Как сделать повышающий трансформатор своими руками


Конструкция

Первый двухполярный трансформатор был изготовлен еще Фарадеем, и согласно данным, это было именно тороидальное устройство. Тороидальный автотрансформатор (марка Штиль, ТМ2, ТТС4)– это прибор, предназначенный для преобразования переменного тока одного напряжения в другое. Они используется в различных линейных установках. Этот электромагнитный прибор может быть однофазным и трехфазным. Конструктивно состоит из:


Фото – принцип работы трансформатора

Устройство этого типа используется в различных аудио- и видеоустановках, стабилизаторах, системах освещения. Главным отличием этой конструкции от других устройств является количество обмоток и форма сердечника. Физиками считается, что кольцевая форма – это идеальное исполнения якоря. В таком случае, намотка тороидального преобразователя выполняется равномерно, как и распределение тепла. Благодаря такому расположению катушек, преобразователь быстро охлаждается и даже при интенсивной работе не нуждается в использовании кулеров.


Фото – готовый ТПН25

Видео: назначение тороидальных трансформаторов

Блок выпрямителя

Сам по себе выдавать постоянный ток трансформатор 220 на 12 Вольт не будет, нужно использовать дополнительные устройства. Это выпрямитель, фильтр и стабилизатор. Первый выполняется на одном или нескольких диодах. Самая популярная схема – мостовая. У нее масса преимуществ, в числе основных – минимальные потери напряжения и высокое качество тока на выходе. Но допускается использовать и иные схемы выпрямителей.

В качестве фильтров используется обычный электролитический конденсатор, который позволяет избавиться от остатков переменной составляющей выходного тока. Стабилитрон, установленный на выходе, позволяет удерживать напряжение на одном уровне. В этом случае даже при наличии пульсаций в сети 220 В и во вторичной обмотке на выходе выпрямителя напряжение будет иметь всегда одно и то же значение. Это хорошо сказывается на работе устройств, которые подключаются к нему.

Принцип работы

Самый просто тороидальный трансформатор состоит из двух обмоток на кольце и сердечнике из стали. Первичная обмотка подключается к источнику электрического тока, а вторичная – к потребителю электроэнергии. За счет магнитопровода осуществляется соединение отдельных обмоток между собой и усиления их индуктивной связи. При включении питания в первичной обмотке создается переменный магнитный поток. Сцепляясь с отдельными обмотками, этот поток создает в них электромагнитную силу, которая зависит от количества витков намотки. Если изменять число обмоток, то можно сделать трансформатор для преобразования любого напряжения.


Фото – Принцип действия

Также преобразователи такого типа бывают понижающими и повышающими. Тороидальный понижающий трансформатор имеет высокое напряжение на выводах вторичной обмотки и низкое на первичной. Повышающий наоборот. Помимо этого, обмотки могут быть высшего напряжения или низшего, в зависимости от характеристик сети.

Расчет на примере

Допустим, у нас такие параметры:

  1. Окно в высоту 53 мм, в ширину – 19 мм.
  2. Каркас изготавливается из текстолита.
  3. Верхние и нижние щеки: 50 мм, каркас 17,5 мм, следовательно, окно имеет размер 50 х 17,5 мм.

Далее, нужно произвести расчет диаметра проводов. Допустим, нужно, чтобы мощность была равной 170 Вт. При этом на сетевой обмотке ток будет равен 0,78 А (мощность делим на напряжение). В конструкции плотность тока оказывается равной 2 А/кв. мм. Имея эти данные, можно вычислить, что нужно применять провод диаметром 0,72 мм. Допускается использовать и 0,5 мм, 0,35 мм, но ток при этом будет меньше.

Отсюда можно сделать вывод, что для питания радиоаппаратуры на лампах, например, нужно намотать 950-1000 витков для высоковольтной обмотки. Для накала – 11-15 витков (провод только нужно использовать большего диаметра, зависит от числа ламп). Но все эти параметры можно найти и опытным путем, о котором будет рассказано дальше.

Как сделать

Изготовление тороидального трансформатора под силу даже молодым электрикам. Намотка и расчет не представляют собой ничего сложного. Предлагаем рассмотреть, как правильно мотать тороидальный магнитопровод для полуавтомата:

  1. Для намотки трансформатора на ферритовом сердечнике может использоваться специальный станок. Он поможет значительно ускорить работу и уменьшить вероятность соскока железа. Его можно произвести по типу зажима для накрутки проводов;
  2. Нужно отметить, что латры, которые нужны для намотки, должны быть одинаковых размеров. При наматывании следите за тем, чтобы между листами не было щелей. Если же Ваш силовой трансформатор имеет небольшие щели в магнитопроводе, то их можно заполнить железными листами от любого другого трансформатора, обрезанными до определенного размера;


    Фото – расчет

  3. После окончания наматывания железа, его выводы прихватываются при помощи сварки. Это помешает обмотке размотаться. Достаточно буквально двух – трех сварных точек;
  4. После этого торцы магнитопровода промазываются эпоксидным клеем. Предварительно кромки немного закругляются;
  5. Поверх боковой стороны усилителя наматывается изоляция – это может быть даже лист картона. Его можно присоединить при помощи малярного скотча. Действие повторяем по всем поверхностям магнитопровода;
  6. Теперь нужно вокруг картонной изоляции намотать изоленту из текстиля. Она продается в специальных электротехнических магазинах. Поверх этого слоя изоляции можно намотать дополнительный из малярного скотча;
  7. Теперь на кольцо накручивается провод выбранного сечения, рассчитать размеры проводов и потребные характеристики поможет специальная программа. После окончания накрутки все покрывается лаком NC, один вывод обмотки должен остаться свободным;


    Фото – намотка обмотки

  8. После нужно изготовить изоляцию из лакоткани или текстильной изоленты, поверх которой наматывается вторая обмотка. Она также покрывается лаком. Остается только накрутить последнюю изоляцию и защитить. Действия продолжать до получения нужного количества обмоток;


    Фото – обмотка лентой

  9. Вторичная обмотка наматывается уже из большего по сечению провода. Если сетевой трансформатор нужен для дуговой сварки, то необходимо добавлять в конце еще определенное количество витков, помимо расчетных обмоточных.

Учитывая, что 1 виток переносит 0,84 Вольт, схема намотки тороидального трансформатора выполняется по такому принципу:

Количество витков на первичной обмоткеНапряжение на вторичной, В
26030
27131
28228,8
29427,6
30926
33424,4
35922,6
38920,9
41919,4
43418,7

Так можно с легкостью самостоятельно сделать тороидальный трансформатор 220 на 24 вольта. Описанную схему можно подключить как к дуговой сварке, так и к полуавтоматической. Параметры рассчитываются исходя из сечения провода, количества витков, размера кольца. Характеристики этого устройства позволяют производить ступенчатую регулировку. Среди достоинств принципа сборки: простота и доступность. Среди недостатков: большой вес.

Обустройство катушечного корпуса

Корпус делают из качественной картонной бумаги. Внутренняя его сторона слега больше в сравнении со стержневой частью сердечника. При применении о-образного сердечника потребуется несколько катушек. При сердечнике ш-образном достаточно использовать всего одну катушку.

Применяя сердечник круглой формы, его следует обмотать, применяя изоляцию. Затем можно осуществлять проводную намотку. Как только вы завершите с обмоткой первичной, её следует закрыть несколькими изоляционными слоями. После этого нужно накрутить очередной слой. Концы имеющихся обмоток выводятся на наружную сторону.


При применении магнитного провода корпус трансформатора собирается пошагово:
  • Осуществляется выкраивание определённого размера гильзы с требуемыми отворотами.
  • Создаются картонные щёчки.
  • Основная часть катушки сворачивается в специальную коробочку.
  • На гильзы надеваются щёчки.

Обзор цен

Купить тороидальный трансформатор HBL-200 можно в любом городе Российской Федерации и стран СНГ. Он используется для различной аудиоаппаратуры. Рассмотрим, сколько стоит преобразователь.

Два составных корня «магнит» и «провод», соединенные буквой «о», определяют назначение этого электротехнического устройства, созданного для надежного пропускания магнитного потока по специальному проводнику с минимальными или, в отдельных случаях, определенными потерями.

Электротехническая промышленность широко использует взаимную зависимость электрической и магнитной энергий, переход их из одного состояния в другое. На этом принципе работают многочисленные трансформаторы, дроссели, контакторы, реле, пускатели, электродвигатели, генераторы и другие подобные устройства.

В их конструкцию входит магнитопровод, пропускающий магнитный поток, возбужденный прохождением электрического тока, для дальнейшего преобразования электрической энергии. Он является одной из составных частей магнитной системы электротехнических устройств.

Магнитопровод электротехнического изделия (устройства) (Coil flux guide) – магнитная система электротехнического изделия (устройства) или совокупность нескольких ее частей в виде отдельной конструктивной единицы (ГОСТ 18311-80).

Из чего изготавливают магнитопровод

Вещества, которые входят в его конструкцию, могут обладать различными магнитными свойствами. Их принято классифицировать на 2 вида:

Для их отличия используется термин «магнитная проницаемость µ», которая определяет зависимость созданной магнитной индукции B (силы) от величины приложенной напряженности H.

Читать также: Сколько ведер в кубе бетона

Приведенный график показывает, что ферромагнетики обладают сильно выраженными магнитными свойствами, а у парамагнетиков и диамагнетиков они слабые.

Однако, индукция ферромагнетиков при дальнейшем увеличении напряженности начинает снижаться, имея одну ярко выраженную точку максимальной величины, характеризующей момент насыщения вещества. Она используется при расчетах и эксплуатации магнитных цепей.

После прекращения действия напряженности какая-то часть магнитных свойств остается у вещества и, если к нему приложить противоположное поле, то часть его энергии станет расходоваться на преодоление этой доли.

Поэтому у цепей переменного электромагнитного поля наблюдается отставание индукции от приложенной напряженности. Подобную зависимость намагниченности вещества ферромагнетиков характеризует график, получивший название гистерезиса.

На нем точками Нк показана ширина петли, которая характеризует остаточный магнетизм (коэрцитивную силу). По ее размеру ферромагнетики подразделяют на две категории:

1. мягкие, с узкой характеристикой петли;

2. твердые, имеющие большую коэрцитивную силу.

К первой категории относят мягкие сплавы железа и пермолой. Из них изготавливают сердечники для трансформаторов, электродвигателей и генераторов переменного тока потому, что они создают минимальные затраты энергии на перемагничивание.

Жесткие ферромагнетики из углеродистых сталей и специальных сплавов применяются в различных конструкциях постоянных магнитов.

При выборе материала для магнитопровода учитывают потери на:

вихревые токи, создаваемые от действия ЭДС, наведенной магнитным потоком;

последействие, обусловленное магнитной вязкостью.

Для конструкций магнитопроводов, работающих на переменном токе, выпускаются специальные сорта листовой или рулонной тонкостенной стали с различной степенью легирующих добавок, которые производятся методами холодного или горячего проката. Причем холоднокатаная сталь дороже, но обладает меньшими потерями индукции.

Из стальных листов и рулонов механическими методами обработки создают пластины или ленты. Их покрывают слоем лака для защиты и обеспечения изоляции. Двухстороннее покрытие более надежное.

Для реле, пускателей и контакторов, эксплуатируемых в цепях постоянного тока, магнитопроводы отливают цельными блоками.

Цепи переменного тока

Среди них распространены два вида магнитопроводов:

Первый тип выполнен двумя стержнями, на каждом из которых раздельно надеты две катушки с обмотками высокого или низкого напряжения. Если размещать на стержне по одной обмотке ВН и НН, то возникают большие потоки рассеивания энергии, возрастает составляющая реактивного сопротивления.

Магнитный поток, проходящий по стержням, замыкается верхним и нижним ярмом.

Броневой тип имеет стержень с обмотками и ярмами, от которого магнитный поток раздваивается на две половины. Поэтому его площадь в два раза превышает сечение ярма. Такие конструкции чаще встречаются в трансформаторах малой мощности, где не создаются большие тепловые нагрузки на конструкцию.

Силовым трансформаторам нужна большая поверхность охлаждения обмоток, вызванная преобразованием повышенных нагрузок. К ним лучше подходит стержневая схема.

Для них можно использовать три однофазных магнитопровода, разнесенных на одну треть длины окружности или собрать обмотки на общем железе в своих ячейках.

Если рассматривать общий магнитопровод из трех одинаковых конструкций, разнесенных по углу на 120 градусов, как показано на левой верхней части картинки, то внутри центрального стержня суммарный магнитный поток будет сбалансирован и равен нулю.

Однако, на практике чаще используют упрощенную конструкцию, расположенную в одной плоскости, когда три разных обмотки располагают на отдельном стержне. При этом способе магнитный поток от крайних катушек проходит по большому и малому кольцу, а от средней — по двум соседним. За счет образования неравномерного распределения дистанций создается определенный дисбаланс магнитных сопротивлений.

Он накладывает отдельные ограничения для расчетов конструкции и некоторых режимов эксплуатации, особенно холостого хода. Но в целом такая схема магнитопровода широко применяется на практике.

Приведенные на верхних картинках магнитопроводы делают из пластин, а на собранные стержни надевают катушки. Эта технология применяется на автоматизированных предприятиях с большим станочным парком.

На маленьких производствах может использоваться технология ручной сборки за счет ленточных заготовок, когда первоначально изготавливается катушка с намотанным проводом, а после этого вокруг нее последовательными витками монтируется магнитопровод из ленты трансформаторного железа.

Подобные витые магнитопроводы тоже создаются по стержневому и броневому типу.

У ленточной технологии допустимой толщиной материала является величина 0,2 или 0,35 мм, а для сборки пластинами она может быть выбрана 0,35 либо 0,5 или даже больше. Это объясняется необходимостью плотной намотки ленты между слоями, что сложно выполнять вручную при работе с толстыми материалами.

Если при намотке ленты на катушку ее длины не хватает, то допускается стыковать к ней продолжение и надежно прижимать его новым слоем. Аналогичным образом собираются пластины стержней и ярма в пластинчатых магнитопроводах. Во всех этих случаях стыки необходимо делать с минимальными размерами, ибо они влияют на общее магнитное сопротивление и потери энергии в целом.

Для точной работы создания подобных стыков стараются избегать, а когда их исключить невозможно, то применяют шлифовку краев, добиваясь плотного прилегания металла.

При ручной сборке конструкции довольно сложно бывает точно сориентировать пластины между собой. Поэтому в них делали отверстия и вставляли шпильки, которые обеспечивали хорошее центрирование. Но такой способ слегка уменьшает площадь магнитопровода, искажает прохождение силовых линий и магнитное сопротивление в целом.

Большие автоматизированные предприятия, занимающиеся специализированным выпуском магнитопроводов для точных трансформаторов, реле, пускателей, отказались от пробивных отверстий внутри пластин и применяют другие технологии сборки.

Шихтованные и стыковые конструкции

Магнитопроводы, создаваемые на основе пластин, могут собираться за счет отдельной подготовки стержней с ярмами и последующего монтажа катушек с обмотками, как показано на картинке.

Справа приведена упрощенная стыковая схема сборки. У нее может проявиться серьезный недостаток — «пожар в стали», который характеризуется возникновением вихревых токов в сердечнике до критической величины, как показано на картинке внизу слева волнистой красной линией. Это создает аварийную ситуацию.

Устраняют этот дефект изоляционным слоем, который значительно влияет на увеличение намагничивающего потока. А это уже лишние потери энергии.

В отдельных случаях необходимо увеличить такой зазор для повышения реактивного сопротивления. Этот прием используется в индуктивностях и дросселях.

По перечисленным причинам стыковая схема сборки используется в неответственных конструкциях. Для точной работы магнитопровода используют шихтованную сборку пластин.

Ее принцип основан на четком распределении слоев и создании в нем одинаковых зазоров в стержне и ярме таким образом, чтобы при сборке все созданные полости заполнялись с минимальными стыками. При этом пластины стержня и ярма переплетаются между собой, образуя прочную и жесткую конструкцию.

На предыдущей верхней картинке показан шихтованный способ соединения прямоугольных пластин. Однако, меньшими потерями магнитной энергии обладают косоугольные конструкции, создаваемые обычно под 45 градусов. Они применяются в мощных магнитопроводах силовых трансформаторов.

На картинке показана сборка нескольких косоугольных пластин при частичной расшихтовке общей конструкции.

Даже при этом методе необходимо следить за качеством прилегания стыкуемых поверхностей и отсутствием в них недопустимых зазоров.

Читать также: Кронштейны для прокладки кабеля по стене

Метод применения косоугольных пластин обеспечивает минимальные потери магнитного потока в углах магнитопровода, но он значительно усложняет процесс изготовления и технологию сборки. За счет повышенной трудоемкости работ его используют очень редко.

Шихтованный метод сборки более надежен. Конструкция отличается прочностью, для нее требуется меньше деталей, а сборка проводится по заранее подготовленной методике.

При этом способе из пластин создается общая конструкция. После полной сборки магнитопровода возникает необходимость монтажа обмотки на нем.

Для этого приходится разбирать уже собранное верхнее ярмо поочередным изъятием всех его пластин. Чтобы исключить такую лишнюю операцию разработана технология сборки магнитопровода непосредственно внутри подготовленных катушек с обмотками.

Упрощенные модели шихтованных конструкций

На трансформаторах малой мощности часто не требуется точное выдерживание магнитных параметров. Для них создают заготовки методами штамповки по подготовленным шаблонам с последующим покрытием изоляционным лаком, причем, чаще всего, с одной стороны.

Левая сборка магнитопровода создается вводом в катушки заготовок сверху и снизу, а правая позволяет отгибать и вводить во внутреннее отверстие обмотки центральный стержень. При этих методах образуется небольшой воздушный зазор между стыкуемыми пластинами.

После сборки комплекта пластины плотно сжимаются крепежными элементами. Для уменьшения вихревых токов с магнитными потерями на них наносится слой изоляции.

Особенности магнитопроводов реле, пускателей

Принципы создания пути для прохождения магнитного потока остались теми же. Только магнитопровод разделяется на две части:

2. стационарно закрепленную.

При возникновении магнитного потока подвижный якорь вместе с закрепленными на нем контактами притягивается по принципу электромагнита, а при исчезновении — возвращается в исходное состояние под действием механических пружин.

Переменный ток постоянно меняется по величине и амплитуде. Эти изменения передаются магнитному потоку и подвижной части якоря, который может гудеть и вибрировать. Для исключения этого явления расщепляют магнитопровод вставкой короткозамкнутого витка.

В нем образуется раздвоение магнитного потока и сдвиг фазы одной его части. Тогда при переходе через нулевую точку одной ветви во второй действует сила, препятствующая вибрациям, и наоборот.

Магнитопроводы для устройств постоянного тока

В этих цепях отпадает необходимость бороться с вредным воздействием вихревых токов, которые проявляются при гармоничных синусоидальных колебаниях. Для магнитопроводов не используют наборы из тонких пластин, а изготавливают их прямоугольными или закругленными деталями методом цельных отливок.

При этом сердечник, на который насаживается катушка, делается круглым, а корпус и ярмо — прямоугольной формы.

С целью уменьшения первоначального тягового усилия воздушный зазор между разведенными частями магнитопровода имеет маленькую величину.

Магнитопроводы электрических машин

Наличие подвижного ротора, который вращается в поле статора, накладывает особенности на конструкции электродвигателей и генераторов. Внутри них необходимо расположить обмотки, по которым протекает электрический ток таким образом, чтобы обеспечить минимальные габариты.

С этой целью прямо в магнитопроводах изготавливаются полости для укладки проводов. Для этого сразу при штамповке пластин в них создаются пазы, которые после сборки представляют готовые магистрали под обмотки.

Таким образом, магнитопровод является неотъемлемой частью многих электротехнических устройств и служит для передачи магнитного потока.

Большинство электронных устройств для своей работы нуждаются в определённом типе питания, отличающегося от поступающего из промышленной сети. Одним из видов таких устройств является тороидальный трансформатор. Прибор нашёл широкое применение в различных областях энергетики, электроники и радиотехники. Наиболее часто трансформаторы используются в электрических сетях и в блоках питания всевозможной электронной техники.

Основные критерии выбора, какой трансформатор нужен для пускового устройства АКБ

Если автомобиль все время в эксплуатации, то его аккумулятор заряжен. Но при длительном простое из-за саморазряда напряжение на АКБ падает ниже уровня необходимого для запуска.

Еще одной причиной пониженного тока аккумулятора является мороз. В холодном аккумуляторе повышенное сопротивление электролита и замедленные химические реакции, в результате которых батарея вырабатывает электрическое напряжение. Кроме того, холодный двигатель стартеру труднее провернуть из-за загустевшей смазки.

В этих ситуациях необходимо подать на стартер дополнительное питание. Чтобы сделать такой аппарат самостоятельно необходимо знать, какой трансформатор нужен для пускового устройства АКБ.

Конструкция и принцип работы

Трансформатор — название слова происходит от латинского transformare, что в переводе означает превращать. Общепринятое определение для него следующее: трансформатор — это устройство, которое, используя явление электромагнитной индукции, способно изменять амплитуду напряжения без изменения формы и частоты сигнала.

Трансформатор — это электротехнический прибор, с помощью которого происходит уменьшение или увеличение переменного электрического напряжения. Такие трансформаторы называют понижающими или повышающими. При этом следует отметить, что существуют и такие приборы, которые оставляют величину синусоидального сигнала без изменения, они называются гальваническими или дроссельными.

Любой трансформатор в своей конструкции содержит следующие компоненты:

  • магнитопровод (сердечник);
  • обмотки;
  • каркас для расположения обмоток;
  • изолятор;
  • различные дополнительные элементы (скобы для крепления, планки для вывода контактов и т. п. ).

Трансформатор в своей конструкции имеет две или более обмотки с индуктивной связью. Выпускаются они как проволочного, так и ленточного типа и всегда покрываются слоем изоляции. Обмотки закрепляются на магнитопроводе, изготовленном из мягкого ферромагнитного материала. Первичная обмотка подсоединяется к источнику напряжения, а вторичная к нагрузке.

Общий принцип работы устройства, независимо от его вида и назначения, заключается в следующем. На первичную обмотку прибора подаётся переменный сигнал, что приводит к появлению в ней переменного тока. Этот ток, в свою очередь, наводит в сердечнике переменное магнитное поле, под действием, которого происходит возникновение переменной электродвижущей силы (ЭДС) в обмотках. При подключении нагрузки к вторичной обмотке по ней начинает протекать переменный ток. Обмотка, на которую подаётся сигнал, называется первичкой. Обмотка, подключённая к нагрузке, называется вторичкой.

По способу охлаждения тороидальные устройства различаются на использующие воздушное и жидкостное охлаждение. Кроме этого, существуют трансформаторы с совмещённым охлаждением — жидкостно-воздушным. К главным техническим параметрам устройства относятся:

  1. Величина входного напряжения: допустимое значение напряжения, подаваемое на первичку.
  2. Величина выходного напряжения. Определяется коэффициентом трансформации.
  3. Тип трансформации. Существует с повышением или понижением уровня сигнала.
  4. Число фаз. В зависимости от сети, в которой используются трансформаторы, они делятся на однофазные или трехфазные.
  5. Число обмоток. Существуют двухобмоточные или многообмоточные устройства.

К основным параметрам устройства относят: номинальную мощность и коэффициент трансформации. Единица измерения мощности вольт-ампер (ВА). Коэффициент трансформации показывает соотношение уровней напряжения на входе устройства к его выходу. Его значение прямо пропорционально отношению количества витков первички к вторичке.

В тороидальном трансформаторе в качестве основы используется кольцевой сердечник, геометрически представляющий собой тор. Преимущество такого вида магнитопровода заключается в простой перемотке трансформатора своими руками и получении наибольшего коэффициента полезного действия (КПД) по сравнению с другими типами трансформаторов при тех же габаритных значениях. К недостаткам торов относят повышенный нагрев при работе.

Как сократить потери в магнитопроводе трансформатора?

В работающем трансформаторе на сердечник воздействует переменное магнитное поле. В результате вокруг сердечника возникают вихревые токи. Из-за них магнитопровод нагревается – то есть часть полезной энергии уходит впустую.

На потери из-за перемагничивания влияет:

  • характер материала сердечника. Чем проще намагничивается металл, тем проще его перемагнитить и тем меньше потери в трансформаторе;
  • частота перемагничивания;
  • максимальное значение магнитной индукции.

Чтобы снизить потери, для производства сердечников используют сталь с выраженными магнитными свойствами. Такой материал требует меньше энергии на перемагничивание.

В монолитных проводниках вихревые токи приобретают максимальные значения из-за небольшого сопротивления. Следовательно, чтобы уменьшить потери в трансформаторе, нужно увеличить сопротивление материала сердечника. Производители силовых трансформаторов нашли выход: они набирают магнитопровод из металлических листов. Стальные пластины для сердечника берутся не более 0,5 мм толщиной.

Чтобы действительно снизить сопротивление вихревым токам в сердечнике, металлические пластины нужно изолировать. Для этого производители трансформаторов используют лак и окалину. Прослойка не дает влиять вихревым токам на магнитный поток в сердечнике. Поэтому потери снижаются.

Производители собирают пластины двумя способами:

  • встык – при этом собирается сам сердечник, потом на него насаживаются обмотки и только после этого все скрепляется ярмом в единую конструкцию;
  • впереплет (шихтованные сердечники) – когда каждый следующий ряд пластин перекрывает стыки на предыдущем.

Встык магнитопровод проще монтировать, но уровень потерь в них выше, чем у шихтованных сердечников. Поэтому большим спросом пользуются шихтованные трансформаторы.

О компании

Наша организация имеет штат высококвалифицированных работников, многие из которых имеют стаж работы в области энергетики более 10 лет. Кроме того мы являемся официальными представителем ПАО «МЭТЗ им. В.И. Козлова» в РФ.

Каркас представляет собой необходимое устройство внутри трансформатора, к изготовлению которого применяются особые требования. Это устройство служит для крепления обмоток, при том в зависимости от вида тс изменяются особенности, применяемые материалы, разметка и тому подобное. Каркас для трансформатора иногда делают своими руками, на самом деле это затруднительная процедура.

Трансформатор тока

Кроме стандартного типа трансформаторов напряжения существует особый вид, называемый трансформатором тока. Основное его назначение — изменять значение тока относительно своего входа. Другое название такого вида устройства — токовый.

Токовый трансформатор — измерительный прибор, предназначенный для измерения силы переменного тока. Применяются токовые устройства тогда, когда нужно измерить ток большой силы или для защиты полупроводниковых приборов от возникших на линии нештатных его значений.

Токовое устройство по виду ничем не отличается от трансформатора напряжения, его отличия — в подключении и количестве витков в обмотке. Первичка выполняется с помощью одного или пары витков. Эти витки пропускаются через тороидальный магнитопровод, и именно через них измеряется ток. Токовые устройства выполняются не только тороидального типа, но и могут быть выполнены и на других видах сердечниках. Главным условием является то, чтобы измеряемый провод совершил полный виток.

Читать также: Лазер для измерения расстояния

Вторичная обмотка при таком исполнении шунтируется низкоомным сопротивлением. При этом величина напряжения на этой обмотке не должна быть большого значения, так как во время прохождения наибольших токов сердечник будет находиться в режиме насыщения.

В некоторых случаях измерения проводятся на нескольких проводниках которые пропущены через тор. Тогда величина тока будет пропорциональна силе суммы токов.

Разметка

Разметка — первый этап, который проводится при наличии материалов и инструментов. Важно тщательное исследование, позволяющее определить технические характеристики.

Допустимо делать ее вручную при помощи специальных таблиц (но обратите внимание, что в таком случае придется рассчитывать все самостоятельно, используя формулы).

Можно выбрать и разметку при помощи программ — есть в бесплатном доступе такие в интернет. Но в таком случае начинающий радиолюбитель не сможет понять алгоритм расчета и научиться выполнять рамку самостоятельно, без использования компьютеризированного оборудования.

Расчёт параметров изделия

Перед тем как намотать тороидальный трансформатор в домашних условиях понадобится рассчитать его значения. Для этого нужно знать исходные данные. К ним относят: величину напряжения на выходе, внешний и внутренний диаметр сердечника.

Мощность устройства определяется произведением площадей S и Sо, умноженных на коэффициент: P=1,9* S * Sок.

Площадь поперечного сечения рассчитывается по формуле: S=h*(D-d)/2, где:

  • S- площадь сечения;
  • h- высота конструкции;
  • D- наружный диаметр;
  • d — внутренний диаметр.

Для вычисления площади окна используется формула: Sок=3,14*d2/4.

Количество витков во вторичной обмотке равно произведению W2=U2*50/Sок.

Далее остаётся рассчитать количество витков в первичке. Для этого используется выражение: W1=(Uвх*W2)/Uвых, где Uвх — напряжение на входе, а Uвых — напряжение на выходе устройства.

Такую методику расчёта можно применить почти для любого вида тороидального трансформатора. Но для расчёта некоторых изделий существует своя методика.

Сварочное устройство

Такой тип трансформатора характеризуется большой силой тока на выходе. В качестве вводных параметров используется максимальная сила тока и напряжение. Например, для устройства с величиной сварочного тока 200 ампер и напряжением 50 вольт расчёт происходит следующим образом:

1. Рассчитывается мощность трансформатора: Р = 200 А * 50 В = 1000 Вт.

2. Вычисляется сечение окна: Sок = π * d2/ 4 = 3,14 * 144 / 4 (см2) ≈ 113 см².

3. Площадь поперечного сечения: Sс=h * Н = 2 см * 30 см = 60 см².

4. Мощность сердечника: Рс = 2,76 * 113 * 60 (Вт) ≈ 18712,8 Вт.

5. Количество витков первичной обмотки: W1 = 40 * 220 / 60 = 147 витков.

6. Количество витков для вторичной обмотки: W2 = 42 * 60 / 60 = 42 витка.

7. Площадь провода вторички находится исходя из наибольшего рабочего тока: Sпр = 200 А /(8 А/мм2) ≈ 25 мм².

8. Вычисляется площадь провода первички: S1 = 43 А /(8 А/мм2) ≈ 5,4 мм².

Такой вариант расчёта применим не только для сварочников, но и с успехом может быть использован для других типов. Как видно, никаких трудностей при расчёте возникнуть не должно.

Токовый трансформаторный прибор

Трансформатор тока своими руками сделать несложно, но перед его изготовлением понадобится выполнить расчёт. Такой расчёт отличаетчя от общепринятого в связи с конструктивными особенностями изделия. Начинается он с необходимой величины тока вторички (единица измерения ампер): Iам = Iпер / Iвт, где:

• Iпер — величина тока первичной обмотки, умноженная на число витков в ней;

• Iвт — количество витков во вторичной обмотке.

Для того чтобы разобраться, как правильно выполнить расчёт, проще рассмотреть практический пример самодельного токового устройства. Пусть на выходе токового устройства необходимо получить 4 вольта, а ток ограничить уровнем 5 ампер.

Поэтапно методика вычисления выглядит так:

  1. Берётся ферритовое кольцо, для примера 20×12х6 из 2000hМ.
  2. Мотается 100 витков провода. Эти витки составляют вторичную обмотку, так как первичная — это просто один виток проволоки, пропущенный через феррит.
  3. Значение тока во вторичке будет равно: I/Kтр = 5 / 100 = 0,05 A. где Ктр — коэффициент трансформации трансформатора (отношение количества первичной обмотки к вторичной).
  4. Величина нагрузочного шунта рассчитывается согласно закону Ома: R = U/I. Получается R= 4/0,05 = 80 Ом.

Таким образом можно выполнить расчёт для любых требуемых параметров. Независимо от формы тока на входе, на выходе токового устройства напряжение всегда двухполярное. В качестве шунта вторичной обмотки используется именно сопротивление, а не диод. Если есть необходимость в диоде, то вначале подключается резистор, а затем диод или диодный мост. Во втором случае сопротивление включается в диагональ моста.

Простой способ расчета вторичных обмоток

А теперь о том, как произвести расчет вторичных обмоток, если первичная уже имеется или готова. Использовать можно такой трансформатор 220 на 12 Вольт для светодиодных лент, только обязательно установите стабилизатор напряжения. В противном случае яркость будет непостоянной. Итак, что нужно для расчета? Несколько метров провода и только, наматываете определенное количество витков поверх первичной обмотки. Допустим, вы намотали 10 (а больше и не нужно, этого предостаточно).

Дальше необходимо собрать трансформатор и подключить первичную обмотку к сети через автоматический выключатель (для подстраховки). Ко вторичной обмотке подключаете вольтметр и щелкаете автомат. Смотрите, какое значение напряжения показывает прибор (например, он показал 5 В). Следовательно, каждый виток выдает ровно 0,5 В. А теперь просто ориентируетесь на то, какое напряжение вам нужно получить (в нашем случае это 12 В). Два витка – это 1 Вольт напряжения. А 12 В – это 24 витка. Но рекомендуется взять небольшой запас – около 25 % (а это 6 витков). Потери напряжения никто не отменял, поэтому вторичная обмотка на 12 В должна содержать 30 витков провода.

Самостоятельное изготовление

Цена на готовые изделия велика, при этом не всегда удаётся найти прибор с требуемыми параметрами. Поэтому целесообразно изготовить трансформатор или автотрансформатор своими руками. Кроме изготовления трансформатора с нуля существует возможность перемотать неисправное устройство.

Для изготовления изделия потребуются трансформаторное железо и провод. Железо представляет собой пластины собранные в виде тора и образующие магнитопровод. Его можно купить либо взять со старых разобранных приборов. Например, взять пластины от промышленных трансформаторов и, используя приспособление в виде разрезанного кольца, скатать из металла пластинки в виде бублика. Пластинки собрать, сердечник обтянуть стеклотканью и залить лаком.

Витки обмоток изготавливаются из медного провода нужного диаметра. Сама намотка не вызывает сложностей:

  1. Наматывается первичная обмотка. Для этого один конец проволоки закрепляется на расстоянии около трёх сантиметров от поверхности железа, а оставшаяся часть провода сворачивается в виде полоски.
  2. Полоска с проводом поочерёдно продевается через внутреннее отверстие сердечника, обматывая его грани, и равномерно распределяется по всей поверхности. В конце вывод фиксируется и выводится в районе начала обмотки на таком же расстоянии, что и начало.
  3. Сверху первичная обмотка проматывается слоем диэлектрика (стеклотканью).
  4. Таким же способом наматывается вторичная обмотка.
  5. После выполнения требуемого количество витков сверху наматывается стеклоткань, и трансформатор покрывается лаком.

Если в процессе намотки необходимо выполнить отвод, тогда наматываемый провод разрывается. На место разрыва впаивается отвод, а основной провод мотается дальше. Место отвода, как правило, тщательно изолируется. Закрепление концов обмоток обычно выполняется с помощью ниток, которыми привязываются провода к поверхности сердечника или проложенного провода. Полоску продеваемого провода лучше разместить на «челнок». Изготавливается он из небольшого пластикового профиля с прорезями в торцах для фиксации проволоки.

Такая работа требует внимательности и аккуратности, особенно при наматывании первичной обмотки. Для изготовления нескольких устройств целесообразно использовать станок для намотки тороидальных трансформаторов. Своими руками такой прибор выполнить сложно, но возможно.

Какую мощь будет иметь?

Как только вы сможете ответить на каждый из перечисленных вопросов, приобретайте требуемые материалы. Необходимые материалы вы можете без сложностей купить в специализированных магазинах. Вам потребуются провода, изоляция ленточного типа высшего качества, сердечник.

Трансформатор собственноручно требует намотку. В этих целях следует создать станок, изготовление которого осуществляется из доски длиною сорок сантиметров и шириною десять сантиметров. На доску необходимо прикрепить несколько брусков, посредством шурупов.

Расстояние, имеющееся между брусками не должно быть менее чем тридцать сантиметров. Затем следует просверлить отверстия восемь миллиметров диаметром. В созданные отверстия нужно вставить специальные пруты для катушки аппарата.

С одной из сторон следует создать резьбу. Закрутив обустроенную шайбу, вы получите его ручку. Габариты станка для намотки можно выбрать на собственное усмотрение. Прежде всего, правильный выбор напрямую зависит от габарита сердечника. При кольцевидной его форме намотка создаётся вручную.

Согласно схеме трансформаторного устройства, аппарат может быть оснащён разнообразным числом витков. Требуемое их количество рассчитывается, ориентируясь на мощность. К примеру, при необходимости создания прибора до 220 вольт, мощность должна достигать не менее 150 ватт.

Форма магнитного провода должна быть о-образной. Можно обустроить его из бу телевизора. При этом сечение определяется посредством определённой формулы.

Намоточный станок своими руками

Один из возможных вариантов — сделать станок, оснащённый регулируемым укладчиком и счётчиком витков, используя принцип велосипедного колеса.

Колесо надевается на штырь в стене, при этом его обод снабжается резиновым кольцом. Для того чтобы на обод надеть сердечник, предварительно потребуется его разрезать, а затем снова скрепить, получив цельный круг. Намотав на него необходимую длину проволоки, один ее конец подсоединяется к свободно расположенному на ободе сердечнику. Катушка передвигается по ободу полными кругами, в результате чего проволока укладывается на каркас. При этом для подсчёта оборотов используется велосипедный счётчик.

Создание более совершенного устройства потребует применение шаговых двигателей с позиционированием их положения. Для этого используются микроконтроллеры и электронный счётчик. Такое конструирование требует определённых навыков в радиоэлектронике.

Как изготовить каркас катушек

Крайне важно при изготовлении каркаса добиться полного отсутствия острых углов, в противном случае провод может повредиться, появится межвитковое замыкание. На щечках нужно отвести места, к которым будут крепиться выводные контакты от обмоток. После окончательной сборки каркаса необходимо округлить при помощи надфиля все острые грани.

Пластины из трансформаторной стали должны входить в отверстия максимально плотно, не допускается наличие свободного хода. Для намотки тонких проводов можно использовать специальное устройство с ручным или электрическим приводом. А толстые провода нужно наматывать исключительно руками без дополнительных устройств.

Схема с двумя диодами

Классическая схема выпрямления однофазного напряжения состоит из четырех диодов. Но в некоторых случаях при отсутствии нужного количества диодов или провода необходимого сечения применяют схему, в которой два диода:

  • используются две одинаковых обмотки, включенных согласно – конец первой подключается к началу второй;
  • к началу первой катушки и концу второй подключаются включенные встречно-последовательно диоды, обычно установленные на общем радиаторе;
  • постоянное напряжение снимается с мест соединения диодов и соединения обмоток.

Эта схема применима также при наличии двух одинаковых аппаратов 220/12 мощностью от 700Вт. Такое пусковое зарядное из двух трансформаторов в работе не отличается от обычного аппарата.

Пусковой аппарат из сварочного

Трансформатор для пуско-зарядного устройства своими руками можно сделать также из катушечного сварочника – определить необходимое число витков и намотать дополнительную катушку. Диоды допускается использовать уже установленные, но для пуска автомобиля они переключаются на пусковую обмотку перемычками или перекидным рубильником.

Диоды и соединительные кабеля

Кроме трансформатора, в устройстве используются диоды, выпрямляющие переменное напряжение, и кабеля, по которым к аппарату поступает переменное напряжение 220В и к автомобилю постоянное 12В.

Устройство выпрямителя

В выпрямителе используются диоды с номинальным напряжением от 25В. Это связано с тем, что 12В – это действующее значение напряжения на клеммах вторичной обмотки. Максимальное значение в √3 выше и составляет больше 20В.

Номинальный ток диодов нужен не меньше, чем 1/2 тока устройства. Это связано с тем, что через каждый из диодов проходит только одна полуволна переменного напряжения, а вторая идет через другой диод. В пусковых агрегатах мощностью 1500 Ватт ток диодов составляет от 60А. Таких не существует, поэтому берутся более мощные элементы 100А. Для лучшего охлаждения они устанавливаются на радиаторах.

Информация! Некоторые автомобилисты для лучшего охлаждения устанавливают аппарат без корпуса. При его наличии делается перфорация для циркуляции воздуха.

Соединительные кабеля

Питание 220В подается по трехжильному кабелю, например, ПВС 3*1. Ток при запуске составляет 7-10А, поэтому этого сечения провода достаточно, третья жила необходима для заземления металлических частей. Подключать его допускается при помощи обычной вилки и розетки.

Питание к машине подается двумя проводами или двухжильным кабелем с клеммами ПВС 2*16. При использовании проводов от “прикуривателя” на корпусе аппарата устанавливаются клеммы от старого аккумулятора.

Знание того, как сделать пусковое для машины из трансформатора избавит от необходимости приобретать дорогое магазинное устройство.

Назначение и применение

Высоковольтные трансформаторы (ВВ) относятся к группе преобразователей напряжения. Их предназначение – преобразовать высоковольтное напряжение в низковольтное для питания различных приборов. По принципу работы преобразователи напряжения мало отличаются от силовых трансформаторов. Во вторичной обмотке всегда меньше витков, чем в первичной, если преобразователь понижающий, и наоборот, если прибор повышающий.

ВВ трансформаторы классифицируются по:

  • количеству фаз (одно- или трехфазные);
  • количеству обмоток (две, три или четыре);
  • допускаемым погрешностям;
  • способу установки (внутренняя или наружная);
  • назначению (общее или специальное).

Преобразователи специального назначения используются в различном электрооборудовании:

  • телевизорах и радиоприемниках;
  • устройствах связи;
  • бытовых приборах (например, боках питания для систем освещения).

Большинство преобразователей этого типа маломощные (не более нескольких киловольт-ампер), частота от 50 Гц, предназначены для внутренней установки. Количество намоток зависит от того, в какое оборудование трансформатор будет установлен. Изоляция заливается эпоксидной смолой.

Сборка

Изготовить качественный высоковольтный трансформатор невозможно без пропитки эпоксидной смолой. Цель этой процедуры – удалить пустоты и пузырьки воздуха, вызывающие протечки и пробои. Нужен каркас для заливки и вакуумная установка.

Последнюю тоже можно сделать своими руками, если имеется:

  • обратный клапан (продается в зоомагазинах);
  • шланг из силикона;
  • банка, оснащенная прорезиненной привинчиваемой крышкой;
  • шприц;
  • пластилин;
  • герметик.

В металлической крышке делается отверстие, в которое пропихивается шланг. Все щели замазываются герметиком, потом пластилином с обеих сторон. Воздух из банки выкачивается шприцем (крышка должна вжаться).

Перед пропиткой смола подогревается, добавляется отвердитель. Каркас можно сделать из обычной бумаги, предназначенной для принтера компьютера. К бумаге приклеивается скотч, делается цилиндр по диаметру преобразователя, все склеивается термоклеем. После обработки в вакууме необходимо подождать примерно сутки, потом можно снять каркас.

Перед установкой преобразователь желательно проверить на:

  • целостность магнитопровода;
  • отсутствие разрывов проводов в обмотках;
  • целостность изоляционного материала.

Для проверки изоляции мультиметр переключается на мегомметр, замеряется сопротивление между обмотками или между каждой обмоткой и корпусом (для ВВ оптимальное значение 1 МОм).

Далее измеряется ток в обмотках в рабочем состоянии, чтобы определить, соответствует ли коэффициент трансформации требуемому. Но это не самый лучший метод, если напряжение достаточно высокое. Более безопасно прозвонить выводы. Если они из разных обмоток, на сопротивление бесконечное. При прозвоне выводов одной обмотки сопротивление имеет цифровое значение.

Что нужно знать

Когда есть потребность в этом аппарате, нужно определиться с его предназначением и свойствами:

  • Повышение или понижение напряжения.
  • Какое напряжение имеется на входе и какое необходимо на выходе устройства.
  • Какой частотой обладает сеть переменного тока.
  • Какая мощность желательна от самодельного аппарата.

После того, как определились какое конкретно необходимо устройство, можно приобретать нужные материалы и сопутствующие предметы. А именно:

  • лакоткань (изоляционную ленту на тканевой основе);
  • сердечник (можно использовать от неисправного телевизора, только подходящей мощности),
  • необходимое количество, изолированных эмалью, провода.

Перед произведением обмотки желательно изготовить несложный станок для этих целей. Для этого нужно:

  • Доска размерами: шириной 10 см, длиной 40 см;
  • Просверлить два бруса 50 х 50 мм на одинаковой высоте отверстия диаметром восемь миллиметров.
  • Прикрутить их к доске саморезами на расстоянии в 300 мм.
  • В отверстия брусков вставить прут, на котором заранее надета катушка предстоящего трансформатора.
  • На одном конце штыря нарезать резьбу длиной 30 мм.
  • На него гайками закрепить рукоятку, вращая которую на прут с катушкой будет наматываться провод.

Источник

Инструменты и материалы для изготовления устройства

Для его изготовления вам потребуются следующие инструменты:

  • Сердечник (можно взять из старого телевизора).
  • Лакоткань.
  • Толстый картон.
  • Доски и деревянные бруски.
  • Стальной прут.
  • Клей и пила.

Сделать этот трансформатор несложно. Трансформатор для галогенных ламп тоже можно сделать с помощью этих инструментов. Помните, что не нужно отступать от технологии намотки. Если все правила будут соблюдены, тогда оно проработает много лет. Этих инструментов и материалов хватит для того, чтобы изготовить трансформатор своими руками.

Изготовление обмоток для повышающего трансформатора


Катушку необходимо надеть на деревянный брусок. Предварительно в нем следует просверлить отверстие для намоточного прутка. Подключение трансформатора тока считается наиболее ответственным шагом. Эту деталь следует вставить в станок и приступить к изготовлению обмотки:

  1. На катушку следует намотать два слоя лакоткани.
  2. Конец провода нужно закрепить на щечке и начать вращать ручку станка.
  3. Витки нужно плотно укладывать.
  4. После первичной обмотки провод нужно обрезать и закрепить на щечке рядом с первым.
  5. На выводы нужно закрепить изоляционную трубку.

Выходные параметры пускового устройства

Ток, потребляемый стартером легкового автомобиля во время вращения коленвала, зависит от марки машины и составляет 80-100А при напряжении 12В. Однако для того, чтобы привести его в движение, стартер кратковременно потребляет ток до 200А. Поэтому в ремонтных мастерских используются для запуска двигателей легковых автомобилей устройства мощностью Р=12Вх200А=2400Вт. Необходимые параметры для пуска грузовых машин зависят от конкретной модели автомобиля.

В домашних условиях аппарат подключается параллельно АКБ. Мощность его достаточно выбрать 1500 Вт при токе 125А и определяется тем, какую мощность имеет трансформатор пуско-зарядного устройства. Схема намотки может быть простой или со средней точкой.

Информация! Некоторые магазинные аппараты имеют мощность всего 700Вт и ток 60А.

Устройство пусковой установки

Пусковая аппаратура состоит из трех частей:

  • понижающий трансформатор 220/12В;
  • диодный мост;
  • соединительные кабеля с клеммами.

Совет! Для подключения аппарата к АКБ допускается применение проводов “прикуривателя”.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]