Традиционные и альтернативные способы получения электроэнергии


В настоящее время человечество использует все возможные способы получения электроэнергии. Трудно переоценить важность этого ресурса. Причем его потребление растет с каждым днем. По этой причине все больше внимания уделяется нетрадиционным способам получения электроэнергии. В то же время эти источники на данном этапе развития не могут полностью удовлетворить потребности земного населения. В данной статье кратко рассмотрены основные традиционные и альтернативные способы получения электроэнергии.

­

Получение электроэнергии на тепловых электростанциях

Данный способ получения электроэнергии является самым распространенным. Так например, в Российской Федерации на долю тепловых источников приходится почти 80 % всей выработки необходимого ресурса. Идут годы, экологи уже практически кричат о негативном воздействии подобных инженерных сооружений на окружающую среду и на здоровье человека, однако станции, возведенные еще в середине прошлого века (а то и дореволюционные) продолжают снабжать населенные города и крупные промышленные предприятия электричеством.

Тепловые источники относятся к традиционным способам получения электроэнергии. И вот уже на протяжении трех или четырех десятков лет занимают лидирующую позицию в рейтинге по объемам выработки. И это несмотря на бурное развитие альтернативных способов получения электроэнергии.

Среди всех инженерных проектов выделяют особый вид сооружений. Это теплоэлектроцентрали, дополнительная функция которых снабжать дома и квартиры граждан теплом. По подсчетам специалистов, эффективность таких электростанций крайне низкая, а передача вырабатываемого ресурса на дальние расстояния сопряжена с большими потерями.

Выработка энергии осуществляется следующим образом. Твердое, жидкое или газообразное топливо сжигается, разогревая воду в котле до значительных температур. Сила пара приводит во вращение лопасти турбины, в результате чего ротор турбогенератора вращается и происходит выработка электроэнергии.

Гидроэлектростанции – перспективный способ получения электроэнергии

Строительство сложных инженерных сооружений, предназначенных для преобразования энергии воды в электричество, было начато еще в Российской Империи. С тех пор прошло много лет, а данный источник по-прежнему активно используется. В годы индустриализации СССР (1930-е) по всей стране выросли гидроэлектростанции-гиганты. На строительство этих исполинов (чего стоит только одна Запорожская ГЭС!) были брошены все силы молодой и неокрепшей страны. Инженерные сооружения тех лет по-прежнему эксплуатируются и вырабатывают значительное количество электроэнергии.

В настоящее время государство делает ставку на развитие «зеленых» способов получения электроэнергии. Поэтому активно финансируется возведение современных и очень продуктивных гидроэлектростанций по всей стране. Стратегия строительства некрупных объектов на небольших притоках рек полностью оправдала себя. Одна такая станция может вполне удовлетворить потребности в электроэнергии небольших прилежащих населенных пунктах. В масштабах всей страны это приведет к повышению эффективности народного хозяйства и конкурентоспособности отечественных производителей промышленных товаров.

К недостаткам данной технологии можно отнести большую стоимость таких объектов и очень длительные сроки их окупаемости. Основные затраты приходятся на строительство плотины. А ведь необходимо возвести само здание (административный и машинный корпуса), построить приспособление для сброса воды и так далее. Параметры и состав сооружения зависят от многих факторов: установленной мощности генераторов и напора воды, типа электростанции (плотинная, русловая, деривационная, аккумулирующая, приливная). Гидроэлектростанции на крупных судоходных реках имеют также сложные судоходные шлюзы и каналы для обеспечения миграции рыб к месту нерестилищ.

Приливные электростанции.

Уровень воды в течение суток меняет 4 раза, такие колебания особенно заметны в заливах и устьях рек, впадающих в море. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены турбины. ПЭС двустороннего действия (турбины работают при движении воды из моря в бассейн и обратно) способны вырабатывать электроэнергию непрерывно в течение 4-5 часов с перерывами в 1-2 часа четыре раза в сутки.

Первая приливная электростанция мощностью 240 МВт была пущена в 1966 году во Франции в устье реки Ранс, впадающей в пролив Ла-Манш, где средняя амплитуда приливов составляет 8,4 м. Несмотря на высокую стоимость строительства, которая почти в 2,5 раза превосходит расходы на возведение ГЭС такой же мощности, первый опыт эксплуатации приливной электростанции оказался экономически оправданным. ПЭС на реке Ранс входит в энергосистему Франции и эффективно используется. В 1968 году на Баренцевом море вступила в строй опытно-промышленная ПЭС проектной мощностью 800 кВт. Место её строительства – Кислая губа представляет собой узкий залив шириной 150 м и длиной 450 м. Существуют проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м. Планируется также использовать огромный энергетический потенциал Охотского моря, где местами, например в Пенжинской губе, высота приливов достигает 12,9 м, а в Гижигинской губе – 12-14 м. В 1985 году была пущена в эксплуатацию ПЭС в заливе Фанди в Канаде мощностью 20 МВт (амплитуда приливов здесь составляет 19,6 м). В Китае построены три приливные электростанции небольшой мощности. В Великобритании разрабатывается проект ПЭС мощностью 1000 МВт в устье реки Северн, где средняя амплитуда приливов составляет 16,3 м.

С точки зрения экологии ПЭС имеют бесспорное преимущество перед тепловыми электростанциями, сжигающими нефть и каменный уголь. Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения недавно созданной геликоидной турбины Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на их строительство. Первые бесплотинные ПЭС намечено соорудить в ближайшие годы в Южной Корее.

Атомная энергетика

Атомной электростанцией сегодня уже никого не удивить. Такие объекты активно стали возводиться еще в СССР. Поэтому эта технология относится к традиционным способам получения электроэнергии.

Атомные станции и в настоящее время активно возводятся не только в России, но и в странах ближнего и дальнего зарубежья. Так, например, компания с русскими корнями «Росатом» финансирует строительство такого источника в Республике Беларусь. К слову, на данной территории эта станция будет первой.

В мире отношение к атомной энергетике весьма неоднозначно. Германия, например, всерьез вздумала полностью отказаться от мирного атома. И это в то время, когда Российская федерация активно инвестирует строительство новых объектов последнего поколения.

Ученые достоверно установили, что залежей ядерного топлива в недрах земли гораздо больше всех запасов углеводородного сырья (нефти и газа). Постоянно нарастающая потребность в углеводородах ведет их удорожание. Именно по этому развитие ядерной энергетики оправдывает себя.

Введение.

Среди величайших достижений ХХ века наряду с генной и полупроводниковой технологиями открытие атомной энергии и овладение ею занимает особое место.

Человечество получило доступ к громадному и потенциально опасному источнику энергии, который нельзя ни закрыть, ни забыть, его нужно использовать не во вред, а на пользу человечеству.

У атомной энергии две «родовые» функции – военная, разрушительная и энергетическая – созидательная. По мере уничтожения устрашающих ядерных арсеналов, созданных в период холодной войны, атомная энергия будет проникать внутрь цивилизованного общества в виде тепла, электричества, медицинских изотопов, ядерных технологий, нашедших применение в промышленности, космосе, сельском хозяйстве, археологии, судебной медицине и т.д.

В XXI веке истощение энергоресурса уже не будет первым ограничивающим фактором. Главным становится фактор ограничения предела экологической емкости среды обитания.

Прогресс, достигнутый в превращении атомной энергии в безопасное, чистое и действенное средство удовлетворения растущих глобальных энергетических потребностей, не может быть достигнут никакой другой технологией, несмотря на привлекательность энергии ветра, солнца и других, «возобновляемых» источников энергии.

Однако бытующее в обществе представление об атомной энергии по-прежнему окутано мифами и страхами, которые абсолютно не соответствуют фактическому положению дел, и, в основном, опираются исключительно на чувства и эмоции.

В том случае, Когда голосованием предлагается решать вопросы об опасности там, где действуют законы природы ( по терминологии В.И.Вернадского, когда «общественное мнение» опережает «общественное понимание» ) , как это ни парадоксально , происходит преуменьшение экологической опасности.

Поэтому одной из важнейших задач, стоящих в настоящее время перед учеными, является задача достижения «общественного понимания» экологических проблем, в том числе – атомной энергетике.

Активность экологических движений должна приветствоваться, но она должна быть конструктивной, а не разрушительной.

Хорошо организованный и цивилизованный диалог между специалистами и общественностью, безусловно, полезен.

Цель нашего проекта – анализ информации, необходимой для выработки собственного осознанного отношения к проблемам развития энергетики вообще и атомной энергетики в частности.

Энергия ветра

Ветровая электроэнергетика в промышленных масштабах возникла относительно недавно и пополнила перечень нетрадиционных способов получения электроэнергии. И это очень перспективная технология. С большой долей вероятности можно утверждать, что в отдаленном будущем ветряки будут вырабатывать столько электроэнергии, сколько необходимо человечеству. И это не пустые слова, ведь по самым скромным оценкам ученых, суммарная сила ветра на поверхности земного шара минимум в сто раз превышает мощность всех водных ресурсов.

Основной проблемой является непостоянство потоков воздуха, что влечет за собой сложности в прогнозировании выработки энергии. На огромной по площади территории России постоянно дуют ветры. И если научиться эффективно и результативно пользоваться этим неисчерпаемым ресурсом, то можно с лихвой удовлетворить все потребности тяжелой промышленности и населения страны.

Несмотря на очевидные плюсы от использования энергии ветра, объем выработки электричества ветровыми электростанциями не превышает и одного процента в общем объеме. Оборудование для этих целей стоит очень дорого, кроме того, такие объекты будут эффективны далеко не в каждом районе, а транспортировка электроэнергии на значительные расстояния сопряжена с большими потерями.

Необычные источники альтернативной энергии

Современные технологии получения альтернативной энергии очень быстро развиваются. Появляются новые системы, оборудование и методики получения или создания источников энергии. Вот только некоторые такие источники, которые используются уже сейчас.

  1. Солнечные батареи в виде окна. Панели, перерабатывающие энергию солнца, сейчас представляют наиболее популярный метод получения альтернативной энергии. Изначально подобные системы можно было устанавливать только на крыше или на специальных площадках. Однако сейчас появилось новое поколение панелей, которые можно размешать в оконном проеме. Такие батареи обладают высокой прозрачностью. Поэтому их крепят прямо на стекло. Это надежный способ получения дополнительной энергии для офиса или частного дома.
  2. Ветряк на прицепе. Недавно известный производитель ветровых систем компания Uprise разработала новый тип турбины. Это устройство обладает высокой эффективностью и при этом имеет компактные (как для ветряка) размеры. Новая турбина устанавливается в прицеп автомобиля. Это делает систему мобильной. Ее можно легко перевозить и устанавливать в районах, где есть проблемы с электричеством. Сейчас такое оборудование часто покупают владельцы домов на колесах.
  3. Энергия с помощью воздушного змея. Это еще одна разработка, которая позволяет человеку получать тепло и электричество в отдаленных местах. Система использует летательные аппараты, которые поднимаются на высоту и здесь при помощи турбин перерабатывают силу ветра в электричество. Плюс такой системы автономность и надежность. Особенно полезной эта методика будет для удаленных населенных пунктов или для автономных лагерей.

Геотермальная энергетика

Освоение геотермальных источников ознаменовало новую веху в истории развития альтернативных способов получения электроэнергии.

Принцип выработки электроэнергии заключается в поступлении кинетической и потенциальной энергии пара горячей воды подземного источника в лопасти турбины генератора, которая посредством вращательных движений производит ток. В теории разница температур на поверхности и в глубине земной коры характерна для любого участка. Однако она, как правило, минимальна, и использовать ее в целях получения электроэнергии не представляется возможным. Возведение таких станций оправдано лишь в определенных районах нашей планеты (сейсмически активных). Первопроходцем в освоении этого способа является Исландия. Земли русской Камчатки также могут использоваться в этих целях.

Принцип получения энергии заключается в следующем. Горячая вода из недр земли поступает на поверхность. Давление здесь значительно ниже, что приводит к закипанию воды. Отделяющийся пар направляется по трубопроводу и вращает лопасти турбин генератора. Трудно дать прогноз на будущее по этому современному способу получения электроэнергии. Возможно такие станции начнут массово строиться на территории Российской Федерации, а возможно эта идея со временем затухнет и о ней никто и не вспомнит.

Освоение тепловой энергии океана

Мировой океан поражает воображение своими масштабами. Специалисты не могут дать даже приблизительную оценку величине аккумулируемой в нем тепловой энергии. Понятно лишь одно – колоссальный объем ресурсов остается незадействованным. В настоящее время уже построены прототипы электростанций, которые преобразовывают энергию тепла вод океана в ток. Однако это опытные проекты, и нет никакой уверенности, что это направление энергетики получит дальнейшее развитие.

Парниковый эффект.

Есть несколько точек зрения на эту проблему. Согласно недавним решениям ООН для улучшения климата Земли наиболее развитый государства, такие как США, Япония и страны Европейского союза, обязаны сократить к 2012 году объём выброса тепличных газов на 6% по сравнению с 1990 годом. Однако многие специалисты считают, что и этого недостаточно. Они настаивают на 60%, по их мнению, в борьбу должны включиться не только развитые страны, но и все остальные. Но есть и другая точка зрения: В 1997 году почти 1700 американских учёных подписали обращение к президенту страны, где поставили под сомнение сам подход к решению проблемы. Выбрасываемый промышленностью углекислый газ практически не влияет на климат, считают они. Вулканические извержения, другие природные катаклизмы поставляют подобных соединений куда больше. Например, учёные обратили внимание, что из подпочвенных слоёв тундры в последнее время стало выделяться больше углекислого газа и метана, чем прежде, а по оценкам учёных здесь содержится примерно треть всех земных углесодержащих газов. Было установлено, что с каждого кв. метра тундры вода уносит 5 граммов углесодержащих веществ, примерно половина из них растворяется в реках, озёрах, ручьях, а затем поступает в атмосферу, остальные уходят в Северный Ледовитый океан. Средняя температура поверхности Земли за последний год поднялась на полградуса, но, по словам экспертов, им потребуется несколько лет,

чтобы определить, свидетельствуют ли данные показатели об ускорении глобального потепления. По мнению учёных, парниковых эффект – результат того, что климат Земли постоянно меняется. Возможно, сейчас происходит потепление, так как заканчивается последний ледниковый период, а колебания климата связаны с солнечной активностью, появлением пятен, увеличением излучаемого тепла. Опасности, связанные с повышением концентрации углекислого газа в атмосфере состоят в повышении температуры Земли. Но общепринятые оценки метеорологов показывают, что повышение содержания углекислого газа в атмосфере приведёт к повышению температуры практически только в высоких широтах, особенно в Северном полушарии, причём в основном это потепление произойдёт зимой. По оценки специалистом Института сельхозметеорологии Роскомгидромета повышение концентрации этого газа в атмосфере в два раза приведёт к удвоению полезной сельскохозяйственной площади России, с 5 до 11 млн. кв. километров. В различных источниках также указываются возможные повышения уровня Мирового океана в пределах от 0,2 до 1,4м, многие утверждают, что скоро нас ожидает великий потоп. Но почти все ледники Северного полушария растаяли около 9 тысяч лет назад, осталась только Гренландия. Но и она вместе со льдами Северного Ледовитого океана не повысит при таянии уровень Мирового океана даже на 1мм.

Приливы и отливы на службе электроэнергетики

Преобразование мощной силы отливов и приливов в ценные производные является новым способом получении электроэнергии. Природа этих явлений в настоящее время известна и не вызывает того благоговейного трепета, который возникал у наших предков. Виной всему – воздействие магнитного поля верного спутника планеты – Луны.

Наиболее заметными приливные и отливные течения вод наблюдаются на мелководьях морей и океанов, а также в руслах рек.

Первая станция, действительно давшая результат, была возведена в далеком 1913 году в Великобритании неподалеку от Ливерпуля. С тех пор многие страны пытались повторить опыт, но в итоге отказывались от этой затеи по разным причинам.

Основные показатели стран, развивающих теплоэнергетику

Показатель Франция Швеция Япония Германия Великобритания США Россия
На душу населения, т
Диоксид углерода CO2 5.6 6.74 1.5 1.8 1.28 2.56 0.7
Оксид серы, SO2 0,13 0,16 0,04 0,04 0,02 0,06 0,01
Оксид азота, NOx 0,08 0,1 0,02 0,02 0,02 0,03 0,005
Зола 0,42 0,4 0,13 0,12 0,1 0,17 0,06
Шлаки 0,08 0,08 0,02 0,02 0,02 0,03 0,01
Зола, не улавливаемая фильтрами 0,004 0,004 0,001 0,001 0,001 0,001 0,0006
Высвобождённые радионуклиды, Ки 13,7 15,1 3,4 3,9 2,8 5,8 1,75

Из таблицы совершенно очевидно, что все ведущие страны, даже при очень развитой технологии, не могут избавиться от огромных выбросов, отравляющих атмосферу. Оксид серы, диоксид углерода, способствуют развитию сердечнососудистых и онкологических заболеваний, которые по смертности являются ведущими в мире. Обращает на себя внимание тот факт, что при работе ТЭС так же, как и при работе АЭС, образуются радионуклиды, которые на ТЭС никак не улавливаются.

Солнечная энергия

По сути дела, все природные топливные ископаемые были образованы миллионы лет назад с участием и под воздействием солнечных лучей. Таким образом, можно сказать, что человечество давно и активно пользуется продуктами, получаемыми от солнца. Собственно говоря, и наличием рек и озер мы обязаны этому неиссякаемому источнику, который обеспечивает кругооборот воды. Однако под современной солнечной энергетикой понимается не это. Относительно недавно ученые смогли разработать и произвести специальные батареи. Они вырабатывают электричество при попадании на их поверхность солнечных лучей. Данная технология относится к альтернативному способу получения электроэнергии.

Солнце, пожалуй, является самым мощным источником из всех ныне известных. За три дня планета Земля получает столько энергии, сколько не содержится во всех разведанных и потенциальных месторождениях всех видов тепловых ресурсов. Однако поверхности земной коры достигает лишь 1/3 этой энергии, а большая часть рассеивается в атмосфере. И все же речь идет о колоссальных объемах. По подсчетам специалистов, один небольшой водоем получает столько энергии, сколько вырабатывает довольно крупная тепловая электростанция.

В мире имеются установки, которые используют энергию солнечных лучей для получения пара. Он приводит во вращение генератор и вырабатывается электричество. Однако подобные установки являются большой редкостью.

Независимо от того, по какому принципу вырабатывается электроэнергия, установка должна оснащаться коллектором – устройством для концентрации солнечных лучей. Наверняка многие видели собственными глазами солнечные батареи. Создается впечатление, что они находятся под темным стеклом. Оказывается, подобное покрытие и являет собой простейший коллектор. Принцип его работы основывается на том, что темный прозрачный материал пропускает солнечные лучи, но задерживает и отражает инфракрасное и ультрафиолетовое излучение. Внутри батареи расположены трубки с рабочим веществом. Так как тепловое излучение не пропускается сквозь темную пленку, то температура рабочих жидкостей значительно превышает температуру окружающей среды. Следует отметить, что подобные решения эффективно работают лишь в тропических широтах, где нет необходимости поворачивать коллектор вслед за солнцем.

Еще одна разновидность покрытия – вогнутое зеркало. Такое оборудование является весьма дорогостоящим решением, поэтому оно и не нашло широкого применения. Такой коллектор может обеспечить нагрев до трех тысяч градусов по Цельсию.

Данное направление бурно развивается. В Европе уже никого не удивишь домами, отключенными от электрических сетей. Однако в промышленных масштабах электроэнергия этим методом не вырабатывается. На крышах таких домов красуются солнечные батареи. Это весьма сомнительное вложение. В лучшем случае, установка такого оборудования окупится лишь за десть лет эксплуатации.

Производство и использование электрической энергии

Под генератором

понимается устройство, преобразующее механическую энергию в электрическую.

В современной энергетике применяют индукционные генераторы

, в которых используется
явление электромагнитной индукции
. Преимущество таких генераторов состоит в том, что они позволяют получать большие токи при достаточно высоком напряжении.

В настоящее время уровень производства и потребления энергии — один из важнейших показателей развития производственных сил общества. При этом ведущую роль играет электроэнергия


самая универсальная и удобная для использования форма энергии
. Если потребление энергии в мире увеличивается вдвое примерно за 25 лет, то увеличение потребления электроэнергии в два раза происходит в среднем за 10 лет. Это означает, что все больше и больше процессов, связанных с расходованием энергоресурсов, переводится на электроэнергию.

Электроэнергетика


базовая инфраструктурная отрасль, снабжающая электричеством и теплом все остальные сектора хозяйства
. С энергопотреблением прямо связаны и уровень социально-экономического развития, и общая деловая активность, и жизнь каждого человека.

Электроэнергетика имеет связи со всеми секторами экономики

, снабжая их произведенными электричеством и теплом и получая от некоторых из них ресурсы для своего функционирования.

Особенностями развития энергетики на современном уровне являются резкое ужесточение экологических требований (в частности, Киотский протокол по выбросам парниковых газов), переход на высокоэффективные и ресурсосберегающие энергетические технологии и попытки поиска альтернативных (без использования традиционного органического топлива) источников энергии. Тем не менее, сегодня главный вклад в мировое производство электроэнергии дает уголь

(40 %), заметно меньше —
газ
(19 %) и далее по 16 %
атомная
и
гидроэнергетика
.

И в будущем уверенное лидерство по приросту генерирующих мощностей будет принадлежать углю. Далее по приоритету идут газ, гидроэнергия с возобновляемыми источниками, и совсем небольшая роль отводится атомной энергии.

Производится электроэнергия

на больших и малых электрических станциях в основном с помощью электромеханических индукционных генераторов. Основными производителями электроэнергии являются:

тепловые электростанции

(ТЭС), где тепловая энергия, образующаяся при сжигании органического топлива (уголь, газ, мазут, торф, сланцы и т.д.), используется для вращения турбин, приводящих в движение электрогенератор.

гидроэлектростанции

(ГЭС), где в электроэнергию преобразуется механическая энергия потока воды с помощью гидравлических турбин, вращающих электрогенераторы;

атомные электростанции

(АЭС), где в электроэнергию преобразуется тепловая энергия, полученная при цепной ядерной реакции радиоактивных элементов в реакторе.

Три основных типа электростанций определяют виды используемых энергоресурсов. Их принято подразделять на первичные

и
вторичные
,
возобновляемые
и
невозобновляемые
.

Первичные энергоносители

— это сырьевые материалы в их естественной форме до проведения какой-либо технологической обработки, например каменный уголь, нефть, природный газ и урановая руда. К таковым относятся также солнечное излучение, ветер, водные ресурсы.
Вторичная энергия
— это продукт переработки, «облагораживания» первичной, например бензин, мазут, ядерное топливо.

Некоторые виды ресурсов могут относительно быстро восстанавливаться в природе, они называются возобновляемыми

: дрова, камыш, торф и прочие виды биотоплива, гидропотенциал рек. Ресурсы, не обладающие таким качеством, называются
невозобновляемыми
: уголь, сырая нефть, природный газ, нефтеносный сланец, урановая руда. По большей части они являются полезными ископаемыми.
Энергия солнца, ветра, морских приливов относится к неисчерпаемым возобновляемым энергетическим ресурсам
.

В настоящее время наиболее распространенным видом технологического топлива в мировой электроэнергетике выступает уголь, использующийся на тепловых электростанциях.

Одна из основных причин преобладания «грязного» угля над «чистым» природным газом и другими видами топлива — оптимальное соотношение цен на топливо. Газ стоит гораздо дороже угля, например, в США — в пять раз. Иная ситуация в России. Традиционно внутренние цены на газ ниже цен на уголь раза в полтора, и нет никаких стимулов для развития угольной энергетики. Поэтому в России, наоборот, наибольший вклад в производство электрической энергии вносит газ (около 46 %) и лишь 18 % — уголь.

Помимо этого, транспортировка угля на значительные расстояния ведет к большим издержкам

, что во многих случаях делает его использование нерентабельным. При производстве энергии с использованием угля высок уровень выброса в атмосферу загрязняющих веществ, что наносит существенный вред окружающей среде.

Давайте рассмотрим процесс производства электроэнергии на тепловых электростанциях.

Роторы электрических генераторов на тепловых электростанциях приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания. Конечно, наиболее экономичными являются крупные тепловые паротурбинные электростанции. В паровом котле свыше 90% выделяемой топливом энергии передается пару

. В турбине кинетическая энергия струй пара передается ротору, число оборотов которого достигает нескольких тысяч в минуту.

Из курса физики 10 класса известно, что коэффициент полезного действия тепловых двигателей увеличивается с повышением температуры нагревателя и соответственно начальной температуры рабочего тела

(в нашем случае пара или газа). Поэтому пар, поступающий в турбину, доводится до относительно высоких параметров: его температура достигает 550 0С, а давление составляет порядка 25 МПа.

Однако коэффициент полезного действия ТЭС

остается не высоким — порядка
40%
. Большая часть энергии теряется вместе с горячим отработанным паром.

Большую экономичность и практическое значение имеют тепловые электростанции — так называемые теплоэлектроцентрали

(сокращенно ТЭЦ), которые позволяют значительную часть энергии отработанного пара использовать на промышленных предприятиях и для бытовых нужд (например, для отопления и горячего водоснабжения). В результате этого КПД ТЭЦ достигает 60–70 %. В настоящее время в России ТЭЦ дают около 40% всей электроэнергии и снабжают теплом и электроэнергией сотни городов.

Большое значение в структуре источников электроэнергии сохраняют гидроресурсы

, хотя их доля за последние десятилетия несколько сократилась.
Преимущества этого источника в его возобновляемости и относительной дешевизне
. Но возведение
гидростанций оказывает необратимое воздействие на окружающую среду
, так как обычно требует затопления значительных территорий при создании водохранилищ. Кроме того, неравномерность распределения водных ресурсов на планете и зависимость от климатических условий ограничивают их гидроэнергетический потенциал.

На гидроэлектростанциях для вращения роторов генераторов используется потенциальная энергия воды

. Роторы электрических генераторов приводятся во вращение гидравлическими турбинами. Мощность такой станции зависит от создаваемой плотиной разности уровней воды и от массы воды, проходящей через турбину каждую секунду.

У России большой гидроэнергетический потенциал, что подразумевает значительные возможности развития отечественной гидроэнергетики. В настоящее время, гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии. На территории Российской Федерации сосредоточено около 9% мировых запасов гидроресурсов. По обеспеченности гидроэнергетическими ресурсами Россия занимает второе место в мире после Китая, опережая при этом США, Бразилию и Канаду.

Выработка электроэнергии российскими ГЭС обеспечивает ежегодную экономию 50 млн тонн условного топлива

. За единицу условного топлива Международное энергетическое агентство приняло
нефтяной эквивалент
. Одна тонна нефтяного эквивалента равняется 11,63 МВт×ч энергии. Потенциал экономии составляет
250 млн тонн
; позволяет снижать выбросы CO2 в атмосферу на величину до
60 млн тонн в год
, что обеспечивает России практически неограниченный потенциал прироста мощностей энергетики в условиях жестких требований по ограничению выбросов парниковых газов.

Все большее распространение получает использование урана. Это топливо обладает колоссальной эффективностью по сравнению с прочими сырьевыми источниками энергии. Однако применение радиоактивных веществ сопряжено с риском масштабного загрязнения окружающей среды в случае аварии

. Кроме того,
возведение АЭС и утилизация отработанного топлива чрезвычайно капиталоёмкие
. Развитие этого вида энергетики осложняется и тем, что пока немногие страны могут обеспечить подготовку научных и технических специалистов, способных разработать технологии и обеспечить квалифицированную эксплуатацию АЭС.

Россия обладает технологией ядерной электроэнергетики полного цикла от добычи урановых руд до выработки электроэнергии.

На сегодняшний день в нашей стране эксплуатируется 10 атомных электростанций

(АЭС) — в общей сложности 33 энергоблока установленной мощностью 23,2 гигаватта, которые вырабатывают около 17% всего производимого электричества.
В стадии строительства – еще 5 АЭС.
Растет внимание к возобновляемым источникам энергии. В частности, активно разрабатываются технологии использования энергии солнца и ветра, потенциал которых огромен. Правда, на сегодняшний день использование солнечной энергии

в промышленных масштабах в большинстве случаев оказывается менее эффективным по сравнению с традиционными видами ресурсов. Что касается энергии ветра, в развитых странах (прежде всего под влиянием экологических движений) ее применение в электроэнергетике значительно увеличилось. Нельзя не упомянуть также
геотермальную энергию
, которая может иметь серьезное значение для некоторых государств,таких как Исландия, Новая Зеландияили отдельных регионов, как например, в России — для Камчатки, Ставропольского и Краснодарского краев, Калининградской области.

Так как же используется электроэнергия?

Главным ее потребителем является промышленность

, на долю которой приходится около 70% производимой электроэнергии. Также крупным потребителем электроэнергии является
транспорт
. В настоящее время все большее количество
железнодорожных линий
переводится на электрическую тягу. Почти все деревни и села получают электроэнергию от электростанций для производственных и бытовых нужд. Электроэнергия применяется для освещения жилищ и в бытовых электроприборах.

Большая часть используемой электроэнергии сейчас превращается в механическую энергию. Почти все механизмы в промышленности приводятся в движение электрическими двигателями, т.к. они удобны, компактны и допускают возможность автоматизации процесса.

Помимо этого, около трети электроэнергии, потребляемой промышленностью, используется для технологических целей, таких как электросварка, электрический нагрев и плавление металлов, электролиз и тому подобное.

Таким образом, мы можем сделать вывод о том, что современная цивилизация немыслима без широкого использования электроэнергии

. А нарушение снабжения электроэнергией крупного города при аварии парализует его жизнь.

В настоящее время потребность в электроэнергии постоянно увеличивается, как в промышленности, на транспорте, в научных учреждениях, так и в быту.

Возможности для более эффективного использования электроэнергииимеются, и немалые.

Приведем несколько основных способов экономии электроэнергии в быту.

Во-первых, всегда выключайте свет, выходя надолго из помещения. При выходе из дома выключайте из розеток все бытовые приборы, кроме холодильника. Даже если у вас телевизор или компьютер новейшей модели, то в месяц в режиме ожидания они потребляют, соответственно, 0,2 кВт и 3,6 кВт в месяц, а устаревшие модели в несколько раз больше.

Замените лампы накаливания на энергосберегающие

. Они не только экономят электричество, но и служат в 5-8 раз дольше. Затраты на покупку энергосберегающих ламп окупаются менее чем за год. При покупке энергосберегающих ламп обратите внимание на свет, который они излучают – теплый или холодный. Теплый свет наиболее близкий к свету ламп накаливания или естественному солнечному свету, а холодный аналогичен свету люминесцентных ламп и иногда режет глаза. Лампы холодного света можно использовать на общей площадке или для освещения балкона.

Покупайте бытовую технику класса А, А+, А++

. Благодаря этому, экономия электроэнергии в конце месяца будет очевидна. По сравнению с приборами более низкого класса энергопотребления, они потребляют электричества на 30-40% меньше.

Правильно используйте электрочайник. Он потребляет от 2 до 3 кВт электроэнергии. Чтобы сэкономить электроэнергию, придерживайтесь простых правил: кипятить столько воды, сколько нужно в данный момент, и своевременно удаляйте накипь в чайнике. Если у вас электроплита, то для приготовления супов, макаронов и варки овощей целесообразнее кипятить воду в электрочайнике и переливать в кастрюлю на электроплите, т.к. вода в электрочайнике закипает быстрее и на это затрачивается меньше электроэнергии.

Не допускайте нагрева холодильника прямыми солнечными лучами и не ставьте его у плиты или батареи отопления.

Также для экономии электроэнергии необходимо своевременно размораживать холодильник и никогда не ставить в него горячие блюда.

Загружайте стиральную машину согласно инструкции. Слишком большая или слишком маленькая загрузка не позволяют экономно расходовать электричество. Перерасход электроэнергии может составлять до 30%.

Во время глажки старайтесь начинать и заканчивать процесс глажкой вещей, требующих низкого температурного режима. Тогда последние платки и косынки можно гладить уже выключенным утюгом.

Не забывайте менять или чистить фильтры пылесоса, ведь иначе они будут затрудняют его работу, уменьшают тягу воздуха и, как следствие, увеличивают его энергопотребление.

Используйте теплоотражающие экраны.

Очень много электроэнергии поглощают обогревательные приборы, используемые в осенне-зимний период. Сократить их использование помогут теплоотражающие экраны из фольги или пенофола, установленные за батареями. Данная мера поможет повысить температуру в комнате на 2-3 градуса.

Помимо всего вышеперечисленного, можно экономить энергию, приняв простые меры по утеплению помещения

. Во-первых, утеплите окна, заткнув все щели или поменяйте деревянные стеклопакеты на более качественные пластиковые. Через окна может уходить до 50% тепла. Во-вторых, повесьте на окна теплые плотные ночные занавески.

Замените старую проводку

. Иногда, повышенное потребление электричества возникает из-за старости электропроводки. В этом случае достаточно заменить ее, получив не только возможность сэкономить, но и повысив пожарную безопасность помещения.

Включайте кондиционер лишь тогда, когда закрыты все окна и двери, иначе кондиционер будет охлаждать улицу или другие помещения.

Чаще мойте лампы, плафоны и окна. Грязь и пыль снижают освещенность в помещении на 30%

. Еще не забудьте снять с подоконника большие растения и не задергивайте днем шторы, рационально используйте естественное освещение.

Потратьте сэкономленные деньги на что-то приятное!

Использование морских течений

Это весьма необычный способ получения электроэнергии. За счет разницы температур в северных районах океанов и южных (экваториальных), по всему объему возникают мощные течения. Ели погрузить в воду турбину, то мощное течение будет ее вращать. На этом основан принцип действия таких электростанций.

Однако в настоящее время этот источник энергии активно не используется. Очень много инженерных задач еще предстоит решить. Ведутся лишь опытно-экспериментальные работы. Наиболее активно продвигаются в этом направлении англичане. Не исключено, что в недалеком будущем у берегов Великобритании возникнут колонии энергетических установок, лопасти которых будут приводиться в движение морскими течениями.

Способы получения электроэнергии в домашних условиях

Электроэнергию можно вырабатывать и в домашних условиях. А если серьезно подойти к этому вопросу, то можно даже удовлетворить потребности домашнего хозяйства в электроэнергии.

Прежде всего следует отметить, что некоторые из перечисленных способов получения электричества вполне применимы и в условиях частного хозяйства. Так, многие фермеры и просто владельцы загородных имений, устанавливают на своих участках ветряные мельницы. Также все чаще на крышах загородных домов можно увидеть солнечные батареи.

Существуют и иные способы производства электричества, но об их практическом применении не может быть и речи. Это, скорее, ради забавы, или с целью эксперимента.

Роль и значение альтернативной энергетики

Поиск альтернативных источников энергии – одна из самых актуальных задач, так как человечество чудовищными темпами поглощает газ, нефть и другие виды топлива, чтобы производить энергию. Научная «мечта» – получение альтернативы электричеству, но она пока что недостижима. Кризис топливных ресурсов неизбежен, и нетрадиционные источники энергии должны помочь предотвратить его.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]