Изготовление самодельных стабилизаторов напряжения – практика довольно частая. Однако по большей части создаются стабилизирующие электронные схемы, рассчитанные на относительно малые выходные напряжения (5-36 вольт) и относительно невысокие мощности. Устройства используются в составе бытовой аппаратуры, не более того.
Мы расскажем, как сделать мощный стабилизатор напряжения своими руками. В предложенной нами статье описан процесс изготовления устройства для работы с напряжением сети 220 вольт. С учетом наших советов вы без проблем самостоятельно справитесь со сборкой.
Как сделать трансформаторы Т1 и Т2?
Первый трансформатор Т1 мощностью 3 кВт изготавливается с использованием магнитопровода с площадью поперечного сечения (ППС) 187 кв. мм. И трех проводов ПЭВ-2:
- Для первой обвивки ППС всего 0,003 кв. мм. Количество витков – 8669;
- Для второй и третьей обмоток ППС всего 0,027 кв. мм. Количество витков – 522 на каждой.
Если же нет желания наматывать провод, то можно приобрести два трансформатора ТПК-2-2×12В и соединить их последовательно, как на рисунке ниже.
Чтобы изготовить автотрансформатор второй мощностью в 6 кВт, вам понадобится тороидальный магнитопровод и провод ПЭВ-2, из которого будет сделана обвивка в 455 витков. И тут нужны отводы (7 штук):
- Обвивка 1-3 отводов из провода с ППС 7 кв. мм;
- Обвивка 4-7 отводов из провода с ППС 254 кв. мм.
Отводы делаются на витках (считать снизу вверх): 203, 232, 266, 305, 348, 398. Из сети вольтаж должен подводиться к витку №266.
Что купить?
В магазине электро и радиотехники купите (в скобках обозначение на схеме):
- 7 оптронных симисторов MOC3041или 3061 (U от 1 до 7);
- 7 простых симисторов BTA41-800B (VS от 1 до 7);
- 2 светодиода DF005M или КЦ407А (VD 1 и 2);
- 3 резистора СП5-2, можно 5-3 (R 13, 14, 25);
- Выравнивающий ток элемент КР1158ЕН6А или Б(DA1);
- 2 сравнивающих устройства LM339N или К1401СА1 (DA 1 и 2);
- Включатель с предохранителем;
- 4 конденсатора пленочных или керамических (С 4, 6, 7, 8);
- 4 конденсатора оксидных (С 1, 2, 3, 5);
- 7 сопротивлений для ограничения тока, на их выводах он должен быть равен 16 мА (R от 41 до 47);
- 30 сопротивлений (любых) с допуском 5%;
- 7 сопротивлений С2-23 с допуском от 1% (R от 16 до 22).
Как сделать трансформаторы Т1 и Т2?
Первый трансформатор Т1 мощностью 3 кВт изготавливается с использованием магнитопровода с площадью поперечного сечения (ППС) 187 кв. мм. И трех проводов ПЭВ-2:
- Для первой обвивки ППС всего 0,003 кв. мм. Количество витков – 8669;
- Для второй и третьей обмоток ППС всего 0,027 кв. мм. Количество витков – 522 на каждой.
Если же нет желания наматывать провод, то можно приобрести два трансформатора ТПК-2-2×12В и соединить их последовательно, как на рисунке ниже.
Чтобы изготовить автотрансформатор второй мощностью в 6 кВт, вам понадобится тороидальный магнитопровод и провод ПЭВ-2, из которого будет сделана обвивка в 455 витков. И тут нужны отводы (7 штук):
- Обвивка 1-3 отводов из провода с ППС 7 кв. мм;
- Обвивка 4-7 отводов из провода с ППС 254 кв. мм.
Отводы делаются на витках (считать снизу вверх): 203, 232, 266, 305, 348, 398. Из сети вольтаж должен подводиться к витку №266.
Стабилизатор напряжения 220В для дома: виды и характеристики приборов
Колебания напряжения в электросети могут наблюдаться по разным причинам: в зимний период — это повсеместное включение электрокалориферов для дополнительного обогрева, что ведет к уменьшению напряжения, в летний сезон — повышение напряжения могут спровоцировать молнии, возможно, попадающие в подстанции. Стабилизаторы напряжения 220В для дома созданы специально для сглаживания колебаний и перепадов напряжения в сети.
Полезный совет! Чтобы существенно продлить срок эксплуатации бытовой и электронной техники, следует использовать ее в сберегающем режиме электропитания, подключая через стабилизатор напряжения.
Чтобы узнать, как выбрать стабилизаторы напряжения 220В для дома, стоит ознакомиться с видами и преимуществами этих приборов. Производители этих устройств предлагают несколько видов стабилизаторов.
Стационарные стабилизаторы подключаются к распределительному щитку, а локальные — непосредственно с электроприборам
Электронные (релейные) выпрямители
Такие преобразователи обладают высокой эффективностью и быстрой реакцией на колебания в сети. Содержат в себе обмотки трансформатора с многочисленными ответвлениями. Стойки к перепадам напряжения ввиду отсутствия в приборе механических элементов.
Преимущества электронного стабилизатора напряжения 220В для дома:
- компактный размер;
- бесшумная работа;
- широкий диапазон преобразования;
- работа с перегрузкой (до 110% от номинальной);
- приемлемая цена, длительный срок эксплуатации.
Из недостатков — невысокая точность выходного напряжения (погрешность до 8%). Если в доме потребляется много электроэнергии, такой стабилизатор нецелесообразен.
Электронный (релейный) стабилизатор напряжения IEK CHP1-1-1 кВА
Электромеханические стабилизаторы
Устройство этого выпрямителя предполагает электродвигатель внутри катушки. Он приводит в движение по обмотке щеток с графитовым наконечником. Достаточно мощные устройства отличаются плавностью регулирования и высокоточным выходным напряжением.
- высокая производительность;
- переносимость перегрузок (до 200%);
- бесшумная работа;
- доступная цена;
- долговечность.
Из отрицательных моментов:
- низкая скорость выравнивания;
- необходимость в техобслуживании;
- периодический выход из строя механических элементов;
- неспособность работать при отрицательно температуре ниже 5°С.
Внутреннее устройство электромеханического стабилизатора напряжения
Феррорезонансные стабилизаторы напряжения
В своем устройстве имеют две и более катушки проволоки, нанизанные на металлические стержни конденсатора. Преимущества:
- высокая скорость реакции на колебания в сети;
- работа при диапазоне температур от -40°С до +50°С;
- долговечность эксплуатации.
Недостатки феррорезонансных стабилизаторов напряжения 220В для дома:
- цена;
- большие габариты;
- искажение выходных показателей;
- шумная работа;
- уязвимость к изменению частоты;
- невозможность функционирования при нагрузке ниже номинальной на 10-20%.
Принцип работы феррорезонансного стабилизатора напряжения
Разновидности стабилизаторов
Все промышленные образцы такого оборудования можно разделить на две большие группы:
- электромеханические;
- импульсные.
Электромеханические
Работа электромеханических устройств основана на сервоприводе, который способен изменять количество витков обмотки (а значит – и выходящее напряжение) перемещением токопроводящего ползунка по реостату. Такие аппараты дешевле всех других моделей, и обладают очень хорошими показателями стабилизации. Однако они чаще ломаются из-за наличия множества механических деталей.
Но самый главный их минус – скорость срабатывания. Из-за того, что привод перемещает токосниматель не мгновенно, задержка стабилизации может составлять до 0.1 секунды, что катастрофически много для приборов, чувствительных к перепадам. Другими словами, такой стабилизатор может попросту не успеть защитить современную электронику. К тому же, ввиду наличия механических частей, воспроизвести такой прибор дома – нетривиальная задача.
Импульсные
Импульсными называют стабилизаторы, работа которых основывается на принципе накапливания тока, и выдачи его потребителю отрывками – импульсами. Эти временные промежутки позволяют системе накопить нужный ток в конденсаторах, и после выдать стабилизированное питание. К таким аппаратам относят и приборы, работа которых основана на симисторах и тиристорах.
Подобные устройства дороже своих электромеханических аналогов, но и значительно надежнее – нет трущихся и движущихся частей, а значит, и ломаться, по сути, нечему. Правда показатели стабилизации у них хуже – они способны лишь на пропорциональное повышение или понижение входящих показателей. Зато скорость срабатывания – до 20 миллисекунд, а этого достаточно, чтобы обезопасить даже самые чувствительные домашние электроприборы. К тому же – такой аппарат можно собрать своими руками, обладая необходимой сноровкой и элементной базой.
Кроме разделения по принципу стабилизации, существует разделение на одно- и трехфазные устройства. Но ввиду того, что дома обычно используется однофазное питание, трехфазные аппараты мы в расчет не берем.
Достоинства бытового выпрямителя
По конструкции и принципу действия стабилизатор с двойным преобразованием имеет ряд положительных свойств. Бытовой инвертор обладает следующими качествами, влияющими на производительность прибора:
- Расширенный показатель входного напряжения в пределах 115−300.
- Стабилизация выходного напряжения до 220 V в случае резкого скачка ток.
- Низкий порог шума при работе прибора.
- Компактные габариты корпуса и небольшая масса.
- Фильтрация высокочастотных помех и выбросов.
- КПД > 90%.
- Низкая точность нормализации входного напряжения.
- Оперативное регулирование силы электротока.
- Неприхотливость к обслуживанию и условию эксплуатации.
Какой лучше: релейный или симисторный
Если сравнить стабилизатор симисторный и релейный или тиристорный, то первый, несомненно, является более надежным, долговечным и безопасным устройством. Объясняется это отсутствием переключателей с подвижными контактами, наличием управляющей платы, мощного автотрансформатора и силовых ключей-симисторов. Единственным недостатком симисторных стабилизаторов, по сравнению с другими устройствами, является их высокая стоимость, которая со временем оправдывает себя длительным сроком эксплуатации и высокой надежностью.
Таким образом, описанное в данной статье устройство позволяет эффективно бороться с такой проблемой многих владельцев квартир, дачных и загородных домов, как скачки напряжения в электрической сети. Использование стабилизатора позволяет свести к нулю риск поломки электроприборов и последующего дорогостоящего их ремонта от кратковременных перепадов напряжения в сети. Большая разница в цене таких устройств, по сравнению с аналогами, в разы меньше, чем затраты на ремонт или приобретение новых приборов и оборудования, поврежденных скачками нестабильного сетевого электрического тока.
Достоинства и недостатки, отличия от заводских моделей
Если перечислять достоинства стабилизаторов, изготовленных самостоятельно, то основным достоинством является низкая стоимость. Производители приборов часто завышают цены, а своя сборка в любом случае обойдется меньшей стоимостью.
Другим преимуществом можно определить такой фактор, как возможность простого ремонта своими руками устройства, Ведь кто, если не вы знаете лучше устройство, собранное своими руками.
В случае поломки хозяин прибора сразу найдет неисправный элемент и заменит его на новый. Простая замена деталей создается таким фактором, что все детали приобретались в магазине, поэтому их можно будет легко снова купить в любом магазине.
Недостатком самостоятельно собранного стабилизатора напряжения необходимо выделить его сложную настройку.
Особенности сборки устройства для выравнивания напряжения
Микросхема стабилизирующего ток устройства устанавливается на теплоотводе, для которого подходит пластинка из алюминия. Ее плошать не должна быть меньше 15 кв. см.
Теплоотвод с охлаждающей поверхностью необходим и симисторам. Для всех 7 элементов достаточно одного теплоотвода с площадью не меньше 16 кв. дм.
Чтобы изготавливаемый нами преобразователь переменного напряжения работал, понадобится микроконтроллер. С его ролью отлично справляется микросхема КР1554ЛП5.
Вы уже знаете, что в схеме можно найти 9 мигающих диодов. Все они расположены на ней так, чтобы они попадали в отверстия, которые имеются на лицевой панели устройства. И если корпус стабилизатора не допускает их расположения, как на схеме, то вы можете видоизменить ее так, чтобы светодиоды выходили на ту сторону, которая будет для вас удобна.
Теперь вы знаете, как сделать стабилизатор напряжения на 220 вольт. И если ранее вам уже приходилось делать что-то подобное, то эта работа для вас не окажется сложной. В результате вы сможете сэкономить несколько тысяч рублей на покупке стабилизатора промышленного производства.
Начинаем сборку
Так как к самому эффективному относится симисторный прибор, то поговорим, как собственными руками сделать непосредственно подобный стабилизатор.
Важно подчеркнуть, что данного типа модель сможет выравнивать подаваемый ток при таком условии, что напряжение в диапазоне 130-270 В. Потребуются также комплектующие элементы. Из инструментов нужен пинцет, а также паяльник.
Комментарии:
Череватый
Познавательная статья, спасибо. Схемы подробные и легко читаются. Будет чем заняться в отпуске. Хочу подкинуть такой стабилизатор под самодельную ветряную станцию, которая питает лампочку в беседке. Как думаете, подойдет схема?
Гайворонский
Собрал все по схеме — все работает, спасибо автору. Буду дальше экспериментировать с паяльником и печатными платами.
Славон
У-ф-ф… А кто-нибудь знает, где все детали можно купить? Чтоб в одном месте и не переплачивать за доставку одного реле, а то так стабилизатор получится дороже, чем магазинный
Алекс
Славон, да на любой железке все эти детали продаются. Не стоит заморачиваться. В любом случае на рынке они дешевле, да и БУшные можно брать (но только если советские) — так вообще цена получается копеечной
Олег Киев
Язык изложения, безусловно, заслуживает особого внимания.
Вячеслав
как вы смогли повторить конструкцию, если на трансформатор Т2 нет данных по магнитопроводу?
Сергей
Как пересчитать делитель на напряжение 100-250 вольт?
Коммерческая выгода от установки стабилизатора напряжения
Отечественные электросети физически сильно изношены, а местами и морально устарели. А потребителей становится всё больше и больше. Установка стабилизаторов выгодна по нескольким причинам:
современная техника оснащена электронной начинкой, которой важно качественное питание. Для того чтобы она не вышла из строя или не подвергалась дорогостоящему ремонту, необходима установка стабилизатора; пониженное напряжение влечёт за собой большее потребление тока из сети
Приходится платить больше за расход электроэнергии. Выгода стабилизатора очевидна; повышенное напряжение может привести к короткому замыканию, перегреву проводов и пожару. Без стабилизатора в этом случае материальный и моральный ущерб может быть колоссальный, а то и непоправимый; при нормальном напряжении тоже могут случиться внезапные импульсы от молнии, ошибок персонала, перекоса фаз в час пик.
Во всех этих и других непредвиденных случаях стабилизатор напряжения поможет сберечь время, средства и нервы.
Недостатки предлагаемых рынком моделей ЭТ
В дешевых моделях отсутствует специальная защита от перегруза
Несмотря на экономичную и хорошо отработанную схему блоки питания на ЭТ имеют целый ряд недостатков, к которым принято относить:
- отсутствие в простейших китайских моделях специальной защиты от перегруза;
- вызванная этим необходимость обязательной доработки схемы;
- во многих рыночных образцах отсутствует входное фильтрующее устройство, что вынуждает добавлять в нее сглаживающий электролитический конденсатор (он ставится после «мощного» дросселя).
К перечисленным недостаткам обычно относят «жесткий» режим работы высоковольтных транзисторов, включенных по ключевой схеме.
При случайном замыкании по выходу (КЗ) эти элементы просто «сгорают», что приводит к необходимости срочного обновления всего электронного модуля. Нередко при этом выходит из строя и выпрямитель на полупроводниковых диодах, также нуждающийся в замене.
Достоинства
Низкая стоимость
Именно благодаря своей низкой цене, относительно стабилизаторов других типов, релейные модели так популярны. При этом, по остальным параметрам, они полностью перекрывают потребности современного потребителя в большинстве случаев.
Достаточно быстрая скорость стабилизации, в среднем 5-30 мс
Релейные стабилизаторы с высокой скоростью реагируют на изменения входящего напряжения, и позволяют защитить ваше электрооборудование даже при резком падении или скачках
Простота и ремонтопригодность
Обладая простой, понятной архитектурой, релейные стабилизаторы не имеют массы сложных компонентов, которые могли бы выйти из строя. Возможных неполадок не так много и все они изучены и описаны, легко диагностируются и могут быть исправлены в домашних условиях, даже при наличии лишь поверхностных знаний и навыков в ремонте электротехники.
Этапы изготовления
Чтобы собрать стабилизатор напряжения 220В для дома своими руками сначала нужно подготовить печатную плату размером 115х90 мм. Она изготавливается из фольгированного стеклотекстолита. Схема размещения деталей может быть напечатана на лазерном принтере и при помощи утюга перенесена на плату.
Смотрим видео, самодельный несложный прибор:
схема электрическая принципиальная
Далее переходим к сборке трансформаторов. Для одного такого элемента потребуется:
- магнитопровод площадью сечения 1,87 см²;
- три кабеля ПЭВ-2.
Первый провод используется для создания одной обмотки, при этом его диаметр составляет 0,064 мм. Число витков должно равняться 8669.
Два оставшихся провода потребуются для выполнения других обмоток. Они отличаются от первого диаметром, составляющим 0,185 мм. Количество витков для этих обмоток будет равно 522.
Если хотите упростить себе задачу, то можно воспользоваться двумя готовыми трансформаторами ТПК-2-2 12В. Их соединяют последовательно.
В случае изготовления этих деталей самостоятельно после того как будет готов один из них переходят к созданию второго. Для него будет нужен тороидальный магнитопровод. Для обмотки выбирают тот же ПЭВ-2, что и в первом случае, только количество витков составит 455.
Также во втором трансформаторе придется выполнить 7 отводов. Причем для первых трех используется провод диаметром 3мм, а для остальных – шины, сечением 18 мм². Это поможет избежать нагревания трансформатора в процессе работы.
соединение двух трансформаторов
Все остальные комплектующие для прибора, создаваемого своими руками лучше приобретать в магазине. После того, как все необходимое закуплено можно приступать к сборке. Начинать лучше всего с установки микросхемы, выполняющей роль контроллера на теплоотвод, который изготавливается из алюминиевой платины площадью более 15 см². На него также монтируются симисторы. Причем теплоотвод, на который предполагается их установка должен иметь охлаждающую поверхность.
Далее необходимо установить на плату светодиоды. Причем лучше выбирать мигающие. Если не получается расположить их согласно схеме, то можно разместить на стороне, где находятся печатные проводники.
Если сборка симисторного стабилизатора напряжения 220В своими руками для вас кажется сложной, то можно остановиться на более простой линейной модели. Она будет обладать аналогичными свойствами.
Эффективность изделия, выполненного своими руками
Что толкает человека на изготовление того или иного прибора? Чаще всего – его высокая стоимость. И в этом смысле стабилизатор напряжения, собранный своими руками, конечно, превосходит фабричную модель.
Кроме того, все детали для такого прибора предварительно покупались в магазине, поэтому в случае выхода их из строя всегда можно будет найти аналогичную.
Если же сравнивать надежность стабилизатора, собранного своими руками и произведенного на предприятии, то здесь преимущество на стороне заводских моделей. В домашних условиях разработать модель, отличающуюся высокой производительностью практически невозможно, так как нет специального измерительного оборудования.
Заключение
Существуют различные типы стабилизаторов напряжения, причем некоторые из них вполне реально сделать своими руками. Но для этого придется разобраться в нюансах работы оборудования, приобрести необходимые комплектующие и выполнить их грамотный монтаж. Если вы не уверены в своих силах, то лучший вариант – приобретение устройства заводского изготовления. Стоит такой стабилизатор дороже, но и по качеству значительно превосходит модели, собираемые самостоятельно.
Изготовление печатной платы
Для симисторного преобразователя тока нужна печатная плата, на которой будут размещаться все элементы. Ее размер: 11,5 на 9 см. Для ее изготовления понадобится стеклотексолит, покрытый фольгой с одной стороны.
Плату можно напечатать на принтере лазерного типа, после чего в ход пойдет утюг. Изготовить плату самостоятельно удобно с помощью программы Sprint Loyout. А схема размещения элементов на ней приведена ниже.
Ошибки подключения
1
У вас может быть все идеально подключено и соблюдена схема, но стабилизатор будет постоянно греться и отключаться, либо на его табло выскакивать ошибки.
О том, где можно, а где ни в коем случае нельзя располагать данный прибор подробно читайте в статье ”Где устанавливать стабилизатор напряжения в доме”.
2
Безусловно, данный пункт и ошибкой то трудно назвать. Тем более 90% потребителей именно так и делают.
Однако, этот выключатель может реально спасти ваш прибор от выхода из строя.
Сначала вы отключаете автоматы на панели стабика.
Потом сам переключатель переводите в положение ТРАНЗИТ или БАЙПАС.
И только затем снова включаете автоматы.
Многие забывают об этом и делают переключение под нагрузкой. Что в итоге приводит к поломкам.
С 3-х позиционным автоматом такое исключено. Вы автоматически переключаете напряжение, без каких либо манипуляций на стабилизаторе. И все это одной клавишей!
Никакой последовательности запоминать не нужно. Так что данную процедуру можно смело доверять любому члену семьи.
3
Вы можете выбирать меньшее сечение, только когда запитываете отдельные электроприемники.
Если же у вас на стабилизаторе сидит весь дом, то будьте добры соблюдать параметры по вводу согласно всей общедомовой нагрузке.
4
Почему-то многие забывают, что зачастую через стабилизатор проходит вся нагрузка вашего дома. Ровно такая же как и на вводом автомате.
При этом в электрощите все провода обжаты, даже на выключателях освещения с минимальными токами, а вот на клеммниках стабилизатора или его автоматах, постоянно можно встретить голый провод просто поджатый винтом.
Поэтому не скупитесь, и заранее вместе с аппаратом приобретайте соответствующие наконечники.
5
Иногда после подключения стабилизатора, начинает выбивать вводной автомат. При этом без стабилизатора, все нормально и ничего не отключается.
Многие сразу грешат на неправильную схему подключения или дефект аппарата. Везут его на гарантийный ремонт и т.п.
А причина может быть совсем в другом. Если у вас через чур низкое напряжение 150-160В, то при его повышении до стандартных 220-230В, ток в сети значительно вырастет.
Отсюда и все проблемы
Обращайте на это внимание, прежде чем нести его обратно в магазин
Источники — https://cable.ru, Кабель.РФ
Подключение однофазных потребителей
Наиболее рациональным подходом к электроснабжению частного дома будет выделение из общего числа потребителей обособленную группу, для которой требуются стабильные параметры напряжения. Как правило, повышенная стабильность требуется для телевизора, холодильника, офисной техники и средств связи. Другие бытовые приборы, особенно с нагревательными ТЭНами, вовсе необязательно подключать к стабилизатору. Электрочайники и электрические котлы все равно будут работать, поскольку перепады напряжения для них не играют решающей роли в выполнении основных функций.
В домашнем щитке после электросчетчика устанавливается защитное оборудование – дифференциальный автомат или УЗО с автоматическим выключателем. От них отдельными кабелями подводится фаза и ноль к входным клеммам стабилизатора. Корпус устройства также отдельным проводом подключается к шине РЕ, установленной в щитке. От выходных клемм стабилизатора к потребителю поступает фаза и рабочий ноль. Защитный ноль соединяется с шиной РЕ.
Следующий вариант предполагает подключение к стабилизатору сразу нескольких групп потребителей. В упрощенной схеме не используется защитное заземление, а стабилизатор подключается через одну клемму рабочего нуля. Работу схемы лучше всего рассматривать на примере трех групп потребителей.
Внутри распределительного щита, после всех защитных устройств, необходимо создать шину рабочего нуля, которая подключается ко всем потребителям, в том числе и к стабилизатору напряжения. Фазный провод ввода от защиты подключается к входной клемме устройства, а отходящий провод – к выходу. Второй конец фазного провода заводится в распределительный щиток, чтобы выполнить параллельное соединение нагрузок. Подключение всех групп потребителей осуществляется через автоматические выключатели.
При наличии в стабилизаторе двух клемм под рабочий ноль, в схеме возникнут следующие изменения:
- Шина рабочего нуля остается соединенной с потребителями, но она уже не будет связана с защитными устройствами.
- Нулевой провод от защитных устройств будет соединяться с входной клеммой рабочего нуля стабилизатора.
Определение типа защиты
На сегодняшний день стабилизаторы делятся на 2 основных типа:
- стационарные приборы для стабилизации напряжения, их монтаж делают на весь дом;
- переносные модели, они могут стабилизировать работу всего нескольких электрических устройств.
Также, стабилизаторы стационарного назначения подразделяются на однофазные и трехфазные, все зависит от условий, в которых их планируют эксплуатировать. В своем доме или квартире более уместным будет установить и подключить стабилизатор вблизи распределительного щита электроэнергии, с помощью такого шага вы сможете предотвратить сбои и перегрузки всей сети.
Правила выбора
Перед решением вопроса о выборе стабилизатора по типу питания важно определиться с тем, в каких сетях его предполагается эксплуатировать. Если планируется использовать его в квартире городского дома, хозяину потребуется типовой однофазный прибор
Если же покупатель намерен пользоваться им на даче, где имеется силовая подводка 380 Вольт, подойдет только трехфазный образец.
Перед походом в магазин важно ознакомиться с производителями этих приборов и выбрать для себя фирму, пользующуюся хорошей репутацией. В этом случае не имеет значения, отечественная это компания или зарубежная, поскольку и наши производители способны делать конкурентоспособные модели
Выбор стабилизатора напряжения для компьютера
Компьютер состоит из системного блока и монитора. Поэтому мощность надо суммировать. Также если в стабилизатор включены еще и дополнительные приборы (сканер, принтер и т.д.) то всю мощность надо просуммировать и полученный результат сравнить с линейкой номиналов рассматриваемых стабилизаторов напряжения. Как правило, для домашнего компьютера можно выбрать стабилизатор мощностью не более 1000 Вт.
Для компьютера также рекомендую вместо стабилизатора применить Smart UPS (интерактивные ИБП). Они содержат в себе функцию стабилизации (релейного типа) и имеют аккумулятор. Таким образом, и напряжение будет относительно стабильным, и резерв обеспечен.
Что нужно для подключения
Помимо самого стабилизатора, вам понадобится ряд дополнительных материалов:
трехжильный кабель ВВГнГ-Ls
Сечение провода должно быть точно таким же, как и на вашем вводном кабеле, который приходит на рубильник или автомат главного ввода. Так как через него будет идти вся нагрузка дома.
выключатель трехпозиционный
Данный выключатель в отличие от простых, имеет три состояния:
123
Можно использовать и обычный модульный автомат, но при такой схеме, если понадобится отключиться от стабилизатора, придется каждый раз полностью обесточивать весь дом и перекидывать провода.
Есть конечно же режим байпас или транзит, но чтобы перейти на него, нужно соблюдать строгую последовательность. Подробнее об этом будет сказано ниже.
С данным переключателем, вы одним движением целиком отсекаете агрегат, а дом остается со светом напрямую.
провод ПУГВ разных цветов
Вы должны четко понимать, что стабилизатор напряжения устанавливается строго до электросчетчика, а не после него.
Ни одна энергоснабжающая организация вам не разрешит подключиться по другому, как бы вы не доказывали, что тем самым, кроме эл.оборудования в доме, вы хотите защитить и сам прибор учета.
Стабилизатор имеет свой холостой ход и также потребляет эл.энергию, даже работая без нагрузки (до 30Вт/ч и выше). И эта энергия должна быть учтена и подсчитана.
Второй важный момент – крайне желательно, чтобы в схеме до места подключения прибора стабилизации было либо УЗО, либо дифф.автомат.
Это рекомендуют все производители популярных марок Ресанта, Sven, Лидер, Штиль и т.п
Это может быть вводной дифф.автомат на весь дом, не важно. Главное, чтобы само оборудование было защищено от утечек тока
А пробой обмоток трансформатора на корпус, не такая уж и редкая вещь.
Принцип работы
Работает подобное стабилизирующее устройство следующим образом:
- Поступающее из внешней сети на устройство напряжение замеряется управляющей платой (контроллером) при помощи специального датчика;
- На основании полученных замеров контроллер принимает решение о корректировке напряжения;
- Контроллер посылает соответствующий сигнал на вводные симисторы;
- При помощи посланного на симисторы контроллером сигнала производится подача выровненного до определённого значения напряжения;
- При помощи расположенного в корпусе автотрансформатора происходит выравнивание подаваемого из внешней сети напряжения до необходимого для нормальной работы электроприборов значения.
Данный многоступенчатый процесс занимает доли секунд. При этом, в отличие от релейных моделей, наличие симисторов позволяет сделать включение и отключение обмоток трансформатора бесшумным и очень быстрым делом.
Как будет работать этот аппарат?
После включения в сеть накопителя узла с отложенной нагрузкой (С1) еще разряжен. Транзистор VT1 включается, а 2 и 3 – закрываются. Через последний впоследствии пойдет ток на светодиоды и оптронные симисторы. Но пока транзистор закрыт, диоды не дают сигнал, и симисторы еще закрыты: нагрузки нет. Но ток уже идет через первый резистор к накопителю, который начинает накапливать энергию.
Описанный выше процесс занимает 3 секунды, после чего срабатывает триггер Шмитта, основанный на транзисторах VT 1 и 2, после чего включается транзистор 3. Теперь можно считать нагрузку открытой.
Выходящее напряжение с третьей обвивки трансформатора на блоке питания выравнивается вторыми диодом и конденсатором. Затем ток направляет к R13, проходит по R14. На данный момент напряжение пропорционально вольтажу в сети. Затем ток подается компараторам не инвертирующим. Тут же на инвертирующие сравнивающие устройства входит уже выровненный ток, который подается на сопротивления от 15 до 23. Затем подключается контроллер, обрабатывающие входные сигналы на устройствах для сравнения.
Плюсы и минусы
К плюсам подобного устройства относятся:
- Высокое быстродействие – устройство, благодаря наличию обладающих высокой скоростью переключения симситоров, способно очень быстро реагировать на скачки напряжения в сети, сглаживая их до необходимого значения;
- Широкий диапазон входного напряжения – стабилизаторы данного типа способны работать при значениях входного наряжения от 95 до 275 В (для однофазной модели), от 260 до 470-471 В ( для трехфазных стабилизаторов);
- Высокая точность стабилизации – выходное напряжение, выдаваемое такими устройствами, имеет максимальное колебание в пределах 1,5 % (3,3-5,7 В), что не оказывает отрицательного влияния на работу подключенных к нему приборов.
- Контроль значений входной и выходной разности потенциалов с погрешностью не более 0,5%;
- Высокое КПД – благодяря использованию симистора, значение данного показателя у большинства моделей достигает 95-97%;
- Бесшумность – отсутствие в конструкции стабилизатора релейных переключателей и подвижных контактов позволяет работать ему практически бесшумно;
- Небольшие размеры – собранные на симисторах стабилизаторы, по сравнению с релейными, имеют небольшие размеры и могут быть компактно размещены на полу или стене даже самого небольшого помещения;
- Длительный срок эксплуатации – большинство современных качетвенных моделей могут нормально выполнять свои функции в течение 10 и более лет;
- Большая мощность – разлиные модели способны обеспечить нормальную работу подключаемых приборов и оборудования суммарной мощностью от 3 до 10 кВт.
К минусам таких стабилизаторов относятся:
- Высокая стоимость – качественные модели стабилизаторов имеют достаточно высокую, не всегда доступную для многих владельцев квартир и домов стоимость.
- Скачкообразное изменение разности потенциалов на выходе устройства – данный недостаток характерен для недорогих моделей китайского производства. В более дорогостоящих аналогах правтически не проявляется.
На заметку. Несмотря на высокую стоймость таких устройств, их приобретение при проблемах с напряжением в сети будет очень выгодным и окупится достаточно быстро – при остуствии стабилизатора могут произойти серьезные поломки чувствительной бытовой техники, насосоного и отопительного оборудования. В некоторых случаях подобные скачки не просто портят подключенные к сети приборы, а выводят их из строя, что влечет их замену, приводя к незапланированным и занчительным финансовым расходам и другим неудобствам.
Самодельный выравниватель тока: характеристики
Стабилизатор характеризуется двумя параметрами:
- Допустимый диапазон вводимого напряжения (Uвх);
- Допустимый диапазон выводимого напряжения (Uвых).
В этой статье рассматривается симисторный преобразователь тока, потому что он обладает высокой эффективностью. Для него Uвх составляет 130-270В, а Uвых – 205-230В. Если большой диапазон входного напряжения – это преимущество, то для выходного – это недостаток.
Однако для бытовой техники этот диапазон остается допустимым. Это легко проверить, потому что допустимыми колебаниями вольтажа являются скачки и провалы не более 10%. А это 22,2 Вольта в большую или меньшую сторону. Значит допустимо изменение вольтажа от 197,8 до 242,2 Вольта. По сравнению с этим диапазоном ток на нашем симисторном стабилизаторе получается еще ровнее.
Подходит устройство для подключения к линии нагрузкой не больше 6 кВт. Ее переключение осуществляется за 0,01 секунды.
Дополнительные функции стабилизаторов напряжения
Кроме основной функции стабилизаторов напряжения – стабилизации, есть также такой минимальный набор функций и параметров:
Может, это тоже будет интересно?
- Анализ выходного напряжения. Стабилизатор должен быть оснащен информационным (цифровым или стрелочным) табло которое показывает выходное напряжение. Если на стабилизаторе есть функция анализа входного напряжения, это будет дополнительной полезной информацией.
- На больших номиналах (чаще от 3000 ВА) устанавливается функция «Bypass» – функция в электронном устройстве (обработки сигнала, стабилизации напряжения и др.), позволяющая выполнить коммутацию входного сигнала непосредственно на выход, минуя все функциональные блоки. То есть возможность включать сеть в обход стабилизатора напряжения. Если напряжение нормализовалось или Вам не нужен сейчас стабилизатор – нажали рычажок вверх и напряжение пошло минуя блоков стабилизации.
- Виды крепления стабилизаторов напряжения Существуют два типа крепления стабилизаторов напряжения – напольное и настенное исполнение. Напольное исполнение подразумевает, что стабилизатор находится на полу, полке. Такое расположение не всегда удобно, потому как особенно крупные номиналы не полке не разместишь из-за своего веса, а на полу они занимают достаточно большие площади. При навесном исполнении стабилизаторы делают более плоскими, для удобства клиентов. В принципе они могут использоваться и в напольном исполнении, только часто информационная часть табло оказывается в таком случае “вверх ногами” к пользователю.
- Во многих моделях на рынке стабилизаторов напряжения используется кнопка задержки. Это сделано, для того, чтобы если пропадет напряжение в сети или временно выйдет за рамки рабочего диапазона, то оборудование до следующего включения придет за это время задержки в положение покоя. Во многих стабилизаторах кнопка задержки предлагается в нескольких диапазонах -6, 90, 120 сек. В более современных моделях задержка уже стала автоматическая и когда она включается, то показывает потребителю на табло время включения стабилизатора в в виде обратного отсчета.
Нюансы стабилизации в зависимости от подаваемого на вход напряжения
Если вводится напряжение до 130 Вольт, то на выводах компараторов обозначается логический уровень (ЛУ) низкого вольтажа. Четвертый транзистор открыт, а светодиод 1 моргает и говорит о том, что наблюдается сильный провал в линии. Вы должны понять, что стабилизатор не в состоянии выдать напряжение нужной величины. Поэтому все симисторы закрыты, и нагрузка отсутствует.
Если вольтаж на вводе составляет 130-150 Вольт, то на сигналах 1 и А наблюдается высокий ЛУ, однако для других сигналов он по-прежнему низкий. Включается пятый транзистор, светится второй диод. Оптронный симистор U1.2 и симистор VS2 открываются. Нагрузка пойдет по последнему и дойдет до вывода обвивки второго автотрансформатора сверху.
При входном вольтаже 150-170 Вольт высокий ЛУ наблюдается на 1, 2 и В сигналах, на остальных он все еще низкий. Тогда включается шестой транзистор и включается третий диод, включается VS2 и ток подается на второй (если считать сверху) вывод обвивки второго автотрансформатора.
Аналогично описывается работа стабилизатора при диапазонах напряжения 170-190В, 190-210В, 210-230В, 230-250В.
Особенности сборки устройства для выравнивания напряжения
Микросхема стабилизирующего ток устройства устанавливается на теплоотводе, для которого подходит пластинка из алюминия. Ее плошать не должна быть меньше 15 кв. см.
Теплоотвод с охлаждающей поверхностью необходим и симисторам. Для всех 7 элементов достаточно одного теплоотвода с площадью не меньше 16 кв. дм.
Чтобы изготавливаемый нами преобразователь переменного напряжения работал, понадобится микроконтроллер. С его ролью отлично справляется микросхема КР1554ЛП5.
Вы уже знаете, что в схеме можно найти 9 мигающих диодов. Все они расположены на ней так, чтобы они попадали в отверстия, которые имеются на лицевой панели устройства. И если корпус стабилизатора не допускает их расположения, как на схеме, то вы можете видоизменить ее так, чтобы светодиоды выходили на ту сторону, которая будет для вас удобна.
Теперь вы знаете, как сделать стабилизатор напряжения на 220 вольт. И если ранее вам уже приходилось делать что-то подобное, то эта работа для вас не окажется сложной. В результате вы сможете сэкономить несколько тысяч рублей на покупке стабилизатора промышленного производства.
Преимущества и недостатки самодельного преобразователя тока
У самодельного стабилизатора есть три преимущества:
- Дешевизна. Все детали покупаются отдельно, а это экономически выгодно по сравнению с теми же деталями, но уже собранными в единое устройство – выравниватель тока;
- Возможность ремонта своими руками. Если один из элементов купленного стабилизатора вышел из строя, вряд ли вы его сможете заменить, даже если разбираетесь в электротехнике. Вы просто не найдете, чем заменить износившуюся деталь. С самодельным устройством все проще: вы изначально все элементы купили в магазине. Останется лишь снова сходить туда и купить то, что поломалось;
- Легкий ремонт. Если вы сами собрали преобразователь напряжения, то вы знаете на 100% его конструкцию и принцип работы. А понимание устройства и действия поможет вам быстро выявить причину выхода из строя стабилизатора. Выяснив ее, вы без труда почините самодельный агрегат.
У стабилизатора собственного производства есть три серьезных минуса:
- Низкая надежность. На специализированных предприятиях устройства более надежны, поскольку их разработка основана на показаниях высокоточных контрольно-измерительных приборов, которых в быту не найти;
- Широкий диапазон выводимого напряжения. Если стабилизаторы промышленного производства могут выдавать относительно постоянный вольтаж (например, 215-220В), то самодельные аналоги могут иметь в 2-5 раз больший диапазон, что может быть критичным для сверхчувствительной к изменению тока техники;
- Сложная настройка. Если вы покупаете стабилизатор, то этап настройки минуется, вам останется лишь подключить устройство и управлять его работой. Если же вы создатель выравнивателя тока, то и вам его настраивать. Это трудно, даже если вы изготовили самый простой стабилизатор напряжения своими руками.
Работа электромеханического стабилизатора Suntek
Для изменения входного напряжения используется автотрансформатор, которым можно менять напряжение в необходимых пределах. При этом на выходе стабилизатора напряжение не выходит за рабочий диапазон.
В сельской местности для безопасного использования бытовой техники, требуется однофазный стабилизатор напряжения 220В, который при сильной просадки напряжения в сети поддерживает на выходе номинальное выходное напряжение в 220 вольт.
В электрической конструкции имеются три пороговых блока, построенные по принципу делителя напряжения, состоящие из и сопротивлений (R2-VD1-R1, VD5-R3-R6, R5-VD6-R6). Кроме того в схеме задействованы два транзисторных ключа VT1 и VT2 управляющие реле К1 и К2.
Диоды VD2 и VD3 вместе с фильтрующей емкостью С2 составляют источник питания для всего устройства. Конденсаторы С1 и С3 используются для гашения небольших просадок напряжения в сети переменного тока. Емкость С4 и резистор R4 являются искрогасительными компонентами. Для снижения выбросов напряжения самоиндукции, в обмотках реле в схему введены два полупроводниковых диода VD4 и VD7.
Если напряжение в сети снижается ниже уровня в 185 вольт, то контакты реле включены как на схеме. Напряжение на нагрузке будет суммой напряжений сети плюс вольтодобавки, получаемых с II и III обмоток трансформатора Т1.
Если напряжение лежит в интервале 185-205 вольт, то стабилитрон VD5 открыт. Ток течет через реле К1, VD5 и резисторы R3 и R6. Но этого тока не достаточно для срабатывания реле К1. Из-за падения напряжения на резисторе R6 открывается VT2. Этот транзистор запускает реле К2 которое своими контактами переключает обмотку II (вольтодобавка).
Если напряжение в сети в норме 205-225 вольт, то открыт стабилитрон VD3. Это приводит к открытию VT1, поэтому отключается второй пороговый блок и VT2 вместе с реле К2. Зато срабатывает К1 и своими контактами отключает обмотки II и III и поэтому на выходе напряжение соответствует входному.
При повышении уровня сетевого напряжения выше 225 но ниже 245 вольт открывается стабилитрон VD6 открывающий открытию оба . Оба реле срабатывают III обмотка Т1, подсоединена в противофазе с сетевым напряжением (т.е вычитается)). На выходе будет нормальное переменное напряжение лежащее в интервале 205-225 вольт.
Симисторно-трансформаторный стабилизатор переменного напряжения
В сельской местности, а иногда и в городах нередко случаются значительные понижения сетевого напряжения относительно номинального 230 В. Зачастую это приводит к отказам холодильников. Существенно падает эффективность работы с электроинструментом, тускнеет освещение. Для стабилизации напряжения сети при сохранении его формы автор в своё время применил релейно-трансформаторный стабилизатор [1], но от многолетней эксплуатации износились контакты установленных в нём реле. Было решено переработать стабилизатор, заменив электромагнитные реле симисторными ключами. Нагрузочная способность предлагаемого стабилизатора — 1840 В·А.
Прежде всего, рассмотрим возможные схемы стабилизаторов переменного напряжения на базе автотрансформатора. В устройстве по схеме, изображённой на рис. 1,а, компенсируют снижение сетевого напряжения (недопустимое превышение номинала наблюдается крайне редко), постепенно переводя вниз по схеме подвижный контакт переключателя SA1. При этом напряжение на каждой из обмоток автотрансформатора и на выходе стабилизатора приблизительно сохраняется, колеблясь в ограниченных пределах. В стабилизаторе, собранном по схеме рис. 1 ,б, сетевое напряжение постоянно подают на один из отводов обмотки автотрансформатора, а по мере снижения напряжения в сети подвижный контакт переключателя SA1 переводят вверх.
Рис. 1. Возможные схемы стабилизаторов переменного напряжения на базе автотрансформатора
Рассмотрим основные особенности приведённых вариантов.
В устройстве по схеме, изображённой на рис. 1,а, стабилизировано напряжение на каждой из секций обмотки, что позволяет использовать её секции II-IV в качестве стабильных источников сравнительно небольшого переменного напряжения, например, для питания низковольтных электроинструментов. Переключение отводов автотрансформатора (в реальной конструкции с помощью реле или симисторов) всегда, даже при работе стабилизатора на холостом ходу, происходит под индуктивной или активно-индуктивной нагрузкой, что неблагоприятно для коммутирующих устройств.
В устройстве по схеме рис. 1 ,б напряжение на секциях обмотки не стабилизировано. При отсутствии нагрузки, а это основная ситуация при работе на холодильник, переключение происходит в режиме холостого хода, износ контактов реле чисто механический.
Критерием выбора для автора послужило последнее различие между вариантами.
Отметим, что оба рассмотренных варианта станут пригодными и для компенсации повышения напряжения в сети, если выходной (на рис. 1,а) или входной (на рис. 1 ,б) провод перенести на другой отвод обмотки автотрансформатора. В своей практике автор столкнулся с вариантом стабилизатора, схема которого показана на рис. 1,в. При напряжении в сети меньше или равном номинальному он работает так же, как и в варианте на рис. 1 ,а. При превышении напряжением в сети номинального значения подвижный контакт переключателя SA1 фиксируют в верхнем по схеме положении, а переключатель SA2 переводят в положение 2.
Примем за основу схему, изображённую на рис. 1,б, и определим порядок расчёта коэффициентов трансформации для различных положений движка переключателя SA1. Зададим пределы изменения входного напряжения и допустимые колебания выходного. По результатам наблюдений на даче, для которой строился описываемый стабилизатор, напряжение в сети иногда опускалось до 150 В. Такому входному напряжению должно соответствовать выходное напряжение 200 В, при котором ещё работают все бытовые электроприборы. Поэтому коэффициент повышения напряжения при переключателе SA1 в положении 1 должен быть равен 200/150 = 1,33. Здесь и далее я умышленно не применяю термин «коэффициент трансформации», поскольку под ним понимают отношение числа витков первичной обмотки к числу витков вторичной. В данном случае логичнее использовать обратную величину — коэффициент повышения напряжения.
Число отводов от обмотки автотрансформатора зависит от необходимой точности поддержания выходного напряжения. В результате нескольких пробных расчётов сделан вывод, что для сохранения его в пределах 210…240 В достаточно четырёх ступеней, в числе которых и прямое соединение нагрузки с сетью. Понижение напряжения в сети до 150 В при этом рассматривается, как аварийный случай, при котором напряжение на нагрузке падает до 200 В.
Можно показать, что для получения одинаковых пределов изменения выходного напряжения в каждом положении переключателя SA1 значения коэффициентов повышения в этих положениях должны представлять собой геометрическую прогрессию. Поэтому, если в положении 1 коэффициент повышения равен 1,33, он должен быть равным 1,1 в положении 3 и 1,21 — в положении 2. В положении 4 напряжение на выход поступает непосредственно из сети и коэффициент равен 1.
Построим график зависимости выходного напряжения от входного. Для этого на листе миллиметровки размерами не менее 250×250 мм начертим координатные оси в масштабе 1 мм/В и проведём из начала координат четыре прямые с тангенсами угла наклона 1; 1,1; 1,21 и 1,33. Выделим участки этих прямых, находящиеся между горизонталями, соответствующими выходному напряжению210 и 240 В. Из точек пересечения линий с наклоном 1,33, 1,21 и 1,1с горизонталью 240 В опустим вертикальные прямые до пересечения с ближайшими линиями с наклоном 1,21, 1,1 и 1. От точек пересечения этих наклонных линий с горизонталью 210 В проведём вверх аналогичные прямые.
На рис. 2 приведён фрагмент полученного рисунка. При входном напряжении более 220 В переключатель SA1 находится в положении 4, и выходное напряжение поступает на выход без изменения. При снижении напряжения сети до 210 В переключатель устанавливается в положение 3, коэффициент передачи возрастает до 1,1, а выходное напряжение скачком увеличивается до 231 В. При дальнейшем снижении напряжения сети примерно до 191 В выходное уменьшится до 210 В, переключатель будет установлен в положение 2, выходное напряжение вновь поднимется до 231 В. Аналогичный процесс произойдёт и при снижении входного напряжения до 173 В. При его снижении до 150 В выходное напряжение, как было сказано выше, опустится до 200 В.
Рис. 2. График зависимости выходного напряжения от входного
При повышении входного напряжения переключение происходит при достижении входным напряжением значений 180, 198 и 218 В, при этом выходное каждый раз снижается скачком от 240 до 218 В. Таким образом, при изменении сетевого напряжения от 158 до 240 В выходное поддерживается в пределах от 210 до 240 В.
Чтобы при колебаниях напряжения в сети около порогов переключения скачки не происходили слишком часто, необходим гистерезис. Описанный алгоритм переключения отводов обмотки обеспечивает его в достаточной мере. Нетрудно видеть, что при сохранении числа ступеней даже небольшое повышение точности поддержания выходного напряжения за счёт сужения петель гистерезиса приведёт к существенному уменьшению их ширины, что недопустимо. Поэтому для достижения большей точности необходимо увеличивать число ступеней изменения коэффициента. Отметим также, что рассуждения по выбору его значений справедливы и для устройств по схемам рис. 1,а и рис. 1 ,в.
Принципиальная схема стабилизатора изображена на рис. 3 , а схема его блока управления — на рис. 4. Автотрансформатор составлен из трёх одинаковых трансформаторов T1-T3 — ТПП319-127/220-50 [2], первичные обмотки которых соединены параллельно, а последовательное соединение вторичных обмоток обеспечивает требуемые коэффициенты повышения напряжения.
Рис. 3. Принципиальная схема стабилизатора
Рис. 4. Схема блока упраления стабилизатора
При установке переключателя SA1 (см. рис. 3) в положение «Обход» входное напряжение поступает прямо на выход, и никакие узлы устройства, кроме вольтметра PV1 и помехоподавляющей цепи R2C2, энергии от сети не потребляют. Этот режим соответствует отсутствию стабилизации выходного напряжения. В среднем положении переключателя SA1 все его контакты разомкнуты, поэтому напряжение на выход не поступает.
При установке переключателя SA1 в положение «Стаб.» начинает работать блок управления, получающий питание от трансформатора T4 — ТА1-127/220-50 [2]. Напряжение с двух его обмоток по 6 В, соединённых последовательно, выпрямляет мост VD2 и стабилизирует на уровне 5 В интегральный стабилизатор DA2. Из выходного напряжения стабилизатора резистивный делитель R7-R11 формирует образцовые напряжения для компараторов DA1.2-DA1.4, поступающие на их неинвертирующие входы. Для упрощения расчётов они приняты равными 1/100 напряжений, соответствующих серединам петель гистерезиса на рис. 2 — 2,14, 1,95 и 1,77 В.
Постоянное напряжение, пропорциональное входному, формирует из поступающего с обмотки 11-12 трансформатора T4 выпрямительный мост VD1. Его сглаживает конденсатор C3. На инвертирующие входы всех компараторов поступает часть этого напряжения, определяемая делителем R5R6R15.
Логику работы устройства в целом иллюстрирует таблица. При сетевом напряжении более 218 В значения напряжения на инвертирующих входах всех компараторов выше, чем на неинвертирующих, а на их выходах установлен низкий логический уровень напряжения. Сигнал с выхода компаратора DA1.2 инвертирует элемент DD1.1 и ещё раз инвертирует элемент DD2.1. Через эмиттерный повторитель на транзисторе VT1 он включает светодиод HL1 и одновременно поступает на излучающий диод оптрона U1. Открывается симистор VS1, напряжение сети поступает на выход стабилизатора.
Таблица
Uвx,B | Уровни (Н — высокий, L — низкий) на выходах элементов | Коэффициент повышения | Включён светодиод | Открыт симистор | ||||||
DA1.2 | DA1.3 | DA1.4 | DD1.1 | DD1.2 | DD1.3 | DD1.3 | ||||
>218 | L | L | L | Н | L | L | L | 1 | HL1 | VS1 |
198…210 | H | L | L | L | Н | L | L | 1,1 | HL2 | VS2 |
180…191 | H | Н | L | L | L | Н | L | 1,21 | HL3 | VS3 |
<173 | Н | Н | Н | L | L | L | Н | 1,33 | HL4 | VS4 |
При снижении сетевого напряжения на выходах компараторов DA1.3 и DA1.4 один за другим устанавливаются высокие логические уровни. Выходные сигналы всех компараторов, превращённые простейшим логическим узлом на элементах «Исключающее ИЛИ» DD1.1-DD1.4 в позиционный код, через эмиттерные повторители на транзисторах VT2-VT4 включают излучающие диоды симисторных оптронов U2-U4. Оптроны, в свою очередь, включают соответственно симисторы VS2-VS4, и выходное напряжение остаётся в заданных пределах. С повышением напряжения в сети описанные процессы происходят в обратном порядке.
Между выходами элементов микросхемы DD1 и входами триггеров Шмитта микросхемы DD2 установлены RC-цепи, обеспечивающие задержку открывания очередного симистора относительно момента прекращения сигнала, разрешавшего открывание предыдущего. Это необходимо для предотвращения состояний, в которых одновременно открыты два симистора. Диоды VD4-VD7, включённые параллельно резисторам этих цепей, обеспечивают быстрое снятие разрешающего сигнала с симисторного оптрона в выключаемом канале. Длительность задержки открывания фотодинисторов оптронов U1-U4, которая должна гарантировано превышать половину периода напряжения сети, можно рассчитать по формуле
t3 ≈ R·C·ln(Uпит/(Uпит — Uпор)) = 330·0,047·ln(5/(5 — 3,3)) = 16,7 мс,
где R — сопротивление резистора цепи задержки, кОм; С — ёмкость конденсатора этой цепи, мкФ; Uпит=5 В — напряжение питания; Uпор = 3,3 В — типовое пороговое напряжение триггера Шмитта микросхемы HCF4093B при повышении входного напряжения на объединённых входах. Согласно паспортным данным этой микросхемы, допускается его разброс на ±0,7 В, поэтому при указанных номиналах резисторов и конденсаторов задержка может находиться в пределах от 12 до 24 мс. Если предположить, что реальный разброс вдвое меньше, задержка будет находиться в пределах от 14 до 20 мс, что уже более приемлемо, но требует контроля при налаживании устройства.
Чтобы исключить одновременное включение нескольких симисторов при переходных процессах, следующих за моментом подачи напряжения сети, введён узел задержки на детекторе понижения напряжения DA3. В момент подачи сетевого напряжения конденсатор C10 разряжен, за счёт диода VD3 транзистор VT5 закрыт и напряжение на его эмиттере близко к нулю. Излучающие диоды оптронов U1-U4 выключены.
По достижении напряжением на конденсаторе C10 значения около 1 В начинает работать микросхема DA3, её выходной транзистор открывается, напряжение на выходе становится равным нулю. Оно сохраняется таким до достижения напряжением на конденсаторе C10 значения 4,2 В, на что уходит около 200 мс, которых достаточно для завершения переходных процессов. В этот момент выходной транзистор микросхемы DA3 будет закрыт, а напряжение на базе и эмиттере транзистора VT5 скачком увеличится до близкого к напряжению питания. Оптроны заработают, будет открыт нужный симистор.
Во время сварочных работ в сети возникают сильные колебания напряжения, которые приводят, если не принять специальных мер, к очень частым переключениям симисторов. Для борьбы с этим явлением постоянная времени разрядки конденсатора C3 выбрана довольно большой — около 8 с. В результате при резком снижении входного напряжения переход на следующую ступень происходит примерно через 1 с, а кратковременные провалы во входном напряжении переключений не вызывают. В то же время постоянная времени зарядки конденсатора C3 невелика, и с повышением напряжения сети переключение произойдёт практически мгновенно. Такой способ «борьбы со сваркой» значительно проще применённого в [3] и эффективнее его, поскольку стабилизатор не выключается полностью, а продолжает реагировать на повышение напряжения в сети.
На схеме стабилизатора (см. рис. 3) показано также подключение к обмоткам контактов разъёма XS1, что позволяет использовать его для питания различных низковольтных потребителей. Вторичные обмотки трансформаторов ТПП319-127/220-50 рассчитаны на ток 8 А, чем и определяется указанная во врезке к статье предельная мощность нагрузки стабилизатора. Однако следует отметить, что она зависит и от свойств переключателя SA1, который должен позволять коммутировать указанный ток.
Автотрансформатор для стабилизатора можно изготовить самостоятельно, взяв за основу один или несколько трансформаторов питания от ламповых телевизоров [4-6]. Такие трансформаторы имеют обозначения, состоящие из букв ТС, дефиса и числа, соответствующего его мощности в ваттах.
Такой трансформатор после перемотки вторичных обмоток сможет обеспечить выходной ток стабилизатора, равный частному от деления его мощности на суммарное напряжение всех необходимых вторичных обмоток (23 + 25,3 + 27,6 » 76 В). А по выходному току можно определить максимальную мощность нагрузки стабилизатора.
Например, при использовании двух трансформаторов ТС-200 суммарной мощностью 400 Вт допустим выходной ток до 400/76 = 5,26 А, а максимальная мощность нагрузки (при выходном напряжении, равном номинальному в сети) — 230×5,26 = 1210 Вт. Таким образом, предельная мощность нагрузки стабилизатора в три раза превысит суммарную мощность использованных трансформаторов.
Имеющиеся на трансформаторах вторичные обмотки следует аккуратно смотать (они обычно намотаны поверх половин первичной), подсчитав при этом число витков накальной обмотки Nm намотанной самым толстым проводом. Напряжение этой обмотки под нагрузкой — 6,3 В, поэтому для вторичной обмотки на напряжение U число витков Nu можнонайти по формуле
NU = Nн·U/6,3.
Если магнитопровод трансформатора П-образный (как у трансформатора ТС-200-2), каждую секцию вторичной обмотки следует разделить на две равные части, намотать их на разных кернах магнитопровода трансформатора и соединить половины последовательно согласно. При противофазном соединении суммарное напряжение будет равно нулю, и нужно будет поменять местами выводы любой из половин.
При трёх трансформаторах можно для упрощения намотать на каждом по одной из вторичных обмоток. Если предполагается использовать трансформаторы разной мощности, на наименее мощном из них следует намотать обмотку с наименьшим напряжением, а на наиболее мощном — с наибольшим.
Половины первичных обмоток (на разных кернах) также следует соединить согласно. Обязательно первый раз включайте изготовленный трансформатор в сеть через плавкую вставку. При неправильном соединении половин первичной обмотки она спасёт от возможного пожара.
Диаметр провода вторичных обмоток d в миллиметрах (без изоляции) можно найти по формуле
d = 0,7·√I,
где I — ток вторичной обмотки, А.
Наиболее прочная изоляция у обмоточного провода ПЭВ-2, удобен также провод в шёлковой изоляции ПЭЛШО. Наматывают обмотку аккуратно, виток к витку, слои изолируют между собой прокладками из писчей бумаги. После намотки нужно собрать магнитопровод так, как он был собран ранее, и тщательно его стянуть винтами или обоймой — это уменьшит гудение.
Большинство элементов стабилизатора смонтированы на печатной плате размерами 120×85 мм, чертёж которой и схема расположения элементов на ней приведены на рис. 5. Все отверстия в плате расположены по сетке 2,5×2,5 мм. Для подключения внешних по отношению к плате цепей в неё впаяны контактные штыри от разъёмов серии 2РМ. Диаметр штырей — 1,5 мм для цепей симисторов и 1 мм — для остальных. К присоединяемым к ним проводам припаяны гнёзда от таких же разъёмов. Цвет проводов соответствует указанному на схемах рис. 3 и рис. 4, а контактные штыри для них промаркированы надетыми отрезками термоусаживаемой трубки соответствующего цвета.
Рис. 5. Чертёж печатной платы и схема расположения элементов на ней
На плате установлены импортные оксидные конденсаторы — аналоги К50-35. Конденсаторы C15-C18 (а также C1 и C2 на рис. 3) — металлоплёночные К73-17. Конденсаторы C11 — C14 нежелательно применять керамические, особенно если предполагается пользоваться стабилизатором при минусовой температуре. Здесь также подойдут конденсаторы К73-17, которые значительно термостабильнее керамических конденсаторов равной ёмкости.
Микросхему HCF4093BEY можно заменить другой 4093, 4093B в корпусе DIP14 или микросхемой К561ТЛ1, а счетверённый ОУ LM324N — на К1446УД3 или К1401УД2. В последнем случае нужно иметь в виду, что выводы питания микросхемы К1401УД2 расположены зеркально по отношению к микросхеме LM324N. Поэтому при установке на плату микросхемы К1401УД2 следует развернуть на 180о, не меняя рисунка печатных проводников. При использовании микросхемы К1446УД3 сопротивление резисторов R12-R14 следует уменьшить приблизительно на 20 % для сохранения ширины петель гистерезиса. Дело в том, что ОУ микросхемы К1446УД3 относятся к классу rail-to-rail, где максимальный и минимальный уровни выходного напряжения равны потенциалам соответственно плюсового и минусового выводов питания. В результате размах выходного напряжения несколько больше, чем у ОУ микросхем LM324N и К1401УД2.
Детектор понижения напряжения КР1171СП42 можно заменить на МСР100-450, МСР100-460 или МСР100-475 [7]. Вместо транзистора КТ3102ГМ допустимо установить КТ3102ЕМ. Выпрямительные мосты VD1, VD2, диоды VD3-VD7 — любые кремниевые малогабаритные. Резисторы R12-R18 следует использовать с допуском не хуже ±5 %.
Интересно, что в рассматриваемой конструкции набор элементов «Исключающее ИЛИ» К561ЛП2 можно заменить дешифратором К561ИД1. Входы 1, 2, 4 дешифратора следует подключить к выходам компараторов, а выходы 0, 1, 3, 7 — к цепям задержки.
Симисторы BTA16-600BW заменять другими нежелательно. Индекс W в их обозначении означает, что эти симисто-ры допускают увеличенную скорость нарастания напряжения между основными электродами, не выходя из закрытого состояния. Кроме того, симисторы этой серии имеют полностью изолированный от всех электродов металлический теплоотводящий фланец, что позволяет устанавливать их на не изолированный от корпуса стабилизатора теплоотвод. Если же использовать симисторы, фланец которых соединён с электродом 2, следует изолировать их общий теплоотвод от корпуса стабилизатора.
Тринисторные оптроны МОС3043M заменяются аналогичными, имеющими встроенный узел, гарантирующий открывание симистора в момент перехода мгновенного значения приложенного к нему напряжения через ноль [8]. Если используемые оптроны открываются большим, чем 5 мА, током управления, необходимо обратно пропорционально требуемому току изменить сопротивление резисторов R29-R32.
Как показал опыт, установка демпфирующих RC-цепей (например, R41C15) требуется больше для оптронов, чем для симисторов. Рекомендации по выбору параметров этих цепей приведены в [8] и [9].
Цифровой вольтметр переменного напряжения PV1 — готовый импортный, приобретён в интернет-магазине. Измеряемое напряжение частотой 50 Гц — от 70 до 500 В, погрешность — ± 1 %, габариты — 48x22x29 мм.
Трансформатор Т4 можно исключить, если использовать вместо него, выпрямителя на диодном мосте VD2 и стабилизатора напряжения DA2 готовый стабилизированный преобразователь напряжения сети в постоянное 5 В. Здесь может подойти зарядное устройство для сотового телефона. Следует, однако, иметь в виду, что стабильность выходного напряжения зарядных устройств обычно невысока, а само оно незначительно превышает 5 В. Необходимо убедиться, что это напряжение практически не изменяется при подключении к выходу зарядного устройства резистора сопротивлением 50…100 Ом и при изменении напряжения в сети от 120 до 250 В. Если это не так, на выход зарядного устройства следует установить микросхемустабилизатор напряжения 5 В с низким падением напряжения между входом и выходом (так называемый low drop стабилизатор), например, LM2931Z-5.0 или КР1158ЕН5 с любым буквенным индексом.
При исключении трансформатора T4 вместо напряжения 28 В на мост VD1 нужно подать напряжение сети, а сопротивление резисторов R3, R5, R6 увеличить приблизительно в восемь раз. Конденсатор C3 установить ёмкостью 3,3 мкФ на напряжение 400 В. Следует иметь в виду, что в результате этих переделок все элементы стабилизатора будут находиться под напряжением сети.
Трансформаторы T1 -T3 закреплены между двумя металлическими поддонами размерами 387x177x20 мм от разобранных устройств ЕС ЭВМ. На переднем, согласно рис. 6, поддоне смонтированы переключатель SA1, вольтметр PV1, держатель предохранителя FU1, светодиоды HL1-HL4, две пары выходных гнёзд XS2, XS3 и 12-контактный разъём XS1 ШР32П12НГ3 для подключения низковольтных потребителей. На заднем поддоне закреплён трансформатор T4.
Рис. 6. Монтаж устойства
В качестве теплоотвода для симисторов использован алюминиевый брусок сечением 10×25 мм, служащий распоркой, соединяющей поддоны. По нему тепло от симисторов отводится на корпус. К этой же стойке и другой аналогичной прикреплена печатная плата. Выводы симисторов следует припаивать к контактным площадкам на печатной плате лишь после установки симис-торов на теплоотвод, к которому прикреплена и печатная плата.
При налаживании стабилизатора сначала следует подключить к сети только трансформатор T4 и установить на движках подстроечных резисторов R8-R10 напряжения соответственно 2,14; 1,95 и 1,77 В относительно общего провода, а на резисторе R15 — 1/100 текущего значения напряжения в сети. Используя лабораторный автотрансформатор (ЛАТР), проверить порядок включения светодиодов HL1-HL4 в соответствии с приведённой ранее таблицей. Пороги переключения коэффициентов повышения напряжения должны соответствовать указанным при описании рис. 2. При необходимости можно поточнее отрегулировать подстроечными резисторами R8-R10 пороги переключения, а для изменения ширины петли гистерезиса какого-либо компаратора подобрать его входной резистор (R12-R14). Ширина этой петли прямо пропорциональна сопротивлению соответствующего резистора.
Целесообразно проверить исправность цепей задержки открывания симисторов (элементы R20-R23, C11 — C14, VD4-VD7), отключив мост VD1 от трансформатора T4 и подключив к точке соединения резисторов R6 и R15 цепь, схема которой приведена на рис. 7. При замкнутом выключателе SA2 напряжение на конденсаторе C19 плавно нарастает от нуля до 2,5 В, при разомкнутом — спадает до нуля. Следует проверить осциллографом со ждущей развёрткой наличие задержки спадающего перепада импульса на выходе каждого триггера Шмитта (DD2.1 — DD2.4) относительно нарастающего перепада импульса на выходе соответствующего элемента «Исключающее ИЛИ» (DD1.1-DD1.4). На осциллограмме рис. 8, где скорость развёртки 2 мс/дел., эта задержка равна 15,5 мс при допустимых пределах 14…20 мс.
Рис. 7. Схема цепи
Рис. 8. Осциллограмма
После этого можно восстановить подключение симисторов к трансформаторам (перед первым включением установив в цепь электрода 2 каждого симистора плавкую вставку на 5 А), подключить нагрузку мощностью 100…200 Вт и проверить показанную на рис. 2 зависимость выходного напряжения от входного. При эксплуатации стабилизатора можно оперативно регулировать подстроечным резистором R6 интервал изменения выходного напряжения, например, установить его 200…230 В.
Полезные советы по конструктивному оформлению стабилизатора, обеспечивающему его пожарную безопасность, можно найти в [3].
Как при налаживании, так и во время эксплуатации стабилизатора следует помнить, что при резком уменьшении напряжения в сети переключение стабилизатора происходит с весьма заметной задержкой — около секунды на каждую ступень.
Литература
1. Бирюков С. Релейно-трансформаторный стабилизатор переменного напряжения. — Схемотехника, 2003, № 7, с. 26-28.
2. Сидоров И. Н., Мукосеев В. В., Христинин А. А. Малогабаритные трансформаторы и дроссели. Справочник. — М.: Радио и связь, 1985.
3. Майоров М. Стабилизатор сетевого напряжения для холодильника. — Схемотехника, 2002, № 2, с. 53-59.
4. Кузинец Л. М., Соколов В. С. Узлы телевизионных приёмников. — М.: Радио и связь, 1987.
5. Сидоров И. Н., Биннатов М. Ф., Васильев Е. А. Устройства электропитания бытовой РЭА. — М.: Радио и связь, 1991.
6. Сидоров И. Н., Скорняков С. В. Трансформаторы бытовой радиоэлектронной аппаратуры. Справочник. — М.: Радио и связь, 1994.
7. Потапчук М. Супервизоры серии MCP10X фирмы Microchip. — Схемотехника, 2006, № 1, с. 10, 11.
8. MOC3031M, MOC3032M, MOC3033M, MOC3041M, MOC3042M, MOC3043M 6-Pin DIP Zero-Cross Optoisolators Triac Driver Output (250/400 Volt Peak). — URL: https://www. farnell.com/datasheets/1639837.pdf (12.12.17).
9. Николайчук О. Управление нагрузкой на переменном токе. — Схемотехника, 2003, № 4, с. 25, 26.
Автор: С. Бирюков, г. Москва
Самодельный аппарат
Качественный стабилизатор на несколько кВт и выходным током более 10 ампер можно собрать на основе старого трансформатора, установленного в сварочном аппарате. Однако подобную «заготовку» найти непросто. Более того, действующая техника пригодна для последующего применения по целевому назначению. Для воспроизведения в домашних условиях без профессиональных навыков подойдет представленная ниже схема на электронных компонентах. Она обеспечит:
- оперативную коррекцию выходных параметров со скоростью переключения не более 8-12 миллисекунд;
- рабочий диапазон входного напряжения 125-265 V;
- мощность подключенных потребителей до 5,5 кВт.
Электрическая и монтажная схема, печатная плата
Преимущества самодельного устройства
Кроме хороших технических параметров, нужно отметить следующие плюсы:
- разумные затраты;
- возможность самостоятельного выполнения ремонтных операций.
Недостатки
Потребительские параметры изделия во многом зависят от сборки. В данном случае предполагается отсутствие хорошо отработанных на практике навыков, профессионального монтажного (измерительного) оборудования. С другой стороны, внимательное выполнение отдельных рабочих операций поможет контролировать качество тщательнее, по сравнению с действиями сторонних исполнителей.
Отличия от заводских моделей
Современное производство отличается высоким уровнем автоматизации. Это уменьшает вредное влияние «человеческого фактора», снижает издержки. С применением профессиональных технологий проще обеспечить идеальный внешний вид. Однако при создании самоделки можно применять уникальные технические и эстетические решения.
Комплектующие
Основные узлы (функциональные комплектующие детали):
- трансформаторный блок питания с компенсацией температуры на диоде и компаратором;
- выпрямитель с делителем;
- транзисторная схема задержки подключения нагрузки;
- контроллер на цифровых микросхемах;
- светодиодная индикация рабочих режимов и аварийных ситуаций;
- ключи из оптитронных пар.
Особенности домашнего производства
Подойдут типовые трансформаторы ТПК-2-2х12V. При необходимости можно создать аналоги собственноручно, используя для ПЭВ с диаметром проводника 0,064 мм (8669 витков) и 0,185 мм (522 витка) в первичной и вторичной обмотках, соответственно.
Схемные решения стабилизации электросети 220В
Рассматривая возможные схемные решения под стабилизацию напряжения с учётом относительно высокой мощности (не менее 1-2 кВт), следует иметь в виду разнообразие технологий.
Существует несколько схемных решений, которыми определяются технологические способности приборов:
- феррорезонансные;
- сервоприводные;
- электронные;
- инверторные.
Какой вариант выбрать, зависит от ваших предпочтения, имеющихся материалов для сборки и навыков работы с электротехническим оборудованием.
Вариант #1 — феррорезонансная схема
Для самостоятельного изготовления самым простым вариантом схемы видится первый пункт списка — феррорезонансная схема. Она работает на использовании эффекта магнитного резонанса.
Структурная схема простого стабилизатора, выполненного на основе дросселей: 1 – первый дроссельный элемент; 2 – второй дроссельный элемент; 3 – конденсатор; 4 – сторона входного напряжения; 5 – сторона выходного напряжения
Конструкцию достаточно мощного феррорезонансного стабилизатора допустимо собрать всего на трёх элементах:
- Дроссель 1.
- Дроссель 2.
- Конденсатор.
Однако простота в данном варианте сопровождается массой неудобств. Конструкция мощного стабилизатора, собранная по феррорезонансной схеме, получается массивной, громоздкой, тяжелой.
Вариант #2 — автотрансформатор или сервопривод
Фактически речь идет о схеме, где используется принцип автотрансформатора. Трансформация напряжения автоматически осуществляется за счет управления реостатом, ползунок которого перемещает сервопривод.
В свою очередь сервопривод управляется сигналом, получаемым, к примеру, от датчика уровня напряжения.
Принципиальная схема сервоприводного аппарата, сборка которой позволит создать мощный стабилизатор напряжения для дома или на дачу. Однако этот вариант считается технологически устаревшим
Примерно по такой же схеме действует устройство релейного типа с той лишь разницей, что коэффициент трансформации меняется, в случае надобности, подключением или отключением соответствующих обмоток с помощью реле.
Схемы подобного рода выглядят уже более сложными технически, но при этом не обеспечивают достаточной линейности изменения напряжения. Собрать вручную прибор релейный или на сервоприводе допустимо. Однако разумнее выбрать электронный вариант. Затраты сил и средств практически одинаковые.
Вариант #3 — электронная схема
Сборка мощного стабилизатора по схеме электронного управления при обширном ассортименте радиодеталей в продаже становится вполне возможной. Как правило, такие схемы собираются на электронных компонентах – симисторах (тиристорах, транзисторах).
Также разработан целый ряд схем стабилизаторов напряжения, где в качестве ключей используются силовые полевые транзисторы.
Структурная схема модуля электронной стабилизации: 1 – входные клеммы устройства; 2 – симисторный блок управления трансформаторными обмотками; 3 – микропроцессорный блок; 4 – выходные клеммы на подключение нагрузки
Изготовить мощный аппарат полностью под электронным управлением руками неспециалиста достаточно сложно, лучше купить готовое устройство. В этом деле без опыта и знаний в сфере электротехники не обойтись.
Под самостоятельное производство рассматривать этот вариант целесообразно, если имеется сильное желание построить стабилизатор, плюс наработанный опыт электронщика. Далее в статье рассмотрим конструкцию электронного исполнения, пригодную для изготовления своими руками.
Принцип работы
Каким же образом работает наш стабилизатор сетевого напряжения, который легко делается своими руками?
После того, как включается питание конденсатор С1 находится в разряженном состоянии, транзистор VT2 открыт, а VT2 является закрытым. Также закрытым является транзистор VT3. Именно через него будет подаваться ток на каждый светодиод и симисторный оптотрон.
Поскольку этот транзистор является закрытым, светодиоды не светятся, каждый симистор является закрытым и нагрузка отключена. В это время электрический ток проходит через резистор R1 и попадает в С1. Далее происходит зарядка этого конденсатора.
Интервал задержки длится всего лишь три секунды. За это время осуществляются все переходные процессы, и после окончания происходит срабатывание триггера Шмитта, основу которого составляют транзисторы VT1 и VT2.
Далее открывается третий транзистор и включается нагрузка.
Напряжение, которое выходит с третьей обмотки Т1, выпрямляется диодом VD2 и конденсатором С2. Далее ток проходит через делитель R13…14. Из R14 напряжение, уровень которого является пропорциональным количеству вольт в сети, входит в каждый неинвертирующий вход компараторов.
Количество компараторов равняется восьми и все они находятся на микросхемах DA2 и DA3. В этот же момент на инвертирующий вход каждого компаратора входит постоянный образцовый ток. Его подают резисторные делители R15…23.
После этого в игру вступает контроллер, который осуществляет обработку сигнала на входе у каждого компаратора.
Конструкция стабилизирующего ток устройства
Самодельный стабилизатор напряжения 220В, схема которого представлена выше, включает в себя следующие элементы:
- Блок питания. Для него использованы накопители С2 и С5, трансформатор напряжения Т1, а также компаратор (сравнивающее устройство) DA1 и светодиод VD1;
- Узел, откладывающий начало нагрузки. Для его сборки понадобятся сопротивления от R1 до R5, транзисторы от VT1 до VT3, а также накопитель С1;
- Выпрямитель, замеряющий значение вольтажных скачков и провалов. В его конструкцию входит светодиод VD2 с одноименным стабилитроном, накопитель С2, резистором R14 и R13;
- Компаратор. Для него понадобятся сопротивления от R15 до R39 и сравнивающие устройства DA2 с DA3;
- Контроллер логического типа. Для него нужны микросхемы DD от 1 до 5;
- Усилители. Для них понадобятся сопротивления для ограничения тока R40-R48, а также транзисторы от VT4 до VT12;
- Светодиоды, играющие роль индикатора, — HL от 1 до 9;
- Оптронные ключи (7) с симисторами VS от 1 до 7, резисторами R от 6 до 12 и оптронными симисторами U от 1 до 7;
- Автовыключатель с предохранителем QF1;
- Автотрансформатор Т2.
Какие стабилизаторы напряжения выбрать для частного дома: однофазные или трехфазные
По способу соединения стабилизаторы могут быть стационарные, когда устройство подключают к щитку, и локальные, соединенные непосредственно с электроприбором. Различают однофазные и трехфазные модели стабилизаторов:
- однофазные — рассчитаны на электросеть с напряжением в 220В, используются для бытовой техники;
- трехфазные — работают при напряжении 380В, рассчитаны на большие нагрузки, применяемые в основном на производстве.
Определяясь с типом преобразователя для частного дома, нужно уточнить, какой кабель подведен к строению. Если кабель содержит не более трех проводов — система электроснабжения однофазная. Если имеется четыре жилы — электропитание трехфазное. Довольно часто в домах частной собственности используется трехфазная сеть. Многие владельцы в подсобных помещениях устанавливают деревообрабатывающие станки или какие-либо электродвигатели, являющиеся трехфазными потребителями.
Схема подключения трехфазного стабилизатора (380В) к электросети
Выбирая стабилизаторы, можно пойти двумя путями: приобрести трехфазный стабилизатор, выбор которых невелик и представляет собой в основном электромеханические модели; или перераспределить трехфазную нагрузку на однофазные приборы-потребители. Таким образом, из трехфазной электросети получается три отдельных однофазных сети. Нагрузка на каждую из отдельных сетей будет различна по мощности, в зависимости от используемой техники.
Статья по теме:
Правильное подключение стиральной машины к водопроводу и канализации. Выбор места для установки. Правила подсоединения к различным видам коммуникаций.
Приобретая стабилизаторы напряжения, следует учитывать их мощность. Если указано, что при работе стабилизатора отмечаются потери мощности на половину, следует выбирать прибор с большей мощностью.
Полезный совет! Приобретая стабилизатор напряжения для дома, обращайте внимание на маркировку, обозначенную на устройстве: У — узкий диапазон перепадов; ПТ — устройство с повышенной точностью; Ш- широкий диапазон перепадов и переносимость повышенных нагрузок.
Выбирайте относительно бесшумные модели с приемлемыми размерами. Если место для установки прибора в доме ограничено, можно использовать настенные стабилизаторы напряжения 220В для дома. Учитывая отсутствие шума, компактные размеры, современный дизайн и удобный монтаж настенных стабилизаторов, популярность этих приборов неизменно растет.
Читать также: Густая силиконовая смазка для пластиковых шестеренок
Схема подключения однофазного стабилизатора (220В) к электросети
Как рассчитать мощность стабилизатора
Чтобы безошибочно определить мощность преобразователя, необходимо суммировать мощности всей техники, приходящейся на выпрямитель и добавить к полученной сумме 30%, чтобы был небольшой запас мощности. Так, если суммарная мощность всей техники в доме составляет 4 кВт, понадобится подключение однофазного стабилизатора напряжения 5 кВт.
Каждый бытовой прибор на задней панели имеет информацию о потребляемой мощности. При расчете следует пользоваться пусковым значением мощности. Это значение определяется как произведение мощности прибора с электродвигателем и коэффициента кратности.
Коэффициент кратности для разных бытовых электроприборов:
- холодильник, автоматическая стиральная машина — 3-5;
- микроволновка, болгарка — 2;
- кондиционеры — 2-35;
- перфоратор — 3.
Стабилизатор выравнивает колебания и перепады в электросети, подавая потребителям стабильное напряжение в 220В
К примеру, мощность при пуске микроволновой печи на 0,6 кВт будет равна 0,6х2 = 1,2 (кВт).
Полезный совет! При расчете мощности стабилизатора, необходимо учитывать не суммарные пусковые мощности всей имеющейся у вас бытовой техники, а выбрать самое мощное электрооборудование для подключения через выпрямитель. По мощности этого прибора и определяется мощность стабилизатора.
Мощность стабилизатора быстрее и проще рассчитать, опираясь на показатель мощности автоматов, установленных в щитке. Если мощность автомата 25А, а сетевое напряжение 220В, необходимая активная мощность стабилизатора будет равна 5500 Вт (25х220) или 5,5 кВт. Также стоит учитывать и сечение провода в разводке: если квартира расположена в доме старой постройки, то проводка в таких домах имеет сечение 4 мм² с максимальным током в 32А и устанавливать мощный выпрямитель не имеет смысла. Для новых домов будет актуален стабилизатор мощностью 20 кВА. Такое оборудование способно уберечь бытовые приборы от короткого замыкания.
Нужную мощность стабилизатора можно рассчитать, ориентируясь на показатель мощности автоматов, установленных в щитке