Устройство и принцип работы автоматического выключателя

Схема АВР на два ввода от трансформаторных подстанций с секционированием построена на базе автоматических выключателей с мотор-приводами, обеспечивающими автоматическое переключение вводов. В качестве логического устройства, управляющего работой схемы, используется программируемое реле EKF PRO-Relay.

Помимо данных устройств, в работе схемы задействованы реле контроля фаз для контроля фазных напряжений, симметрии и последовательности чередования фаз, автоматы питания цепей управления схемы АВР и мотор-приводов, промежуточное реле, через которое происходит переключение питания цепей управления либо с первого, либо со второго ввода, в зависимости от наличия напряжения на одном из них.

Автоматические выключатели оснащаются контактами состояния для сигнализации положения и контактами аварийного срабатывания.

Также в схеме задействованы переключатель выбора режимов работы ручной/автоматический, кнопка сброса ошибки АВР, лампы для индикации работы схемы.

Секционный выключатель назначение

Рассмотрим принцип действия схем АВР на примере двухтрансформаторной подстанции, приведенной на рис. 3.2. Нормально оба трансформатора Т1 и Т2 включены и осуществляют питание потребителей секций шин низшего напряжения.
Рис. 3.2. (см. скан) Схема АВР секционного выключателя на подстанции: а — схема первичных соединений; б — цепи переменного напряжения; в — цепи оперативного тока

При отключении по любой причине выключателя Q1 трансформатора 77 его вспомогательный контакт SQL2 размыкает цепь обмотки промежуточного реле KL1. В результате якорь реле KL1, подтянутый при включенном положении выключателя, при снятии напряжения отпадает с некоторой выдержкой времени и размыкает контакты.

Второй вспомогательный контакт SQ1.3 выключателя Q1, замкнувшись, подает плюс через еще замкнутый контакт KL1.1 на обмотку промежуточного реле KL2, которое своими контактами производит включение секционного выключателя Q5, воздействуя на контактор включения YAC.5. По истечении установленной выдержки времени реле KL1 размыкает контакты и разрывает цепь обмотки промежуточного реле KL2. Если секционный выключатель Q5 включится действием схемы АВР на неустранившееся КЗ и отключится релейной защитой, то его повторного включения не произойдет. Таким образом, реле KL1 обеспечивает однократность АВР и поэтому называется реле однократности включения. Реле KL1 вновь замкнет свои контакты и подготовит схему АВР к новому действию лишь после того, как будет восстановлена нормальная схема питания подстанции и включен выключатель QL Выдержка времени на размыкание контакта KL1 должна быть больше времени включения выключателя Q5, для того чтобы они успели надежно включиться.

С целью обеспечения АВР при отключении выключателя Q2 от его вспомогательного контакта SQ2.2 подается команда на катушку отключения YAT1 выключателя Q1. После отключения Q1 схема АВР запускается и действует, как рассмотрено выше.

Аналогично рассмотренному выше АВР секционного выключателя будет действовать и при отключении трансформатора 72.

Кроме рассмотренных случаев отключения одного из трансформаторов потребители также потеряют питание, если по какой-либо причине останутся без напряжения шины высшего напряжения Б (или А), Схема АВР при этом не подействует, так как оба выключателя Т1 (Q1 и Q2) или Т2 (Q3 и Q4) останутся включенными. Для того чтобы обеспечить действие схемы АВР и в этом случае, предусмотрен специальный пусковой орган минимального напряжения, в состав которого входят реле KV1, KV2 и KV3. При исчезновении напряжения на шинах подстанции Б, а следовательно, и на шинах В минимальные реле напряжения, подключенные к трансформатору напряжения TV1, замкнут свои контакты и подадут плюс оперативного тока на обмотку реле времени КТ через контакт реле KV3. Реле КТ при этом запустится и по истечении установленной выдержки времени подаст плюс на обмотку выходного промежуточного реле KL3, которое произведет отключение выключателей Q1 и Q2 трансформатора Т1. После отключения выключателя Q1 схема АВР подействует, как рассмотрено выше.

Реле напряжения KV3 предусмотрено для того, чтобы предотвратить отключение трансформатора Т1 от пускового органа минимального напряжения в случае отсутствия напряжения на шинах высшего напряжения А резервного трансформатора, когда действие схемы АВР будет заведомо бесполезным. Реле KV3, подключенное к трансформатору напряжения TV2 шин А, при отсутствии напряжения размыкает контакт KV3.1 и разрывает цепь от контактов KV1.1 и КV2.1 к обмотке реле времени КТ.

Аналогичный пусковой орган минимального напряжения предусматривается для отключения трансформатора Т2 в случае исчезновения напряжения на шинах А (на рис. 3.2 не показан).

На рис. 3.3 приведена схема АВР на переменном оперативном токе для секционного выключателя подстанции с двумя трансформаторами, питающимися без выключателей на стороне высшего напряжения от двух линий. Секционный выключатель Q3 нормально отключен. Оперативный ток для питания схемы автоматики подается от трансформаторов собственных нужд Т3 и Т4. Особенностью схемы является то, что при исчезновении напряжения на одной из линий (W1 или W2) устройство АВР включает секционный выключатель Q3, а при восстановлении напряжения на линии автоматически восстанавливает нормальную схему подстанции.

Пусковым органом схемы автоматики являются реле времени КТ1 и КТ2 типа РВ-03 (ЭВ-235), контакты которых КТ1.2 и КТ2.2 включены последовательно в цепи YAT1. Последовательно с контактами этих реле включен мгновенный контакт реле времени КТ3.1 трансформатора Т2, которое контролирует наличие напряжения на этом трансформаторе. Обмотки реле КТ1 и КТ2 включены на разные трансформаторы (Т3 и TV1), что исключает возможность ложного действия пускового органа в случае неисправности в цепях напряжения. Реле КТ1, подключенное к трансформатору собственных нужд ТЗ, установленному до выключателя трансформатора Т1, используется также для контроля за появлением напряжения на Т1 при включении линии W1.

При исчезновении напряжения в результате отключения линии W1 запустятся реле времени КТ1 и КТ2 и разомкнут свои мгновенные контакты КТ1.1 и КТ2.1, снимая напряжение с обмотки реле времени КТ3 типа РВ-01 (ЭВ-248). Это реле при снятии с его обмотки напряжения мгновенно возвращается в исходное положение, а при подаче напряжения срабатывает с установленной выдержкой времени.

Если действием схемы АПВ линии напряжение на подстанции восстановлено не Вудет, то с установленной выдержкой времени (большей времени АПВ лйнии) замкнутся контакты реле времени KTL2 и КТ2,2, фиксирующие отсутствие напряжения на 1-й секции, и создадут цепь на катушку отключения YAT1 выключателя Q1 трансформатора Т1 с контролем напряжения на 2-й секции (контакт КТ3.1). При отключении выключателя 01 замкнется его вспомогательный контакт SQL1 (рис. 3.3, в) в цепи катушки включения YAC3 секционного выключателя Q3 через еще замкнутый контакт KQCl. 1 реле однократности включения. Секционный выключатель включится и подаст напряжение на секцию подстанции, при этом подтянется реле времени КТ2, замкнет контакт КТ2.1 и разомкнет КТ2.2. Реле КТ1 останется без напряжения, поэтому его контакт КТ1.1 останется разомкнутым, а реле времени КТ3 будет по-прежнему находиться в исходном положении, держа разомкнутыми все свои контакты.

Рис. 3.3. (см. скан) Схемы АВР секционного выключателя на переменном оперативном токе для подстанции с двумя трансформаторами, подключенными к линиям электропередачи без выключателей: а — схема подстанции; б — цепи управления и АВР выключателя Q1; в — цепи управления и АВР выключателя Q3 (пунктиром обведены цепи, относящиеся к трансформатору Т2); г — цепи ускорения защиты Q3

При восстановлении напряжения на линии W1 напряжение появится и на трансформаторе Т1, поскольку его отделитель оставался включенным. Получив напряжение, реле КТ1 подтянется, замкнет контакт KTL1 и разомкнет контакт КТ1.2. При замыкании контакта КТ1.1 начнет работать реле времени КТ3, которое своим проскальзывающим контактом КТЗ.2 создаст цепь на включение выключателя Q1, а конечным контактом КТ3.3 — цепь на отключение секционного выключателя при этом автоматически будет восстановлена исходная схема подстанции. Цепь на отключение в рассматриваемом случае секционного выключателя создается лишь при условии, что включен выключатель Q2 трансформатора Т2. Если включение выключателя Q3 будет неуспешным вследствие наличия устойчивого повреждения на 1-й секции, она должна быть выведена в ремонт. Схема автоматики, аналогичная приведенной на рис. 3.3, обеспечивает действие АВР при отключении трансформатора Т2.

Для быстрого отключения в случае включения выключателя Q3 на К3 в схеме предусмотрено ускорение защиты секционного выключателя после АВР. Ускорение осуществляется контактами реле KQC1 и КQС2, которые шунтируют контакт реле времени защиты секционного выключателя.

Разновидности

У быстродействующих выключателей имеется специальный механизм, отключающий сеть. ПО принципу действия этого элемента их можно разделить на две категории. Первая категория — устройства с пружинным вариантом отключения, где разрыв цепи достигается за счет усилия мощных отключающих пружин. Вторая категория — магнитно-пружинные приспособления. В них также используется сила пружины, однако к ним добавляется еще и электромагнитное воздействие для отключения цепи.

Кроме этого, есть еще один пункт, по которому быстродействующие выключатели делятся на категории — способность реагировать на направление тока.

В данном случае выделяют поляризованные и неполяризованные аппараты. Первый вид способен произвести разрыв цепи при условии, что ток будет проходить в определенном направлении. Второй же вид будет размыкать цепь при достижении определенного значения тока, не обращая внимания на то, в каком направлении он протекает непосредственно через устройство.

Стоит отметить, что ранее выпускались отечественные быстродействующие автоматические выключатели, которые пользовались широкой популярностью на тяговых подстанциях. Здесь стоит добавить, что производство некоторых моделей данного оборудования уже завершилось, однако они все еще находятся в эксплуатации.

Защиты и автоматика секционного выключателя 6(10) кВ

Для секционного выключателя (СВ) защиты практически аналогичны защитам ввода 6(10) кВ. При этом надо помнить, что в СВ сходятся сигналы присоединений обеих секций.

Например, если говорить про УРОВ, то на СВ заводятся сигналы УРОВ с каждого присоединения подстанции в то время, как на ввод только УРОВ присоединений своей секции. То же самое с сигналами ЛЗШ и дуговой защиты.

СВ 6(10) кВ — это своего рода узел, куда сводится множество защитных сигналов. Поэтому в терминале СВ должно быть достаточно дискретных входов.

Для сетей в односторонним питанием (а мы рассматриваем именно такие) СВ в нормальном режиме всегда отключен. Если срабатывает АВР, то он сначала отключает ввод потерявший питание, а потом включает СВ. Может быть и наоборот, но это больше характерно для быстродействующего АВР (БАВР), который сегодня набирает популярность.

Алгоритма АВР в терминале СВ как такового нет. Он просто выполняет команды АВР терминалов вводов, которые управляют СВ через дискретные входы.

Можно сказать, что РЗА секционного выключателя для стандартной схемы довольно простые и обычно не вызывают вопросов даже у начинающих специалистов.

Кстати, вопрос для начинающих: почему на СВ 6(10) кВ не используют токовую отсечку? Ведь на шинах ток КЗ максимальный и отключать его следует как можно быстрее. Ответы пишите в комментариях.

В следующий раз рассмотрим защиты и автоматику ТН 6(10) кВ

БЭМП РУ-СВ содержит все перечисленные в статье защиты

Отсечки на СВ не применяют, потому что вряд ли получится отстроить ее по току от отсечек отходящих линий, а так же выдержать коэффициент чувствительности в конце зоны защиты т.е. перед тт отходящей линии, если конечно сборные шины сделаны не из какой-нибудь стали )) ЛЗШ помогает быстро отключить повреждение на шинах. В сетях с напряжением 35 кВ иногда применяется ускоряющаяся отсечка на СВ, но, возможно, это только в старых схемах и в сетях 6 (10) кВ не применяется вовсе

Отсечку не отстраивают от других отсечек. Она отстраивается в основном от бросков тока намагничивания и максимального тока КЗ в конце зоны. А у СВ зона имеет нулевую длину (шины), поэтому токи КЗ в начале и конце зоны одинаковые. Таким образом, отсечку просто нельзя выбрать. А так в целом ответ правильный

Получается по току отстраивают только МТЗ. Хотя логично, зона защиты мтз одного присоединения перекрывает зону мтз другого и для надежности отстраивают ток срабатывания одной мтз от другой, с отсечкой это даже невозможно, спасибо )

Селективность МТЗ обеспечивается выдержкой времени. По току МТЗ смежных участков согласуются по чувствительности, чтобы вышестоящая защита не пустилась без пуска нижестоящей. Если интересна эта тема, то предлагаю посмотреть Курс по МТЗ — https://pro-rza.ru/kursy/videokurs-2-maksimalnaya-tokovaya-zashhi/

Соглашусь с Александром, ТО по своей сути будет не селективно работать по отношению к отходящим фидерам, что бы её сделать селективной, нужно либо увеличить ток срабатывания (уменьшить чувствительность) или сделать выдержку времени ( лишить быстродействия), таким образом встает вопрос «Зачем она нужна?». ЛЗШ и ДгЗ справятся с задачей быстрее и надежнее.

Интернет форумы — крайне вредная штука! Вопрос поставлен некорректно. Для начала нужно понимать в каком режиме работает сеть. 1. Например при работе подстанции от двух вводов и замкнутом секционном выключателе — возникает КЗ на одной из секций. В этом случае мы делим шины секционным выключателем без выдержки времени (чтобы уменьшить токи КЗ), и только потом разбираемся на какой из шин КЗ. 2. На сборных шинах генераторного напряжения — все то же самое! 3. Например при КЗ на присоединении, подключенному к шинам, отказал основной комплект РЗА вместе с УРОВ и поврежденный участок сети будет отключен последующей защитой. Блокировка местного АВР от последующей защиты невозможна ввиду её удаленности. При снижении напряжения на шинах запустится местный АВР секционным выключателем на КЗ. При включении СВ всегда работает ускорение чувствительной защиты СВ и МТЗ сработает за 0,15..0,2с. То есть с минимальной задержкой времени, необходимой для отстройки от бросков тока намагничивания трансформаторов и броска апериодической составляющей пусковых токов электродвигателей. А вот отсечка в этом случае должна работает без выдержки времени. Поскольку в этом случае нет ни какой разницы: КЗ у нас на шинах, или неотключаемое КЗ за выключателем на присоединении. С уважением А.Л.Соловьёв

Александр Леонидович, добрый день. Я рассматривал стандартную распределительную подстанцию 6-10 кВ с базовыми присоединениями — это у есть в первой статье цикла по защитам 6-10 кВ (https://pro-rza.ru/zashhity-tipovyh-prisoedinenij-6-10-kv/). Конечно режимы работы СВ могут быть разными, но мы рассматриваем основной случай, когда СВ разомкнут в нормальном режиме. Кольцевых режимов через СВ в распределительной сети крайне мало, сегодня параллельная работа трансформаторов почти никогда не предусматривается (сами сети против). Шины станций действительно лучше сразу разделять, чтобы уменьшить воздействие на генераторы, но это другая тема.

Что же касается 3 вопроса, то у вас какая-то странная схема, когда СВ есть, а вводных выключателей нет. КЗ на линии, где отказал комплект РЗА, должно отключаться защитой ввода, а не удаленной защитой присоединения. При этом блокировка АВР пройдет в штатном режиме и СВ не включится. Если же у вас вместо выключателей на вводах стоят ВНА, то и АВР по 6(10) кВ делать нельзя, ровно по тем причинам, которые вы описали (нет возможности блокировать АВР при КЗ). В этом случае АВР можно сделать по 0,4 кВ ниже.

1. Во первых — параллельную работу трансформаторов никто не отменял. Действительно, применяется не часто, но применяется при режимах с большой разницей в нагрузках трансформаторов. 2. Хорошо, что про шины генераторного напряжения Вы согласны. 3. Приезжали ко мне слушатели, у которых в схемах: СВ есть, АВР есть, УРОВ есть, на вводах ВНА, а выключатель вводной линии находится за 300 метров.

Поэтому я и начал с того, что: «Для начала нужно понимать в каком режиме работает сеть» потому что универсальных решений в релейной защите на все случаи жизни быть не может. Поэтому на СВ и применяют терминалы у которых 3…4 группы разных уставок для всех предполагаемых режимов работы сети.

Схемы и случаи бывают разные, это правда. Просто не вижу смысла рассказывать об этом начинающим релейщикам (о чем и написал в первой статье). Им сначала нужно дать общий фундамент, а уж потом смотреть исключения. Если сказать, что есть условные 25 режимов работы СВ и сразу всех их описывать (при том, что первый режим — это 95% всех решений в энергетике), то у читателя будет каша в голове. Но это мой подход и он, конечно, может быть не оптимальным. Моя аудитория, в основном, именно начинающие специалисты. Для них я и пишу статьи и видео. А опытные спецы и без меня знают, как работает СВ)

В том то всё и дело, что информация для «начинающих». В результате упрощения в вышеприведенных материалах не видна разница между защитами вводного выключателя и секционного. А делительные защиты — тема вообще закрытая для данного форума. С уважением А.Л.Соловьёв.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Преимущества вакуумных коммутаторов

Вакуумные выключатели на 6, 10 и 35 кВ обладают очевидными преимуществами по сравнению с конкурентными решениями, что обуславливает широкое их применение. К очевидным достоинствам можно отнести:

  • Безопасность. Любой вакуумный коммутационный узел 6, 10 или 35 кВ намного легче аналогов для этого номинала напряжений. Это обеспечивает снижение динамических нагрузок, шума, мощности привода, что комплексно сказывается на безопасности эксплуатации,
  • Автономность. В отличие от масляных, вакуумные выключатели не требуют периодической компенсации уровня рабочей среды, снижая объемы работ по обслуживанию к минимуму,
  • Быстродействие. Малый ход контактной группы обеспечивает более быстрое срабатывание, а значит, меньший износ узлов.

АВР на 2 ввода с секционным выключателем

2021-01-09 Промышленное

Схема АВР на два ввода от трансформаторных подстанций с секционированием построена на базе автоматических выключателей с мотор-приводами, обеспечивающими автоматическое переключение вводов. В качестве логического устройства, управляющего работой схемы, используется программируемое реле EKF PRO-Relay.

Помимо данных устройств, в работе схемы задействованы реле контроля фаз для контроля фазных напряжений, симметрии и последовательности чередования фаз, автоматы питания цепей управления схемы АВР и мотор-приводов, промежуточное реле, через которое происходит переключение питания цепей управления либо с первого, либо со второго ввода, в зависимости от наличия напряжения на одном из них.

Автоматические выключатели оснащаются контактами состояния для сигнализации положения и контактами аварийного срабатывания.

Также в схеме задействованы переключатель выбора режимов работы ручной/автоматический, кнопка сброса ошибки АВР, лампы для индикации работы схемы.

Программируемое реле EKF PRO-Relay

Основное управление логикой работы осуществляется программируемым реле EKF PRO-Relay. Это позволяет добиться более гибкой реализации основных функций системы управления.

В данной схеме программируемое реле контролирует положение автоматических выключателей, обеспечивает включение-выключение вводов, с помощью него задаются и изменяются временные задержки на срабатывание выключателей, выполняются функции диагностики.

Кроме того, в случае необходимости, можно без лишних затрат изменить алгоритм работы схемы АВР, выводить необходимую информацию о работе АВР на верхний уровень по Modbus, правда для этого необходим дополнительный интерфейсный модуль.

В качестве программного обеспечения для PRO-Relay используется PRO-Design. Программу можно бесплатно скачать с официального сайта EKF.

Также для загрузки программы понадобится кабель ILR-ULINK, который необходимо будет приобретать отдельно.

Алгоритм работы схемы АВР

Вводной автомат QF1 питает секцию 1, QF2 питает секцию 2. В нормальном режиме работы каждый из подключенных к АВР потребителей получает питание от своей секции, при этом секционный выключатель находится в выключенном состоянии.

При пропаже питания на первом вводе, второй ввод запитывает, через секционный выключатель, секцию 1 и секцию 2 и соответственно наоборот, при пропаже питания на втором вводе, первый ввод, через секционный выключатель, обеспечивает питание секций 1 и 2.

АВР осуществляет свою работу в автоматическом режиме после подачи питания на программируемое реле согласно заложенному алгоритму, с 5 сек задержкой включения и отключения при пропаже и появления напряжения на одном из вводов и включение и отключение секционного выключателя.

При исчезновении напряжения на вводе 1 контакты реле KSV1 размыкаются, с 5 сек. задержкой подается команда на отключение автоматического выключателя QF1. Через определенный промежуток времени, включается секционный выключатель, при условии что:

  • Отключен вводной автомат QF1
  • Есть напряжение на вводе 2 (контакты реле KSV2 замкнуты)
  • Отсутствует сигнал Блокировка АВР
  • Переключатель выбора режимов работы SA1 в положении авто

При срабатывании выдается световая индикация на двери щита QF1 (Ввод1) – выкл. QF2 (Ввод2) – вкл. QF3 (Секционный) – вкл. Если напряжение на вводе 1 появится раньше, чем истечет время задержки 5 сек, то команда на включение секционного выключателя не подается.

При восстановлении питания на первом вводе подается команда, с задержкой, на отключение секционного выключателя QF3. Затем приходит команда на включение вводного автомата первого ввода.

При восстановлении ввода выдается световая индикация на двери щита QF1 (Ввод1) – вкл. QF2 (Ввод2) – вкл. QF3 (Секционный) – выкл.

При исчезновении напряжения на вводе 2 контакты реле KSV2 размыкаются, подается команда на отключение автоматического выключателя QF2. Весь процесс повторяется аналогично первому вводу.

При пропаже напряжения на обоих вводах контроллер отключается.

Блокировка работы АВР происходит при переключении мотор-приводов автоматических выключателей в ручной режим, при отключении QF1, QF2, QF3 по срабатыванию защиты по сигналу от контакта аварийного состояния, при неисправности блока управления АВР. При этом есть возможность перейти в ручной режим управления.

Сброс (квитирование) аварии осуществляется оператором методом отключения и включения питания контроллера, либо кнопкой на лицевой панели шкафа.

Задействованные входа-выхода программируемого реле

Входы DI

I1 – NO контакт реле контроля фаз KSV1 I2 – NO контакт реле контроля фаз KSV2 I3 – Переключатель SA1 (Ручной- Авто) I4 – Кнопка SB1 Сброс ошибки (блокировки) АВР I5 – Контакт состояния включено-выключено (Обозначение на схеме OF) QF1 I6 – Контакт аварийного срабатывания (Обозначение на схеме SY) QF1 I7 – Контакт состояния включено-выключено (Обозначение на схеме OF) QF2 I8 – Контакт аварийного срабатывания (Обозначение на схеме SY) QF2 I9 – Контакт состояния включено-выключено (Обозначение на схеме OF) QF3 IA — Контакт аварийного срабатывания (Обозначение на схеме SY) QF3

Выходы DO

Q1 – Индикация Работа АВР в автоматическом режиме Q2 — Индикация Работа АВР в ручном режиме Q3 — Индикация Ошибка работы АВР Q4 – Отключить мотор привод автоматического выключателя QF1 Q5 – Включить мотор привод автоматического выключателя QF1 Q6 – Отключить мотор привод автоматического выключателя QF2 Q7 – Включить мотор привод автоматического выключателя QF2 Q8 – Отключить мотор привод автоматического выключателя QF3 Q9 – Включить мотор привод автоматического выключателя QF3

Схема АВР — Скачать

Программа — Скачать

Для чего служит автомат

В цепи электропитания автомат ставят для предупреждения перегрева проводки. Любая проводка рассчитана на прохождение какого-то определенного тока. Если пропускаемый ток превышает это значение, проводник начинает слишком сильно греться. Если такая ситуация сохраняется достаточный промежуток времени, начинает плавиться проводка, что приводит к короткому замыканию. Автомат защиты ставят чтобы предотвратить эту ситуацию.


Пакетник или автомат защиты необходим для предотвращения перегрева проводников и отключения в случае КЗ

Вторая задача автомата защиты — при возникновении тока короткого замыкания (КЗ) отключить питание. При замыкании токи в цепи возрастают многократно и могут достигать тысяч ампер. Чтобы они не разрушили проводку и не повредили аппаратуру, включенную в линию, автомат защиты должен отключить питание как можно быстрее — как только ток превысит определенный предел.

Чтобы защитный автоматический выключатель исправно выполнял свои функции, необходимо правильно сделать выбор автомата по всем параметрам. Их не так много — всего три, но с каждой надо разбираться.

КОНСТРУКЦИЯ

THO/II

Стандартным элементом селективных автоматических выключателей серии ТНО; ТНО/II является выключатель нагрузки ТН12, закрытый в герметичном стальном резервуаре, наполненном газом SF6. Резервуар отвечает критериям герметичности в соответствии с нормой IEC 56. Это означает, что его повторное наполнение во время нормальной работы выключателя нагрузки не требуется. В соответствии с существующими правилами технического надзора для оборудований под давлением, аппарат не подлежит обязательному технадзору устройств под давлением из-за низкого содержания SF6 в резервуаре. В сочетании с современной и надежной системой дистанционного радиоконтроля он гарантирует многолетнюю работу без необходимости прохождения техосмотров, регулировки и консервации контактов, что особенно важно на протяженных воздушных сетях. Контакты выключателей нагрузки внутри резервуара соединены с проходными изоляторами, позволяющими установку «самоочищающихся» силиконовых изоляторов 24 (25)кВ, 36кВ, с отличными гидрофобными свойствами, к которым присоединяются мостики воздушной или кабельной линии, а также возможно присоединение угловых адаптеров. Для дистанционного управления использован простой и надежный электрический привод с однопружинным или двухпружинным механизмом, гарантирующим мгновенное соединение и разъединение главных контактов выключателя нагрузки в течение 50 мс. Моторные приводы, которые установлены в выключателях нагрузки и секционных выключателях серии ТНО, взаимодействуют со всеми системами управления и надзора путем радиокоммуникации в системах Smart Grid.

Электрические приводы выполнены в двух версиях:

  • Однопружинный привод «Т-1» — с полным временем срабатывания 5, 6с,
  • Двухпружинный привод «Т-2» — взаимодействует с полной автоматикой АПВ, служащей для быстрого разъединения поврежденных фрагментов сети в перерыве без напряжения со временем срабатывания на «разъединить» 0,1с.

Моторный привод Т-1 или Т-2 встроен непосредственно в резервуар выключателя нагрузки и сцеплен с его главным рабочим валом, что исключает возможность вмешательства в устройство неуполномоченных лиц и сводит к минимуму возможность ошибочных сигнализаций и не срабатываний. Пружинный механизм, а также двигатель имеют сигнальные контакты, информирующие систему SCADA о состоянии положения аппарата, а также оптический индикатор, который виден с земли. Каждый выключатель нагрузки оснащен ручным приводом, который позволяет управлять аппаратом вручную с земли, этот привод предназначен для механической блокировки во взведенном или разомкнутом положениях с возможностью установки навесного замка. Подробная информация о выключателях нагрузки (секционных выключателях) находится на сайте www.zpue.com, а также в техпаспорте.

Какая разница между черной и белой завистью?

Зависть — очень необычное понятие в характере человека. Так считают психологи. У лексикографов — свое мнение. Если обратиться к словарям русских лингвистов Даля, Ушакова, Ожогова, то они сходятся в одном, что: «Зависть — это желание человека иметь то, что имеется в других». Скорее всего — в плане достатка, материальных благ, внешних данных и даже таланта.

И я не удивляюсь. На самом деле все сходится. Не зря писатель Ю. Бондарев назвал зависть человека «слепой проституткой». Ведь завистников хватало во все периоды существования жизни на Земле.

И очень трудно разобраться между понятиями черная и белая зависть. Вот именно о белой зависти четко и понятно высказался поэт В. Рыжов:

«Разве не бывает зависть белая,

Зависть к прямоте, что рядом с бедами.

К тем, кто не забудет, что обещано,

К тем, кто не солжет врагам и женщинам».

ХАРАКТЕРИСТИКА

  • Нет необходимости проводить регулярные техосмотры и техобслуживания главных контактов выключателя нагрузки, что в значительной степени снижает эксплуатационные затраты.
  • Безаварийная работа в экстремальных природных условиях (изморозь, обледенение, ветер, лесная зона)
  • Низкий расход и предотвращение старения всех активных компонентов вызвано использованием SF6, что дает в результате более высокую надежность и отличную механическую, а также электрическую прочность.
  • Каждый выключатель нагрузки серии ТНО оснащен датчиком давления «прессостат» SF6, который контролирует давление в резервуаре и отвечает за правильную работу выключателя нагрузки, а также в случае аварии автоматически отсекает систему питания двигателя и в то же время предотвращает выполнение команды «разъединить».
  • Выключатели нагрузки серии ТНО оснащены ручным аварийным приводом, который может выполнять коммутационные операции при полной нагрузке номинального тока в случае разрядки аккумуляторов, встроенных в шкаф объектной телемеханики.

Резюме

Номинальный ток автоматического выключателя не равен предельно допустимому для кабеля! В силу особенностей конструкции автоматический выключатель может длительное время пропускать через себя токи значительно больше номинальных и не отключаться.

Разные типы электромагнитных расцепителей позволяют избежать ложных срабатываний, но использовать тип С, и в особенности тип D нужно понимая что к чему.

Если ток короткого замыкания в вашей линии огромен, то отключающая способность автоматического выключателя должна быть еще больше.

А чтобы знать ток короткого замыкания, его нужно измерить специализированным прибором. И только после измерения можно сказать, будет ли правильно работать защита

Хочу сказать спасибо всем, кто принимал участие в рецензировании черновика. Буду рад указаниям на фактические ошибки в статье и ценным дополнениям.

Источник

Параметры выключателей нагрузки, секционных выключателей серии ТНО

Соответствие нормам:

  • PN-EN 62271-103:2011 — Высоковольтная аппаратура распределения и управления. Часть 103: Выключатели нагрузки с номинальным напряжением выше 1кВ до 52 кВ включительно;
  • PN-EN 62271-1:2009+A1:2011 — Высоковольтная аппаратура распределения и управления. Часть 1: Общие постановления;
  • PN-EN 62271-102:2005; PN-EN 62271-102:2005/A1:2011 — Высоковольтная аппаратура распределения и управления. Часть 102: Разъединители и заземлители высокого напряжения переменного тока;
  • PN-EN 60529:2003 — Степень защиты, обеспечиваемая корпусами (IP код);
  • PN-EN 62271-4:2014-03 — Высоковольтная аппаратура распределения и управления. Часть 4: Процедуры обращения с гексафторидом серы (SF6) и его смесями;
  • PN-EN 61140:2005/A1 — Защита от поражения электрическим током – общие аспекты для установок и оборудования;
Параметры выключателей нагрузки, секционных выключателей серии ТНО
ТипTHO-24 THO-24/IITHO-36
Номинальное напряжение Ur24 (25) кВ36 кВ
Номинальная частота — число фаз fr50 Гц — 3
Испытательное номинальное напряжение при сетевой частоте — в сухом состоянии и под дождем — 1 мин. Ud
— относительно земли и между фазами50 кВ70 кВ
— Безопасный изоляционный промежуток60 кВ80 кВ
Испытательное напряжение грозового импульса (1,2/ 50 µs) Up
— относительно земли и между фазами125 кВ170 кВ
— Безопасный изоляционный промежуток145 кВ195 кВ
Постоянный номинальный ток Ir630 A
Номинальный ток термической стойкости Ik16kA (1c)
Пиковый номинальный ток Ip40 кА
Номинальный ток включения короткого замыкания Ima40 кА
Номинальный ток отключения в цепи малой индуктивности Iload630 A
Номинальный ток отключения в контуре кольцевой сети Iloop630 A
Номинальный ток отключения зарядки кабелей Icc60 A
Дугостойкость16k A
Механический ресурс (цикл — «включение и отключение»)5000
Температура окружающей среды— 40°C + 60°C
Электрическая прочностьE3

Какие бывают виды пакетников

Они классифицируются по степени защиты. И от этого зависит назначение того или иного ПВ:

  1. Открытые. Предназначены для монтажа в сухих, незапыленных и недоступных местах. Не переносят высокий уровень влажности. Как правило, их устанавливают в железных ящиках, щитах и нишах.
  2. Защищенные. Предотвращают не только случайные прикосновения, но и попадания предметов на оголенные контакты. Корпус сделан из пластмассы, защищает пакетник от пыли и влаги, поэтому разрешается устанавливать его вне электрического щитка.
  3. Герметичные. Прочный корпус из алюминия обеспечивает лучшую защиту от влаги. Такие пакетники монтируют не только в очень влажных помещениях, но и на открытой территории.

По типу крепления пакетники изготавливаются в 4-х вариантах:

  1. Крепеж расположен за 4-х миллиметровой панелью. Защелкивается передней скобой. Подвод проводов находится сзади.
  2. Крепеж находится за 24-х миллиметровой панелью. Также фиксируется передней скобой, а подключение проводов происходит с задней стороны.
  3. Пакетный выключатель крепится за сам корпус.
  4. Крепеж находится в шкафу, а защелкивается уже задней скобой. Подвод проводов находится спереди.

На заметку! В распределительный щиток проще и надежней крепить подключенный пакетник на din-рейку.

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ


  • THO-24-T1 — выключатель нагрузки для воздушных линий с номинальным напряжением 24(25)кВ со стандартным моторным приводом.

  • THO-24-T1b — выключатель нагрузки для воздушных линий с номинальным напряжением 24(25)кВ со стандартным моторным приводом, а также индикацией блокировки выключателя нагрузки.
  • THO-24-T2 — выключатель нагрузки для воздушных линий с номинальным напряжением 24(25)кВ с аккумуляторным моторным приводом.
  • THO/T-24-T1 — выключатель нагрузки для воздушных линий с номинальным напряжением 24(25)кВ с моторным приводом без аккумулятора.
  • THO-36-T1 — выключатель нагрузки для воздушных линий с номинальным напряжением 36кВ со стандартным моторным приводом.
  • THO-36-T2 — выключатель нагрузки для воздушных линий с номинальным напряжением 36кВ с аккумуляторным моторным приводом.
  • THO/T-36-T1 — выключатель нагрузки с заземлителем для воздушных линий с номинальным напряжением 36кВ с моторным приводом без аккумулятора.
  • THO-24/II-T1 — секционный выключатель с двумя разъединителями для воздушных линий с номинальным напряжением 24(25)кВ со стандартным моторным приводом.
  • THO-24/II-T1b — секционный выключатель с двумя разъединителями для воздушных линий с номинальным напряжением 24(25)кВ со стандартным моторным приводом, а также индикатором блокировки выключателя нагрузки.
  • THO-24/II-T2 — секционный выключатель с двумя разъединителями для воздушных линий с номинальным напряжением 24(25)кВ с аккумуляторным моторным приводом.
  • THO/T-24/II-T1 — секционный выключатель с двумя разъединителями для воздушных линий с номинальным напряжением 24(25)кВ с моторным приводом без аккумулятора.

Примечание: * моторный привод с индикацией установки блокировки возможен только в моторном приводе Т1, без заземлителя.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]