаторов тока.

Стабилизатор тока для светодиода устанавливается во многие конструкции светильников. Светодиоды, как и все диоды имеют нелинейную вольт-амперную характеристику. Это означает, что при изменении напряжения на светодиоде, ток изменяется непропорционально. По мере увеличения напряжения, сначала ток растёт очень медленно, светодиод при этом не светится. Затем, при достижении порогового напряжения, светодиод начинает светиться и ток возрастает очень быстро. При дальнейшем увеличении напряжения, ток возрастает катастрофически и светодиод сгорает.

Пороговое напряжение указывается в характеристиках светодиодов, как прямое напряжение при номинальном токе. Номинальный ток для большинства маломощных светодиодов — 20 мА. Для мощных светодиодов освещения, номинальный ток может быть больше — 350 мА или более. Кстати, мощные светодиоды выделяют тепло и должны быть установлены на теплоотвод.

Для правильной работы светодиода, его надо питать через стабилизатор тока. Зачем? Дело в том, что пороговое напряжение светодиода имеет разброс. Разные типы светодиодов имеют разное прямое напряжение, даже однотипные светодиоды имеют разное прямое напряжение — это указано в характеристиках светодиода как минимальное и максимальное значения. Следовательно, два светодиода, подключенные к одному источнику напряжения по параллельной схеме будут пропускать разный ток. Этот ток может быть настолько разным, что светодиод может раньше выйти из строя или сгореть сразу. Кроме того, стабилизатор напряжения также имеет дрейф параметров (от уровня первичного питания, от нагрузки, от температуры, просто по времени). Следовательно, включать светодиоды без устройств выравнивания тока — нежелательно. Различные способы выравнивания тока рассмотрены отдельно. В этой статье рассматриваются устройства, устанавливающие вполне определённый, заданный ток — стабилизаторы тока.

Выбор устройства

Стабилизатор напряжения 12 вольт
При выборе стабилизатора учитывают следующие характеристики:

  • Размеры. Выбранный стабилизатор должен компактно размещаться в запланированном для него месте для установки с возможностью нормального доступа.
  • Вид. Из имеющихся в продаже устройств наиболее надежными, компактными и недорогими являются стабилизаторы на основе небольших микросхем.
  • Возможность самостоятельного ремонта. Так как даже самые надежные устройства выходят из строя, необходимо отдавать предпочтение ремонтопригодным стабилизаторам, радиодетали к которым имеются в продаже в достаточном количестве и по доступной цене.
  • Надежность. Выбранный стабилизатор должен обеспечивать постоянное значение напряжения без значительных отклонений от заявленного их производителем диапазона.
  • Стоимость. Для электрической системы автомобиля достаточно приобрести устройство стоимостью до 200 рублей.

Параметры микросхем LM-317

Интегральная микросхема (ИМС) изготовлена в пластмассовом корпусе, с возможностью установки на теплоотводе (радиаторе). Она имеет три вывода и предоставляет возможность линейной стабилизации напряжения и тока. ИМС предназначена для применения в регулируемых блоках питания (БП) и светодиодных схемах. К сведению. Популярная модель этого устройства изготовлена в корпусе ТО-220 и имеет букву T в составе маркировки. Эта буква указывает на вид корпуса.

Каждый из трёх выводов LM317 обладает следующим назначением:

  • VIn – вход, куда подают напряжение, предназначенное для регулировки;
  • VOut– это выход, с которого снимается нужное напряжение, он имеет электрический контакт с кронштейном для крепления к плате или радиатору;
  • Adj – регулируемый вход, через который производят изменение выходного напряжения, используя для этого переменный резистор.

Считают выводы слева направо, держа микросхему лицевой стороной к себе.

Распиновка LM317 TO-220(T)

Кроме электрических качественных показателей, у сборки есть физические и защитные характеристики. К ним относятся следующие пункты:

  • тип корпуса – TO-220, TO-220FP, TO-3, D2PAK, SOT-23;
  • вид материала, из которого корпус изготовлен, – пластмасса;
  • защита от КЗ – ISCCL (Internal Short-Circuit Current Limiting);
  • TOP (Thermal Overload Protection) – защищённость по тепловым перегрузкам;
  • контроль над максимальной мощностью рассеивания OS-AC (Output Safe-Area Compensation).

Внимание! Расположенные внутри ИМС датчики следят за установленным тепловым ограничением и при превышении максимальной рассеиваемой мощности отключают микросхему. Для этого понадобятся следующие детали и устройства:

Для этого понадобятся следующие детали и устройства:

  • ИПТ (источник постоянного тока);
  • ИМС LM-317;
  • резистор R сопротивлением от 1 до 110 Ом и запасом мощности, рассчитанным по уже рассмотренной формуле;
  • светодиод.


Схема стабилизатора тока для светодиода своими руками

Для установки подсветки на автомобиль, большего количества led-ламп можно увеличить ток стабилизатора до 3 А. Для этого в схему включают мощный транзистор КТ 818.

Увеличение тока стабилизации

Можно применять стабилизаторы напряжения 12 вольт для светодиодов в автомобильном исполнении. Подсветка панелей, номерных знаков, установка белых led-ламп в качестве габаритных или ходовых огней – вот только несколько точек установки.

Led-лента на фаре авто

Внимание! Долговечность диода, излучающего свет, зависит не столько от стабильного напряжения питания, сколько от протекающего через него тока. Если элементы модели AlInGaP/GaAs могут переносить перегрузки по току, то led-диоды на основе GaInN/GaN не продержатся и пары часов

Ровное свечение излучающих диодов при различных подключениях (параллельно или последовательно включенные цепочки) возможно при одинаковых значениях тока.

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

R1=1.25*I0.

W=I2R1.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Читать далее: Как сделать своими руками акустические двери

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Регулируемый стабилизатор напряжения для зарядного устройства

Зарядное устройство для автомобильных аккумуляторов — незаменимая вещь, которая должна иметься у каждого автолюбителя, не зависимо от того, на сколько аккумулятор хорош, поскольку подводить он может в самую неудобную минуту.

Конструкции многочисленных зарядных устройств мы неоднократно рассматривали на страницах сайта. Зарядное устройство по идее ничто иное как блок питания со стабилизацией тока и напряжения. Работает просто — мы знаем, что напряжение заряженного автомобильного аккумулятора около 14-14,4 Вольт, на зарядном устройстве нужно выставить именно это напряжение, дальше выставить желаемый ток заряда, в случае кислотных стартерных АКБ это десятая часть емкости аккумулятора, например — аккумулятор 60 А/ч, заряжаем его током 6 Ампер.

Регулируемый стабилизатор напряжения для зарядного устройства

В итоге по мере заряда аккумулятора ток будет падать и со временем примет нулевое значение — как только аккумулятор заряжен. Такая система используется во всех зарядных устройствах, процесс заряда не нужно постоянно контролировать, поскольку все выходные параметры зарядного устройства стабильны и не зависят от перепадов сетевого напряжения.

Исходя из того становиться ясно, что для постройки зарядного устройства нужно иметь три узла.

1) Понижающий трансформатор либо импульсный источник питания плюс выпрямитель2) Стабилизатор тока3) Стабилизатор напряжения

С помощью последнего задается порог напряжения, до которого будет заряжаться аккумулятор и сегодня мы поговорим именно о стабилизаторе напряжения.

Система прсота до безобразия, всего 2 активных компонентов, минимальные затраты, ну а сборка займет не более 10 минут при наличии всех компонентов.

Что мы имеем . полевой транзистор в качестве силового элемента, регулируемый стабилитрон, который задает напряжение стабилизации, это напряжение можно выставить вручную, с помощью переменного (а лучше подстроечного, многооборотного) резистора 3,3кОм. На вход стабилизатора можно подавать напряжение до 50 Вольт, на выходе уже получаем стабильное напряжение нужного номинала.

Минимальное возможное напряжение 3Вольт (зависит от полевого транзистора) дело в том, что для того, чтобы полевой транзистор открылся на его затворе нужно иметь напряжение выше 3-х вольт (в некоторых случаях и больше) кроме полевых транзисторов, которые предназначены для работы в цепях с логическим уровнем управления.

О соотношении размеров инерционного стабилизатора

При отклонении камеры от горизонтальной оси, оператор вынужден фиксировать ручку стабилизатора в руке. Момент силы, передающийся руке оператора, прямо пропорционален длине вертикальной планки и весу камеры, и обратно пропорционален диаметру ручки. Поэтому, удобство управления камерой зависит от диаметра ручки. Для улучшения тактильных ощущений о положении ручки в руке, полезно сделать на ней небольшие концентрические углубления.

Нужно сказать, что размеры каждой детали стабилизатора, являются компромиссом между теми или другими параметрами устройства.

Например, чем тоньше ручка, тем труднее стабилизировать стедикам при ускорении, но чем толще ручка, тем слабее тактильное ощущение горизонта.

Другим компромиссом является выбор между размерно-весовыми показателями конструкции и качеством стабилизации. Чем длиннее горизонтальная планка и тяжелее грузики на её концах, тем выше качество стабилизации. Однако, при увеличении длины горизонтальной планки, её конец может попасть в поле зрения объектива, а увеличение веса делает переноску оборудования малокомфортной. Я не рекомендую увеличивать вес снаряжённого стабилизатора более 2,5кг, а предельный размер лучше подогнать под любимый кофр.

Сборка стабилизатора тока из двух транзисторов

В этой схеме функции датчика выполняет резистор R2. Его номинал при подключении светодиодов выбирают с помощью формулы:

0,6/ Iн (ток в нагрузке).

Увеличение Iн открывает VT2, который, в свою очередь, запирает переход транзистора VT1.

Недостатком схемы специалисты считают существенное падение напряжения на основном транзисторе. При подключении нескольких светодиодов проблемы не возникают. Однако по мере увеличения нагрузки приходится ставить VT1 на крупный радиатор, обеспечивать эффективную вентиляцию рабочего объема. Подобные решения используют для создания мощных зарядных устройств.

Преобразователь на основе генератора ЗЧ

В генераторе, представленном на рисунке 5 одновременно со световыми вырабатываются звонкие импульсы звуковой частоты. Частота звуковых сигналов определяется параметрами колебательного контура, образованного обмоткой телефонного капсюля и конденсатора С2.

Рис. 5. Принципиальная схема преобразователя напряжения для светодиода на основе генератора ЗЧ.

Конструкция и принцип работы

Стабилизатор обеспечивает постоянство тока при его отклонении Стабилизатор обеспечивает постоянство показателей рабочего тока LED-диодов при его отклонении от нормы. Он предотвращает перегрев и выгорание светодиодов, поддерживает постоянство потока при перепадах напряжения или разрядке АКБ.

Простейшее устройство состоит из трансформатора, выпрямительного моста, соединенного с резисторами и конденсаторами. Действие стабилизатора основывается на следующих принципах:

  • подача тока на трансформатор и изменение его предельной частоты до частоты электросети – 50 Гц;
  • регулировка напряжения на повышение и понижение с последующим выравниванием частоты до 30 Гц.

В процессе преобразования также задействуются выпрямители высоковольтного типа. Они определяют полярность. Стабилизация электрического тока осуществляется при помощи конденсаторов. Для снижения помех применяются резисторы.

Устройство и технические характеристики

Регулируемые стабилизаторы тока успешно применяются в схемах источников питания и различных зарядных устройств. Данные приборы предназначены для стабилизации тока на заданном уровне. Благодаря их низкой стоимости, существенно упрощается разработка схем большинства электронных приборов. Работу этих устройств наглядно демонстрирует простой регулируемый стабилизатор напряжения и тока.

Для этого следует воспользоваться идеальным источником тока, обладающим бесконечно большой электродвижущей силой и значительным внутренним сопротивлением. Такие параметры позволяют получить в цепи ток с требуемыми характеристиками, независимо от сопротивления нагрузки. Таким образом, идеальный источник создает ток, имеющий постоянную величину при изменяющемся сопротивлении нагрузки в пределах от короткого замыкания до бесконечности. Чтобы поддержать величину тока на неизменном уровне, значение ЭДС должно изменяться от величины больше нуля до бесконечности

В результате, стабильное токовое значение получается, благодаря важному свойству источника тока: с изменением сопротивления нагрузки происходит изменение ЭДС источника тока так, чтобы токовое значение оставалось постоянным

В отличие от постоянного тока, реальные источники тока способны поддерживать ток на нужном уровне лишь в ограниченном диапазоне напряжения на нагрузке и ограниченном сопротивлении нагрузки. Реальный источник может работать даже с нулевым сопротивлением нагрузки, а также в режиме замыкания на выходе без каких-либо сложностей. То есть, при случайном замыкании выхода, прибор просто перейдет на другой режим работы, где сопротивление нагрузки выше нуля.

Как правило, практикуется использование реального источника тока с реальным источником напряжения. В качестве таких источников выступают: электрическая сеть, напряжением 220 В, частотой 50 Гц, аккумуляторы, лабораторные блоки питания, солнечные батареи, бензиновые генераторы и другие поставщики электроэнергии. С любым из них осуществляется последовательное включение регулируемого стабилизатора тока. Выход этого прибора соответственно используется в качестве источника тока.

РЕГУЛИРУЕМЫЙ ИСТОЧНИК ПИТАНИЯ С СИГНАЛИЗАЦИЕЙ ПЕРЕГРУЗКИ

Звуковая сигнализация позволяет пользователю быстро среагировать на аварийную ситуацию, если при экспериментах с различной радиоэлектронной аппаратурой возникла перегрузка источника питания. Схема источника питания с звуковым сигнализатором превышения потребления тока показана на рисунке.

Выпрямитель на диодах VD1—VD4 питается от трансформатора, вторичная обметка которого рассчитана на напряжение 18 В при токе нагрузки не менее 1 А, Регулируемый стабилизатор напряжения выполнен на транзисторах VT2 — VT5 по известной схеме. Переменным резистором R3 на выходе стабилизатора может быть установлено напряжение от 0 до +15 В.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

Схемы стабилизаторов и регуляторов тока

Всем известно, что светодиодным лампочкам необходимо питание двенадцать вольт. В сети авто это значение может доходить до 15 В. Светодиодные элементы очень чувствительны, на них такие скачки отражаются отрицательно. Светодиодные лампы могут перегореть либо некачественно светить (мигать, терять яркость и т.д.).

Чтобы светодиоды служили дольше, в электросеть автомобиля включаются драйвера (резисторы). При нестабильности в сети устанавливаются устройства, которые поддерживают постоянное значение. Существует несколько простых микросхем, по которым можно сделать стабилизатор напряжения своими руками. Все компоненты, входящие в цепь, можно приобрести в специализированных магазинах. Обладая начальными знаниями по электротехнике сделать приборы будет несложно.

На КРЕНке

Для того, чтобы сконструировать простейший стабилизатор напряжения 12 вольт своими руками, понадобится микросхема с потреблением 12 В. В этом случае подойдет регулируемый стабилизатор напряжения 12 В LM317. Он может функционировать в электросети, где входной параметр составляет до 40 В. Чтобы прибор стабильно работал, необходимого обеспечивать охлаждение.

Крены для микросхем

Стабилизатор тока на LM317требует для работы небольшой ток до 8 мА, и данное значение обычно остается неизменным, даже при большом токе, протекающем через крен LM317, или при изменении входного значения. Это реализуется с помощью компоненты R3.

Можно применять элемент R2, но пределы при этом будут небольшими. При неизменном сопротивлении LM317 ток, идущий через прибор, будет также стабильным (автор видео — Создано в Гараже).

Входное значение для кренки LM317 может составлять до 8 мА и выше. Пользуясь этой микросхемой, можно придумать стабилизатор тока для ДХО. Это устройство может выступать нагрузкой в бортовой сети или источником электричества при подзарядке аккумуляторной батареи. Сделать простой стабилизатор напряжения LM317 не составляет труда.

На двух транзисторах

На сегодняшний момент пользуются популярностью стабилизирующие устройства для бортовой сети машины на 12 В, разработанные с использованием двух транзисторов. Данную микросхему используют как стабилизатор напряжения для ДХО.

Резистор R2 является токораздающим элементом. При возрастании тока в сети увеличивается напряжение. Если оно достигает значения от 0,5 до 0,6 В, открывается элемент VT1. Открытие компонента VT1 закрывает элемент VT2. В итоге, ток, проходящий через VT2, начинает снижаться. Можно вместе с VT2 применять полевой транзистор Мосфет.

Элемент VD1 включается в цепь, когда значения находится в пределах от 8 до 15 В и настолько велики, что транзистор может выйти из строя. При мощном транзисторе допустимы показания в бортовой сети около 20 В. Не стоит забывать о том, что транзистор Мосфет откроется, если показания на затворе будут 2 В.

На операционном усилителе (на ОУ)

Стабилизатор напряжения для светодиодов на основе ОУ собирается при необходимости создания устройства, которое будет работать в расширенном диапазоне. В рассматриваемом случае в качестве элемента, который будет задавать выпрямляемый ток, является R7. С помощью операционного усилителя DA2.2 можно увеличить уровень напряжения в токозадающем компоненте. Задачей компонента DA 2.1 является контроль опорного напряжения.

При создании схемы следует учесть, что она рассчитана на 3А, поэтому необходим больший ток, который должен поступать на разъем ХР2. Кроме того, следует обеспечивать работоспособность всех составляющих данного устройства.

Сделанный стабилизирующий прибор для автомобиля должен иметь генератор, роль которого выполняет REF198. Чтобы правильно настроить прибор, ползунок резистора R1 нужно установить в верхнее положение, а резистором R3 задавать необходимое значение выпрямленного тока 3А. Для погашения возможных возбуждений, используются элементы R,2 R4 и C2.

На микросхеме импульсного стабилизатора

Если выпрямитель для автомобиля должен обеспечивать высокий КПД в сети, целесообразно использовать импульсные компоненты, создавая импульсный стабилизатор напряжения. Популярной является схема МАХ771.

Схема выпрямителя с импульсным выпрямителем

Импульсный стабилизатор тока характеризуется выходной мощностью 15 Вт. Элементы R1 и R2 делят показатели схемы на выходе. Если делимое напряжение превышает по показателям опорное, выпрямитель автоматически уменьшает выходное значение. В противном случае устройство будет увеличивать выходной параметр.

Сборка данного устройства целесообразна, если уровень превышает 16 В. Компоненты R3 являются токовыми. Для устранения высокого падения нагрузки на данном резисторе в схему следует включить ОУ.

Зарубежные и российские аналоги

Чем можно заменить lm317 ? Полными аналогами микросхемы являются GL317, SG317, UPC317, ECG1900. Очень известным отечественным аналогом lm317t c фиксированным напряжением является микросхема KP142ЕН12. Если нужен регулируемый линейный стабилизатор, то подойдет КРЕН12А (можно и Б).

Безопасность при эксплуатации

Максимальное напряжение между входом и выходом не должно превышать 40 В. Мощность рассеивания не более 20 Вт. Температура пайки не должна превышать 260 °С, при соблюдении расстоянии от корпуса микросхемы более 1,6 мм и времени нагревания до 10 секунд. Температура хранения устройства должна находится в пределах от -65 до + 150 °С, рабочая температура не более + 150 °С.

Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Микросхема хорошо защищена от тепловой перегрузки и короткого замыкания контактов. Однако не стоит превышать допустимые параметры при эксплуатации, для избежания выхода её из строя и достижения максимально надежной работы.

Схема номер 1

Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 – 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась. От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении. Напряжение на выходе можно было изменять от 1,3 до 16 вольт.

КТ829 — мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты – видно действительно его место там а не в регуляторах напряжения.

Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос – «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»

Параметры питания светодиодов

У светодиодов, кроме номинального тока существует ещё один важный параметр – прямое падение напряжения. Роль этого параметра также существенна, именно поэтому его указывают в первом ряду технических параметров полупроводникового прибора.

Чтобы через p-n переход начал протекать ток, к нему нужно приложить какое-то минимальное прямое напряжение Uмин.пр.. Значение минимального прямого напряжения указывается в документации светодиода и отражается на графике вольт — амперных характеристик (ВАХ).

На зеленом участке ВАХ светодиода видно, что только при достижении Uмин.пр. начинает протекать ток Iпр. Дальнейший незначительный рост Uпр приводит к резкому росту Iпр. Именно поэтому даже небольшие перепады напряжения свыше Uмакс..пр. губительны для кристалла светодиода. В момент превышения Uмакс.пр. ток достигает своего пика и происходит разрушение кристалла. Для каждого типа светодиодов существует номинальный ток и соответствующее ему напряжение (паспортные данные), при которых прибор должен отработать заявленный срок службы.

LM317

Применение LM317 (крен) даже не требует каких либо навыков и знаний по электронике. Количество внешних элементов в схемах минимально, поэтому это доступный вариант для любого. Её цена очень низкая, возможности и применение многократно испытаны и проверены. Только она требует хорошего охлаждения, это её основной недостаток. Единственное стоит опасаться низкокачественных китайских микросхем ЛМ317, которые имеют параметры похуже.

Микросхемы линейной стабилизации из-за отсутствия лишних шумов на выходе, использовал для питания высококачественных ЦАП класса Hi-Fi и Hi-End. Для ЦАП огромную роль играет чистота питания, поэтому некоторые используют аккумуляторы для этого.

Максимальная сила для LM317 составляет 1,5 Ампера. Для увеличения количества ампер можно добавить в схему полевой транзистор или обычный. На выходе можно будет получить до 10А, задаётся низкоомным сопротивлением. На данной схеме основную нагрузку на себя берёт транзистор КТ825.

Другой способ, это поставить аналог с более высокими техническими характеристиками на большую систему охлаждения.

Простой преобразователь тока

Сборка миниатюрного преобразователя тока своими руками считается довольно простой. Такие стабилизаторы напряжения обычно изготавливаются в режиме для стабилизации тока. При этом не следует путать максимальное напряжение для всего блока и максимальную нагрузку на ШИМ-контроллер. На блок может быть установлена система низковольтных конденсаторов на 20 В, а импульсная микросхема может иметь вход до 35 В. Наиболее простой светодиодный стабилизатор тока, выполненный своими руками, — это вариант LM317. Потребуется только рассчитать резистор для светодиода с помощью онлайн калькулятора.

Для LM317 можно использовать подручное питание (к примеру, блок питания на 19 В от ноутбука, на 24 В или 32 В от принтера либо на 9 или на 12 вольт от бытовой электроники). К преимуществам такого преобразователя относят его низкую цену, минимальное количество деталей, высокую надежность, а также наличие в магазинах. Более сложную схему стабилизатора тока собирать своими руками не рационально. Поэтому если вы не являетесь опытным радиолюбителем, то импульсный стабилизатор тока намного проще и быстрее будет купить в готовом виде. При необходимости его можно доработать до требуемых параметров.

Чтобы выполнить сборку LM317, никаких особых знаний и навыков по электронике не потребуется (в схемах число внешних элементов минимально). Стоит такой простой стабилизатор тока очень дешево, при этом его возможности многократно проверены на практике.

Единственный недостаток заключается в том, что LM317 может потребовать дополнительного охлаждения. Также стоит опасаться китайских микросхем LM317 с более низкими параметрами. Стоимость в любом случае более чем доступна, при этом в цену включена доставка. Китайские производители выполняют довольно трудоемкую работу при цене изделия в 30-50 рублей за штуку. Ненужные запчасти можно распродать на Авито или форумах в интернете.

Сборка простого стабилизатора своими руками

Светодиод представляет собой полупроводниковый прибор, для работы которого необходим ток. Включение светодиодов через стабилизатор считается наиболее правильным. Продолжительность функционирования светодиода без потери яркости зависит от его режима работы. Главное достоинство простейших стабилизаторов (драйверов), таких как микросхема-стабилизатор LM317, — их довольно трудно спалить. Схема подключения LM317 требует всего двух деталей: самой микросхемы, включаемой в режим стабилизации, и резистора.

  1. Потребуется купить переменный резистор сопротивлением в 0.5 кОм (имеет три вывода и ручку регулировки). Заказать его можно через интернет или купить в «Радиолюбителе».
  2. Провода припаиваются к среднему выводу, а также к одному из крайних.
  3. С помощью мультиметра, включенного в режиме измерения сопротивления, замеряется сопротивление резистора. Нужно добиться максимального показания в 500 Ом (чтобы светодиод не перегорел при низком сопротивлении резистора). О том, как проверить мультиметром сам светодиод, написано здесь.
  4. После внимательной проверки правильности соединений перед подключением, собирается цепь.

Максимальная мощность LM317 — 1.5 Ампер. Если вы хотите увеличить ток, то в схему можно добавить полевой или обычный транзистор. В результате, для устройства на транзисторе на выходе можно добиться подачи 10 А (задается низкоомным сопротивлением). Для этих целей можно использовать транзистор КТ825 или установить аналог с лучшими техническими характеристиками и системой охлаждения.

В любом случае, ассортимент продаваемых модулей и блоков достаточно широкий, поэтому устройство с нужными параметрами можно собрать за минимальное время. КПД зависит от разницы напряжения входа и выхода, а также от режима работы.

Вы здесь

Главная › Инженеру-конструктору › 3. Электрооборудование, электроустановки › 3. Раздел 3.

Для получения более постоянного напряжения на нагрузке при изменении потребляемого тока к выходу выпрямителя подключают стабилизатор, который может быть выполнен по схеме, приведенной на рис. 1. В таком устройстве работают стабилитрон V5

и регулирующий транзистор
V6
. Расчет позволит выбрать все элементы стабилизатора, исходя из заданного выходного напряжения

и максимального тока нагрузки

. Однако оба эти параметра не должны превышать параметры уже рассчитанного выпрямителя. А если это условие нарушается, тогда сначала рассчитывают стабилизатор, а затем — выпрямитель и трансформатор питания. Расчет стабилизатора ведут в следующем порядке.

1. Определяют необходимое для работы стабилизатора входное напряжение (Uвып)

при заданном выходном
(Uн)
:

Uвып = Uн + 3

,

Здесь цифра 3, характеризующая минимальное напряжение между коллектором и эмиттером транзистора, взята в расчете на использование как кремниевых, так и германиевых транзисторов. Если стабилизатор будет подключаться к готовому или уже рассчитанному выпрямителю, в дальнейших расчетах необходимо использовать реальное значение выпрямленного напряжения Uвып

.

2. Рассчитывают максимально рассеиваемую транзистором мощность:

Рmах = 1,3 (Uвып — Uн) Iн

,

3. Выбирают регулирующий транзистор. Его предельно допустимая рассеиваемая мощность должна быть больше значения Рmax

, предельно допустимое напряжение между эмиттером и коллектором — больше
Uвып
, а максимально допустимый ток коллектора — больше

.

4. Определяют максимальный ток базы регулирующего транзистора:

Iб.макс = Iн / h21Э min

,

где: h21Эmin — минимальный коэффициент передачи тока выбранного (по справочнику) транзистора.

.

5. Подбирают подходящий стабилитрон. Его напряжение стабилизации должно быть равно выходному напряжению стабилизатора, а значение максимального тока стабилизации превышать максимальный ток базы Iб max

.


6. Подсчитывают сопротивление резистора R1

:

R1 = (Uвып — Uст) / (Iб max + Iст min)

,

Здесь R1 — сопротивление резистора R1, Ом; Uст — напряжение стабилизации стабилитрона, В; Iб.max — вычисленное значение максимального тока базы транзистора, мА; Iст.min — минимальный ток стабилизации для данного стабилитрона, указанный в справочнике (обычно 3…5 мА).

.

7. Определяют мощность рассеяния резистора R1

:

PR1 = (Uвып — Uст)2 / R1

,

Может случиться, что маломощный стабилитрон не подойдет по максимальному току стабилизации и придется выбирать стабилитрон значительно большей мощности — такое случается при больших токах потребления и использовании транзистора с малым коэффициентом h21Э

. В таком случае целесообразно ввести в стабилизатор дополнительный транзистор
V7
малой мощности (рис. 2), который позволит снизить максимальный ток нагрузки для стабилитрона (а значит, и ток стабилизации) примерно в
h21Э
раз и применить, соответственно, маломощный стабилитрон.

В приведенных здесь расчетах отсутствует поправка на изменение сетевого напряжения, а также опущены некоторые другие уточнения, усложняющие расчеты. Проще испытать собранный стабилизатор в действии, изменяя его входное напряжение (или сетевое) на ± 10 % и точнее подобрать резистор R1 по наибольшей стабильности выходного напряжения при максимальном токе нагрузки.

Функциональные схемы по типу цепи управления

Импульсный стабилизатор напряжения представляет собой систему автоматического регулирования. Задающим параметром для контура регулирования служит опорное напряжение, которое сравнивается с выходным напряжением стабилизатора. В зависимости от сигнала рассогласования устройство управления изменяет соотношение длительностей открытого и закрытого состояния ключа.

В представленных ниже структурных схемах можно выделить три функциональных узла: ключ (1), накопитель энергии (2) (который иногда называют фильтром) и цепь управления. При этом ключ (1) и накопитель энергии (2) вместе образуют силовую часть стабилизатора напряжения, которая вместе с цепью управления образуют контур регулирования. По типу цепи управления различают три схемы.

С триггером Шмитта

Стабилизатор напряжения с триггером Шмитта называется также релейным или стабилизатором с двухпозиционным регулированием. В нём выходное напряжение сравнивается с нижним и верхним порогами срабатывания триггера Шмитта (4 и 3) посредством компаратора (4), который обычно является входной частью триггера Шмитта. При замкнутом ключе (1) входное напряжение поступает на накопитель энергии (2), выходное напряжение нарастает, и после достижения верхнего порога срабатывания Umax

триггер Шмитта переключается в состояние, размыкающее ключ (1). Накопленная энергия расходуется в нагрузке, при этом напряжение на выходе стабилизатора спадает, и после достижения нижнего порога срабатывания
Umin
триггер Шмитта переключается в состояние, замыкающее ключ. Далее описанный процесс периодически повторяется. В результате на выходе образуется пульсирующее напряжение, размах пульсаций которого зависит от разности порогов срабатывания триггера Шмитта.

Такой стабилизатор характеризуются сравнительно большой, принципиально неустранимой пульсацией напряжения на нагрузке и переменной частотой преобразования, зависящей как от входного напряжения, так и от тока нагрузки.

С широтно-импульсной модуляцией

Структурная схема стабилизатора напряжения с ШИМ

Как и в предыдущей схеме, в процессе работы накопитель энергии (2) или подключён к входному напряжению, или передаёт накопленную энергию в нагрузку

В результате на выходе имеется некоторое среднее значение напряжения, которое зависит от входного напряжения и скважности импульсов управления ключом (1). Вычитатель-усилитель на операционном усилителе (4) сравнивает выходное напряжение с опорным напряжением (6) и усиливает разность, которая поступает на модулятор (3)

Если выходное напряжение меньше опорного, то модулятор увеличивает отношение времени открытого состояния ключа к периоду тактового генератора (5). При изменении входного напряжения или тока нагрузки скважность импульсов управления ключом изменяется таким образом, чтобы обеспечить минимальную разность между выходным и опорным напряжением.

В таком стабилизаторе частота преобразования не зависит от входного напряжения и тока нагрузки и определяется частотой тактового генератора.

С частотно-импульсной модуляцией

При этом способе управления импульс, открывающий ключ, имеет постоянную длительность, а частота следования импульсов зависит от сигнала рассогласования между опорным и выходным напряжениями. При увеличении тока нагрузки или снижении входного напряжения частота увеличивается. Управление ключом может осуществляться, например, с помощью моностабильного мультивибратора (одновибратора) с управляемой частотой запуска.

Мой опыт

У моего друга есть ВАЗ ПРИОРА, и он любитель засунуть LED лампы в габариты, фары подсветку и т.д. Без таких стабилизирующих элементов они реально долго не ходили (пару-тройку месяцев и все). Сейчас же один комплект дешевых вариантов ходит уже третий год, и все благодаря стабилизации!

Есть и минусы такие элементы ставятся в разрыв провода, который идет до источника, там даже указаны «IN» и «OUT» куда нужно подключать провод и откуда выводить. Стоимость за 5 штук примерно 160 рублей, то есть каждый примерно около 30. Друг выставил 11,8В подключил к платам провода и залил их клеевым пистолетом, теперь влага им не страшна.

Лично я сам купил такие платы и экспериментировал с ними, у меня есть блок питания который выдает от 15 до 24В. От него я запитал два провода и подвел на модуль, а уже с него на светодиод, выставил около 11,9. И знаете, как бы я не переключал в блоке питания напряжение, за платой оно стабильно держалось 11,9В без каких либо скачков (весь эксперимент будет на видео).

Так что вывод можно купить стабилизаторы (около 30р за штуку), сами лампочки (около 50р за штуку) и в ИТОГЕ получаете за 80 – 100р вариант, который будет работать ну очень долго (3 года точно).

Сейчас видео версия смотрим

Вот такой материал, думаю он вам был полезен, подписывайтесь на сайт и канал будет еще много интересных видео. Искренне ваш АВТОБЛОГГЕР.

Комментарии

05.01.2020

Максим

В грузовике сгнили патроны в габаритных фонарики заснул светодиодные матрицы на 12 в. и стабилизаторы на радиорынке купил на транзисторы похожи, три ножки, без них никак так как в бортовой сети 24 в. Все работает уже 5 лет.

Преобразователи напряжения с последовательным соединением транзисторов

Рис. 8. Преобразователь напряжения с последовательным соединением транзисторов разного типа проводимости.

В генераторах, показанных далее на рисунках 8 — 13, в качестве активного элемента используется несколько необычное последовательное соединение транзисторов разного типа проводимости, к тому же, охваченных положительной обратной связью.

Рис. 9. Двухтранзисторный преобразователь напряжения для светодиода с применением катушки от телефона.

Конденсатор положительной обратной связи (рисунок 8) одновременно выполняет роль накопителя энергии для получения напряжения, достаточного для питания светодиода.

Параллельно переходу база — коллектор транзистора VT2 (типа КТ361) включен германиевый диод (либо заменяющее его сопротивление, рис. 12).

В генераторе с RC-цепочкой (рис. 8) за счет существенных потерь напряжения на полупроводниковых переходах рабочее напряжение устройства составляет 1,1… 1,6 В.

Заметно понизить нижнюю границу напряжения питания стало возможным за счет перехода на LC-вариант схемы генераторов, использующих индуктивные накопители энергии (рис. 9 — 13).

Рис. 10. Схема простого низковольтного преобразователя напряжения 0,75В -1,5В в 2В на основе LC-генератора.

В качестве индуктивного накопителя энергии в первой из схем использован телефонный капсюль (рис. 9). Одновременно со световыми вспышками генератор вырабатывает акустические сигналы.

При увеличении емкости конденсатора до 200 мкФ генератор переходит в импульсный экономичный режим работы, вырабатывая прерывистые световые и звуковые сигналы.

Переход на более высокие рабочие частоты возможен за счет использования малогабаритной катушки индуктивности с большой добротностью. В связи с этим появляется возможность заметно уменьшить объем устройства и понизить нижнюю границу питающего напряжения (рис. 10 — 13).

В качестве индуктивности использована катушка контура промежуточной частоты от радиоприемника «ВЭФ» индуктивностью 260 мкГн. На рис. 11, 12 показаны разновидности таких генераторов.

Рис. 11. Схема низковольтного преобразователя напряжения для светодиода с катушкой от ПЧ-контура приемника.

Рис. 12. Схема простого преобразователя напряжения для светодиода с катушкой от ПЧ-контура приемника.

Наконец, на рисунке 13 показан наиболее упрощенный вариант устройства, в котором вместо конденсатора колебательного контура использован светодиод.

Преобразователи напряжения конденсаторного типа (с удвоением напряжения), используемые для питания светодиодных излучателей, теоретически могут обеспечить снижение рабочего напряжения питания только до 60% (предельное, идеальное значение — 50%).

Рис. 13. Очень простой низковольтный преобразователь напряжения с включенным светодиодом вместо конденсатора.

Использование в этих целях многокаскадных умножителей напряжения неперспективно в связи с прогрессивно возрастающими потерями и падением КПД преобразователя.

Преобразователи с индуктивными накопителями энергии более перспективны при дальнейшем снижении рабочего напряжения генераторов, обеспечивающих работу светодиодов. При этом сохраняются высокий КПД и простота схемы преобразователя.

Стабилизаторы тока на транзисторах

Для стабилизации тока через светодиоды можно применить хорошо известные решения:

На рисунке 1 представлена схема, работа которой основана на т.н. эмиттерном повторителе. Транзистор, включенный таким образом, стремится поддерживать напряжение на эмиттере в точности таким же, как и на базе (разница будет только в падении напряжения на переходе база-эмиттер). Таким образом, зафиксировав напряжение базы с помощью стабилитрона, мы получаем фиксированное напряжение на R1.

Далее, используя закон Ома, получаем ток эмиттера: Iэ = Uэ/R1. Ток эмиттера практически совпадает с током коллектора, а значит и с током через светодиоды.

Обычные диоды имеют очень слабую зависимость прямого напряжения от тока, поэтому возможно их применение вместо труднодоступных низковольтных стабилитронов. Вот два варианта схем для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2:

Ток через светодиоды задается подбором резистора R2. Резистор R1 выбирают таким образом, чтобы выйти на линейный участок ВАХ диодов (с учетом тока базы транзистора). Напряжение питания всей схемы должно быть не меньше, чем суммарное напряжение всех светодиодов плюс около 2-2.5 вольт сверху для устойчивой работы транзистора.

Сопротивление R1 будет зависеть от коэфф. усиления транзистора hfe и ВАХ диодов. Для S9014 и диодов 1N4148 достаточно будет 10 кОм.

Применим описанный стабилизатор для совершенствования одного из светодиодных светильников, описанного в этой статье. Улучшенная схема будет выглядеть так:

Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения. Это приводит к существенному продлению срока службы светодиодной лампы.

Из осциллограмм видно, что добавив в схему стабилизатор тока для светодиода на транзисторе и стабилитроне, мы тут же уменьшили амплитуду пульсаций в несколько раз:

При указанных на схеме номиналах, на транзисторе рассеивается мощность чуть больше 0.5 Вт, что позволяет обойтись без радиатора. Если емкость балластного конденсатора увеличить до 1.2 мкФ, то на транзисторе будет падать

23 Вольт, а мощность составит около 1 Вт. В этом случае без радиатора не обойтись, но зато пульсации понизятся чуть ли не до нуля.

Вместо указанного на схеме транзистора 2CS4544, можно взять 2SC2482 или аналогичный с током коллектора больше 100 мА и допустимым напряжением Uкэ не менее 300 В (подойдут, например, старые советские КТ940, КТ969).

Желаемый ток, как обычно, задается резистором R*. Стабилитрон рассчитан на напряжение 5.1 В и мощность 0.5 Вт. В качестве светодиодов применены распространенные smd-светодиоды из китайской лампочки (а еще лучше взять готовую лампу и добавить в нее недостающие компоненты).

Теперь рассмотрим схему, представленную на рисунке 2. Вот она отдельно:

Токовым датчиком здесь является резистор, сопротивление которого рассчитывается по формуле 0.6/Iнагр. При увеличении тока через светодиоды, транзистор VT2 начинает открываться сильнее, что приводит к более сильному запиранию транзистора VT1. Ток уменьшается. Таким образом происходит стабилизация выходного тока.

Также, вместо биполярного транзистора, можно применить p-канальный MOSFET. Схема, приведенная ниже, представляет собой мощный светильник на двух 10-ваттных светодиодах и 40-ваттном IRF9510 в корпусе ТО-220 (см. характеристики):

Транзистор VT2 и светодиоды необходимо разместить на общем радиаторе, площадью не менее 900 см 2 (это если без принудительного охлаждения). Использование термопасты обязательно. Ребра радиатора должен быть толстым и массивным, чтобы максимально быстро отводить тепло. Оцинкованные профили для гипсокартона, консервные банки из-под селедки и крышки от кастрюль категорически не подходят.

Если такая мощность не нужна, можно сократить количество светодиодов до одного. Но при этом придется понизить напряжение питания на 3-3.5 вольта. Иначе потребляемая мощность останется прежней, транзистор будет греться в два раза сильнее, а светить будет в два раза хуже.

Цены в Китае

Стоимость очень низкая, с учетом того, что доставка включена в цену. Раньше я думал, что из-за товара за 30-50 руб китайцы даже и мараться не будут, много работы при малом доходе. Но как показала практика, я ошибался. Любую копеечную ерунду они упаковывают и отсылают. Приходит в 98% случаев, а закупаю на Aliexpress уже более 7 лет и на большие суммы, наверное уже около 1 млн руб.

Поэтому оформляю заказ заранее, обычно 2-3 штуки одного наименования. Ненужное распродаю на местном форуме или Авито, всё расходится как горячие пирожки.

Здравствуйте. Вы пишете про схемы стабилизации ТОКА для светодиодов. Но если ставить в авто, там ведь скачет напряжение — значит надо в машине использовать стабилизацию по напряжению, а не по току ?

Ток стабилизируется независимо от входного напряжения, если вы про драйвер для авто. Если подключаете диод с резистором, как в ленте светодиодной, то тут нужен стабилизатор напряжения.

Доброго времени! Немного оффтоп, но у вас в статье есть упоминание о спекрометре за 10 тыс. Я понимаю что это в качестве примера, но если есть какие то наработки в этом направлении в публичном доступе, не могли бы дать ссылку? Заранее спасибо! Отличный ресурс!

Готовая плата спектрометра с датчиком, подключением USB и софтом стоит около 8 т.руб у китайцев. То есть нужен только корпус и дифракционная решётка. Получаете по начинке аналог спектрометра за 100 т руб. В инете есть несколько вариантов как собрать спектрометр за 3-5 труб. Есть вариант спектрометра и за 1000 руб.

Доброго дня. Подскажите пожалуйста, если использовать LM317 из Ali с регулировкой сопротивления (как у вас в статье) обязательно ли подключать к ней минус? Просто если паять самому на LM317, то по вашей схеме нужен только плюс, а у китайской готовой плате вижу две колодки с двумя контактами. Просто не хочу разрезать общий минус идущий ко всем лампочкам сзади в авто. И второй вопрос. Можно ли использовать одну плату LM317 для подключения двух лампочек подключенных параллельно (лампочки заднего хода в авто)?

Простой СН, сделанный своими руками

Параметрический стабилизатор напряжения

Стабилизатор напряжения 12 вольт для светодиодов, подсветок автомобильных бортовых систем быстро и удобно выполнять, используя для этого микросхемы: LM317, LD1084, L7812, КРЕН 8Б и им подобные устройства. Несколько диодов, сопротивление и сама микросхема – вот составляющие такого СН.

Стабилизатор на LM317

В зависимости от варианта изготовления корпуса LM317 подбирают расположение деталей на плате.

LM317 с креплением на теплоотвод

Изготовление стабилизатора сводится к следующему:

  • к выходу (Vout) припаивают сопротивление с номинальным значением 130 Ом;
  • к контакту входа (Vin) присоединяют провод, подающий напряжение для стабилизации;
  • регулировочный вход (Adj) подключают ко второму выводу резистора.

При подключении в качестве нагрузки светодиодных фонарей, лент и т.д. радиатор не требуется. Сборка занимает 15-20 минут при минимуме деталей. Используя несложную формулу, можно рассчитывать величину сопротивления R для получения определённой величины допустимого тока нагрузки.

Схема СН на LM317

Схема на микросхеме LD1084

Поддержанию напряжения 12 В неизменным для устройств светодиодной иллюминации, подключённой к бортовой сети автомобиля, поможет применение данной микросборки.

Даташит LD1084

Здесь для сборки самодельного СН в цепь обвязки микросхемы включаются:

  • два электролитических конденсатора по 10 мкФ * 25 В;
  • резисторы: 1 кОм (2 шт.), 120 Ом, 4,7 кОм (можно постоянный);
  • диодный мост RS407.

Устройство собирается следующим образом:

  • напряжение, снимаемое с диодного моста выпрямителя, подаётся на вход LD1084;
  • на контакт, управляющий режимом стабилизации (Adj), присоединяют эмиттер транзистора КТ818, база которого соединена через два одноколонных сопротивления с цепями питания света фар (ближнего и дальнего);
  • выходная цепь микросхемы соединена с резисторами R1 и R2, а также с конденсатором.

Кстати. Резистор R2 можно брать не переменный, а подстроечный, выставив с его помощью величину выходного напряжения 12 В.

СН для бортовой сети

Стабилизатор на диодах и сборке L7812

Подобная микросхема в связке с диодом и конденсаторами может снабжать светодиоды стабильным напряжением 12 В.

Схема построена по ниже изложенному принципу:

  • диод Шоттки 1N401 пропускает через себя ток от плюсовой клеммы аккумулятора и подаёт его на вход микросхемы. При этом «+» электролита (конденсатора на 330 мкФ) также соединён с катодом диода;
  • на выход L7812 присоединяют цепь нагрузки и «+» конденсатора ёмкостью 100 мкФ;
  • все минусовые клеммы (от аккумулятора и обоих электролитических конденсаторов) соединяются с управляющим входом микросхемы.

Электролитические конденсаторы подбирают на напряжение не ниже 25 В.

Схема стабилизатора 12 В на ИМС L7812

Самый простой стабилизатор – плата КРЕН

Схемы с использованием крен довольно популярны. Так называют ИМС, в маркировку которых входят сочетания букв КР и ЕН. Это мощные СН, позволяющие выдавать на нагрузку ток до 1,5 А. Они имеют на выходе стабильные 12 В при подаче на вход напряжения до 35 В.

Схема с использованием этой микросхемы собирается так:

  • напряжение с плюсовой клеммы АКБ (аккумуляторной батареи) на вход крен подаётся через диод 1N4007, он защищает цепь аккумулятора от обратных напряжений;
  • минусовая клемма АКБ соединяется с управляющим электродом КРЕН;
  • напряжение с выхода подаётся на нагрузку.

При необходимости микросхему прикручивают к радиатору.

КР142ЕН8Б, схема подключения

Сборка своими руками стабилизаторов напряжения на 12 В с использованием схем линейных и интегральных СН не составляет особого труда. При этом необходимо следить за температурой нагрева корпуса элементов и при Т0С выше допустимой устанавливать их на теплоотводы (радиаторы).

Основные схемы силовой части

В зависимости от назначения ИС, можно выделить три базовых модели его построения:

  • понижающая;
  • повышающая;
  • инвертирующая.

Независимо от конструктивного исполнения и назначения ИС, устройствами, использующимися в роли ключа, могут быть:

  • тиристор;
  • транзистор (биполярный или полевой).

Основная задача подобного элемента – отрываться или закрываться по команде, поступающей на управляющий электрод.

Преобразователь с понижением напряжения

Обычно уменьшить величину напряжения необходимо чаще, потому такие ИС более востребованы.

Простейшая схема понижающего ИС

У понижающего стабилизатора напряжения, приведённого на схеме, ключ на полевом транзисторе VT1 откроется при подаче на него управляющего напряжения. Ток от плюсовой клеммы будет поступать на нагрузку через сглаживающий дроссель L1. Включенный параллельно в цепь диод VD1 в данный момент не пропускает ток. После размыкания ключа цепь тока следующая: дроссель L1 – нагрузка – общий провод – диод VD1 – дроссель L1. При этом ток, проходящий через дроссель, не прекратится мгновенно, а будет постепенно уменьшаться.

Важно! У дросселей, имеющих большую индуктивность, он не становится равным нулю до начала следующего открытия ключа. Установка таких элементов нецелесообразна из-за увеличения габаритов и стоимости

Конденсатор C1 в это время будет разряжаться на нагрузку и поддерживать U вых. Емкость C вместе с индуктивностью L образует фильтр, снижающий размах пульсаций.

Преобразователь с повышением напряжения

В отличие от понижения Uвх, этот тип схем используют для питания цепей нагрузки, которым для работы необходимо напряжение выше, чем у источника.

Повышающий ИС

Компоненты схемы те же самые, но включены иначе. При открытом транзисторе диод закрыт, и на дросселе линейно нарастает ток. При запирании ключа ток начинает двигаться по цепи: плюсовая клемма – дроссель L1 – диод VD1 – нагрузка – минусовая клемма. Конденсатор C1 в это время будет заряжаться. Он будет поддерживать ток на нагрузке во время своего разряда на неё при следующем открытии ключа.

Инвертирующий преобразователь

Подобная сборка также не имеет гальванической развязки между входным и выходным каскадами. В ней совсем иное включение дросселя, конденсатора и нагрузки. Они расположены параллельно.


Инвертирующий ИС

При открытом ключе VT1 ток протекает по цепи: плюсовая клемма – транзистор – дроссель – минусовая клемма. Дроссель накапливает энергию при содействии магнитного поля. Когда транзистор закрывается, то цепь прохождения тока меняется: дроссель – конденсатор C1 – диод VD1 – дроссель. Энергия дросселя и энергия конденсатора будут полностью отдаваться нагрузке. Амплитуда пульсации целиком зависит от ёмкости C1. В этот момент напряжение на нагрузке не меняется, несмотря на то, что ток через С1 спадает почти до нуля.

Кстати. Выходное напряжение у инвертирующих ИС может отличаться от напряжения источника питания, как в большую, так и в меньшую сторону.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Назначение драйверов для светодиодов

Яркость светодиодной лампы зависит от 2 параметров: тока, проходящего через нее, и идентичности характеристик полупроводников, т. к. любое несоответствие выведет детали из строя. Но современное производство не в состоянии обеспечить полностью одинаковые параметры кристаллов.

Он преобразует электроток:

  • задает ему амплитуду;
  • выпрямляет – делает его постоянным;
  • подает на все элементы одинаковый ток (немного меньше максимального уровня) и не допускает их пробоя.

Ключевые особенности

Главное отличие драйвера в том, что при входном напряжении, на которое он рассчитан (например, 140-240 V), он устанавливает на светодиодах заданный уровень тока. При этом потенциал на выходе устройства может быть любым.

Основных характеристик у него 3:

  1. Номинальный ток. Он не должен превышать паспортное значение светодиода, иначе диоды сгорят или будут гореть тускло.
  2. Напряжение на выходе. Зависит от типа подключения полупроводников и их числа. Оно равно произведению падения потенциала 1 элемента на их количество и может меняться в широких пределах.
  3. Мощность. От правильного расчета этой характеристики зависит вся работа устройства. Для этого суммируют мощности всех элементов и добавляют 20-25% (запас на перегрузку).

У светодиодной лампы из 10 элементов по 0,5 Вт этот параметр будет равен 5W. С учетом перегрузки следует выбрать драйвер на 6-7 W.

Но 2 последних параметра (мощность потребления и выходное напряжение) напрямую зависят от спектра излучения светодиода. Например, элементы ХР-Е (красные) при 1,9-2,5 V потребляют 0,75 W, а зеленые – 1,25 W при питании в 3,3-3,9 V. Получается, что драйвер в 10 W способен запитать 7 диодов одного цвета или 12 другого.

Теория питания светодиодных ламп от 220 в

Лед-лампа, лента под потолком или подсветка в современном телевизоре являются совокупностью нескольких мощных небольших светодиодов, размещенных в пространстве нужным образом.

Если каждый из них способен пропускать ток в 1 А при напряжении 3,3 V, то в осветительную сеть их включить нельзя – сразу сгорят. Можно воспользоваться делителем из резисторов, но на них будет рассеиваться большая мощность. Поэтому КПД светильника будет небольшим.

Для снижения напряжения и преобразования тока в постоянный применяют драйверы. Внутри этих устройств могут быть различные стабилизаторы тока, емкостно-резистивные делители и т. д.

В схему могут входить транзисторы, микросхемы, конденсаторы и т. д. Такие преобразователи меняют напряжение и обеспечивают подачу нужного количества тока каждому элементу.

Рекомендации по изготовлению

Для изготовления потребуются электронные компоненты для выбранной схемы. Приобрести их можно в специализированных магазинах или через интернет. Для устройства на интегральном линейном стабилизаторе корпус не нужен, но надо позаботиться о радиаторе. Также радиатор понадобится при изготовлении линейника на дискретных элементах. Более сложные устройства надо собирать на платах. Владеющие домашними технологиями смогут разработать и вытравить печатную плату самостоятельно. Остальным лучше воспользоваться макетной платой – отрезать необходимый кусочек и смонтировать элементы на нем.

Также надо подобрать или собрать корпус, не забывая об отводе тепла. Затянуть плату в термоусадку – не лучший вариант в этом плане. Также понадобится паяльник с набором расходников.

Общую инструкцию по изготовлению дать сложно – все зависит от выбранной схемы и предпочитаемых технологий. Но можно дать несколько советов тем, у кого опыта в изготовлении электронных устройств немного:

  • все соединения надо тщательно пропаивать (стараясь не перегреть элементы и проводники в изоляции) – условия эксплуатации будут сопряжены с тряской и перепадами температур, и некачественная пайка сразу даст о себе знать;
  • корпус конструкции должен исключать попадания внутрь воды и грязи – при установке устройства под капотом этих субстанций будет достаточно;
  • если корпус не используется, места пайки надо тщательно изолировать – по тем же резонам;
  • после сборки и проверки работоспособности не будет лишним покрыть плату со стороны пайки лаком и просушить.
Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]