В настоящее время известно, что в этом мире все можно измерить, абсолютно все. Вселенная и многое другое, что окружает человека, связано с измерениями. Так, измерить скорость, время, расстояние не составит особого труда. Для измерений существуют специальные приборы. Наука, которая занимается измерениями — это метрология. Метрология вычисляет все сведения с предельной точностью. Важно знать, в каких единицах измеряется что-то конкретное. Например, человек точно знает, что время можно измерить в секундах, часах и даже миллисекундах. Скорость можно измерить в километрах в час, расстояние в метрах или километрах.
Единицы измерения обычно присутствуют в физике. Еще со школы узнавать об измерениях помогает именно физика. С помощью этой науки можно перевести любые измерения в систему СИ.
Значение физики очень велико, она использовалась во все времена. С помощью единиц измерений можно измерить даже яркость. Наука продвигается все дальше, открывает новые горизонты, она не стоит на месте и развивается. Существуют единицы измерения, которые устарели сегодня:
- НИТ,
- СТИЛЬБ,
- ЛАМБЕРТ,
- АПОСТИЛЬБ.
Характеристика яркости света
Яркостью называется сила света, излученная с определенной площади объекта в заданном направлении (L=I/S).
Обратите внимание! Речь идет не только об излучаемом свете, но и об отраженном.
Яркость солнца
Поверхности с разными отражающими способностями при одинаковой освещенности имеют разные показатели яркости. На это влияют окраска и отражающие свойства объектов.
Этот параметр света, излучаемый поверхностью под углом Ф, равен отношению силы луча (I) к площади его проекции (S).
Яркость
Ни знаменатель, ни числитель этого отношения не зависят от расстояния до объекта, поэтому данная величина им тоже не обусловлена.
Если наблюдаемый объект находится под углом, отличающимся от 90 градусов, при расчетах учитывается также косинус данного угла: L=Ia/(S*cosa).
Вычисляя показатель для обычных ламп накаливания, учитывают, что проекция их поверхности имеет форму круга. А у газоразрядных источников света она представлена прямоугольниками. У объектов неправильной формы при измерениях могут быть захвачены промежутки между участками поверхности, не излучающие свет.
Яркости некоторых объектов
На заметку! Не стоит путать яркость с освещенностью, которая определяется отношением плотности света к площади освещенного объекта.
Где могут понадобиться данные знания
Многие люди любят отгадывать кроссворды и сканворды. Авторы, придумывающие сканворды, используют своеобразную терминологию и все более хотят запутать читателя. Необходимо постараться, чтобы разгадать точный ответ. Думаете, для чего может понадобиться знание единицы яркости? Сканворд вполне может содержать подобный вопрос.
Например, такой случай. Нужно разгадать из сканворда слово из слова: ОТЛИЧНИК. Чтобы проще было разгадать данное слово, есть подсказка — это единица яркости светящейся поверхности, само слово состоит из 3 букв. По данным подсказкам легко можно определить, что это за слово. Ответ на сканворд: НИТ.
Какими приборами измерять яркость света
При инспекции охраны труда и соблюдения техники безопасности применяются яркомеры. В их число входят экспонометры и специальные датчики.
Конструкция устройств отличается наличием ограничителя угла обзора (обычно тубус, решетка или линза). Если область светоприема у них прямоугольной формы, то угла охвата сразу два – один расположен по горизонтали, другой – по вертикали.
Углы охватов приборов
Дополнительно! У профессиональных аппаратов в базовой комплектации установлены прицельные визиры.
Чувствительность прибора находится в прямой зависимости от квадрата угла его охвата. Максимальное расстояние от яркомера до точки измерения также зависит от его технических характеристик.
Расстояние от яркомера до объекта измерения
Обратите внимание! При превышении предельно допустимого расстояния в поле измерения прибора попадают посторонние предметы, расположенные по соседству с источником света.
Яркость объекта можно измерить двумя способами – прямым и косвенным. В первом случае прибором напрямую измеряются максимальный и минимальный параметры, во втором – оцениваются контрасты светлот и освещения.
Нормы освещенности для квартир и жилых помещений
Соблюдение действующих санитарных и строительных нормативов предотвращает излишние нагрузки на зрение. Ниже приведены контрольные параметры для разных типов помещений (минимальное значение в люксах):
- входная группа (квартира) – 50;
- столовая – 150;
- кухня – 150;
- детская комната – 200;
- коридор, душевая, уборная – 50.
После измерения делают коррекции с учетом полученных результатов.
Следует помнить! Уровень освещенности зависит от яркости источника, расстояния до поверхности и направления луча.
Как правильно измерять яркость света
При тестировании лампочек и других осветительных приборов досконально выяснить уровень их яркости затруднительно, в виду округлости их поверхности. Чаще всего этот показатель определяют у мониторов, дисплеев и ТВ экранов.
Для того, чтобы получить верные показатели, необходимо соблюсти следующие условия:
- Экранировать объектив от посторонних источников света. В помещении можно производить замеры в условиях полной темноты.
- На объект измерения не должна падать тень (в том числе от прибора и человека, снимающего показания яркомера).
Тень на объекте измерения яркости
- В поле зрения датчика не должно находиться ничего, кроме измеряемого источника света.
- В начале и конце измерений проверяют уровень напряжения в сети.
- При наличии естественного источника света, отношение его освещенности к этому параметру не может превышать 0,1.
- Измерения производятся при нормальных погодных условиях.
Вам это будет интересно Как выбрать цветовую температуру
Порядок измерения
Необходимый порядок действий для измерения уровня яркости:
- Включить яркомер и установить на нем режим измерения.
- Расположить его как можно ближе к источнику света, перпендикулярно лучам (параллельно поверхности).
Обратите внимание! Если поверхность горячая, расстояние до объекта измерения должно быть не меньше 1 см.
- Во время снятия показаний прибор должен находиться в статическом положении.
- Произвести замеры в нескольких точках, затем рассчитать среднее значение.
Точки измерения яркости монитора
Что такое световой поток и светоотдача
Для правильного понимания данной темы необходимо уточнить специфическую терминологию. Свет – это электромагнитные волны в диапазоне от 360 до 840 нм. Данные границы нельзя назвать точными, так как речь идет об индивидуальной (уникальной) чувствительности органов зрения. Тем не менее, чтобы выполнять расчеты, пользуются усредненным поправочным коэффициентом (k). С его помощью учитывают эффективность излучения при дневном естественном освещении.
Как посчитать свет, показывает формула:
Ф = k * V * Фм,
где:
- Ф – световой поток;
- V – фиксированный коэффициент 683 люмен на Ватт (лм Вт), который используют для перевода результата вычислений в стандарт международной системы измерений «СИ»;
- Фм – поток монохроматического излучения с определенной длиной волны.
При рассмотрении спектра суммируют вклад отдельных линий. С помощью интеграла по заданному диапазону вычисляют значение непрерывного потока.
Формулы для расчета светового потока
Скорость света в идеальной среде (вакууме) составляет почти 300 000 000 м/с. Некоторые вещества (алмазы) способны снизить ее почти вдвое. Однако и в этом случае при подаче питания источник светового потока немедленно выполняет свои основные функции.
Чтобы правильно отвечать на практические вопросы, надо знать, сколько энергии расходуется в рабочем цикле. Оценку делают по светоотдаче. Этот параметр показывает, какой световой поток генерирует устройство при потреблении определенного количества электроэнергии за единицу времени.
Нормы яркости света
Показатель свыше 160 000 кандел на м2 вызывает неприятные ощущения в глазах и слезоточивость. Поэтому производители ламп увеличивают площадь источников света (нить накаливания лампочки) за счет крупных матовых плафонов. Такой свет приятней и безопасней для органов зрения человека, не оказывает негативного воздействия на концентрацию внимания.
Нормы яркости по ГОСТ Р 52870-2007
Измеряя этот показатель, учитывают:
- При адаптации к свету данная величина должна быть ≥ 10 кд/м2, к тени – не более 0,01 кд/м2.
- На экранах этот параметр для монохромного изображения в норме должен составлять свыше 3 000 кд/м2, цветного – 10 000 кд/м2 (при этом, для каждого цвета более 1 500 кд/м2).
- При определении этого светового показателя в разных точках экрана разница между максимальным и минимальным числами определяется отношением первого значения ко второму, и величина должна быть в пределах от 0 до 0,7.
- Ночные показатели яркости должны быть в 2–100 раз меньше дневных.
Обратите внимание! Яркость мониторов при наличии внешнего освещения не нормируется.
Монитор при внешнем освещении
Яркость света – это очень важный параметр, влияющий на зрение и работоспособность человека, и им не стоит пренебрегать. Таким образом, для безвредной работы с монитором внутри помещения, можно установить на устройство регулятор яркости, который будет менять ее показатели в 10–100 раз, в зависимости от времени суток и наличия естественного освещения.
Вам это будет интересно Особенности SMD конденсаторов
Канделы, люмины, люксы, в чем разница?
Единицы физических величин в освещении (ГОСТ 8.417-81)
- сила света
— в Канделах или кд; - яркость
– количество света, излучаемого единицей площади тела, измеряют в кд/м2 или Канделах на квадратный метр; - световой поток
– в люменах или Лм; - мощность света, как потока электромагнитного излучения
– в ваттах (Вт); - освещенность
– количество света, попавшего на единицу площади – в люксах (или Лк); - светимость
– количество света, излучаемого с единицы площади – в люменах на кв. м или Лм/м2.
Измерение световых характеристик
Исторически складывалось так, что только глаз в течение 200 лет, был тем самым эталонным приемником света, на основе которого и проводились все оценки и измерения силы света, яркости и освещенности.Из всей огромной оптической области излучения (10 нм — 1 мм) лишь узкая полоса спектра от 380 до 780 нм (световое излучение) может восприниматься человеческим глазом.При этом чувствительность человеческого глаза даже в рамках этого спектра неодинакова, она максимальна в зеленой области и резко спадает к фиолетовому и красному краям.
Ориентируясь на глаз, как на приемник света была введена система измерений, в которой равными принимаются такие воздействия, которые вызывают одинаковое зрительное ощущение.
Была построена функция V(), которая называется «спектральная световая эффективность». Ее графический вид представлен на рисунке 1, табличный — в таблице 2.
Рисунок 1
Из таблицы видно, что при значении 550Нм (длина волны зеленого цвета) энергоэффективность самая высокая. Физиологическое действие в 1лм одинаково во всем спектре, но его энергетическая «цена» для зеленой области составляет 1/683 Вт, для фиолетовой — 1/62 Вт, а для малино-красной — 1/6 Вт. Поэтому глазу комфортнее в зеленой области, здесь физической воздействие («давление») на него наименьшее.
Различные эксперименты давали результаты, которые показали, что на длине волны = 555 нм излучение в 1 Вт соответствует световому потоку в 676 — 688 лм. Экспериментальным путем ученые пришли к соотношению, дававшему возможность пересчитывать люмены в ватты и обратно.
Канделы
В 1979 году 16-й Генеральной Конференции по Мерам и Весам было принято определение Канделы Канде́ла (от лат. candela — свеча) — одна из семи основных единиц Международной системы единиц (СИ). Кандела — сила света в данном направлении от источника монохроматического излучения с частотой 540*10 Гц, имеющего интенсивность излучения в этом направлении равную 1 / 683 Вт в телесном угле равном одному стерадиану. Частота излучения 540*1012 Гц соответствует длине волны = 555,016 нм в воздухе при стандартных условиях, которая почти для всех целей может быть взята равной 555 нм без влияния на точность реальных измерений.
( Оно отменяло предыдущее сложное измерение, зависящее ранее от черного тела, температуры затвердевания платины (2042 К) и давления 101 325 Н/м2)
История Канделы
Измерение в «свечах» началось в 1893 году в Германии.
Наименование «свеча Хефнера
», было предложено в 1884 Ф. Хефнер-Альтенеком. Эталоном при этом служила фитильная лампа специальной конструкции. В качестве горючего в ней использовался амилацетат.
Три года спустя, в 1896 году на Международным электротехническом конгрессе была принята «десятичная свеча
», равная 1,12 свечи Хефнера.
В 1909 г. «десятичная свеча» была откорректирована на одну десятую — заменена «международной свечой
», равной 1,11 свечи Хефнера. Международная свеча воспроизводилась не с помощью фитильной лампы, а при помощи специальных ламп накаливания
В 1948г. состоялось решение о принятии новой единицы— Канделы
. Канделу привязали к световому эталону, обладающему свойствами, близкими к свойствам абсолютно чёрного тела (Планковский излучатель). В расчетах были задействованы, как писалось ранее, окись тория, платина, находящаяся при температуре отвердевания (2046,6 К), ;нормаль с 1/60 см излучающей поверхности указанного эталона.Введённая таким образом Кандела была в 1,005 раз меньше, чем международная свеча, т.е. примерно 1,104 свечи Хефнера.
Привязка Канделы к видимому человеческим глазом спектру — наиболее логичный на тот момент времени вариант. Хотя на данный момент ведутся работы над новой версией формулировки.
Использование Кандел в тех. характеристиках источников света
В Канделах, зачастую, измеряется сила света направленных источников света, например, таких как светодиод в 5мм корпусе имеющий как правило линзу от 10 до 160 градусов, если быть точнее то измерение ведется в милиКанделах 1Кд=1000мКд. Количество Кандел указывает, сколько света испускает точечный источник света в одном направлении, в котором она светит наиболее интенсивно.
Например, светодиод ARL-4008UWC , при токе 20 мА имеет диапазон яркости 1,2 – 1,6 кд;
светодиод ARL-10080PGC4-15 диаметром 10 мм имеет яркость 30-40 кд;
модель красного светодиода ARL-10603URD-150mcd имеет яркость 0,15 кд.
Сила света в Канделах типовых источников света:
Источник | Мощность, Вт | Примерная сила света, Кд |
Свеча | 1 | |
Современная (2016 г) лампа накаливания | 100 | 100 |
Обычный светодиод | 0,015 | 0,005 |
Сверхъяркий светодиод | 1 | 25 |
Сверхъяркий светодиод с коллиматором | 1 | 1500 |
Современная (2016 г) люминесцентная лампа | 20 | 100 |
Производные единицы от Канделы
Международная система единиц (СИ) определила набор из семи основных единиц, из которых в дальнейшем формируются все другие единицы измерения. Эти другие единицы называются производными единицами СИ
, они также считаются частью стандарта.
Производные единицы могут быть выражены через основные с помощью математических операций — умножения и деления.
Через Канделы выражаются такие фотометрические единицы измерения, как Люмены и Люксы.
Люмены
Световым потоком ( Ф )
называют проходящую через данную поверхность в единицу времени световую энергию, оцениваемую по зрительному ощущению:
Ф = W / t (световой поток, испускаемого с единицы площади источника)
За единицу светового потока принят Люмен
(лм). Один люмен равен световому потоку, испускаемому точечным изотропным источником, c силой света, равной одной Канделе, в телесный угол величиной в один стерадиан.
1 лм = 1 кд • 1 ср
Количество люмен указывает, сколько света испускает точечный источник света во всех направлениях
. Чем больше число люмен, тем больше света.
Телесный угол, охватывающий все пространство вокруг источника, равен 4π • ср, ибо площадь полной поверхности сферы единичного радиуса есть 4π .Соответственно, полный световой поток, создаваемый изотропным источником, с силой света одна Кандела, равен 4π люменам.
Для пересчета люмен в Канделы
, и наоборот, можно использовать формулу:
Fv=I·2π(1-cos(α))
,
где : Fv — световой поток; Iv — сила света; α — угол половинной яркости
Возьмём источник света и наложим на него систему координат X Y. Точка (a) – начало координат. Угол < f a h — это видимый угол свечения. Максимальная яркость света будет в точке (e) – эта точка находится прямо перпендикулярно источнику. Перемещаясь по окружности от точки (e) влево и вправо яркость будет уменьшаться. И в какой то точке (c) и точке (b) яркость будет в два раза меньше яркости точки (e). Угол < b a c — и будет называться углом половинной яркости. И чем он ближе по величине к видимому углу свечения-тем лучше. За пределами этого угла тоже есть свет, но характеристикой угла половинной яркости будет только угол < b a c.
Световой поток в Люменах различных источников света
В таблице ниже приведены сравнительные параметры в Канделах и люменах некоторых источников света, но в зависимости от конкретного экземпляра ( производитель, материалы) значения могут отличаться.
Тип источника света | Световой поток (люмен) | Сила света (Кандел) | лм/ватт |
Лампа накаливания 40 Вт | 415 | 35 | 10 |
Лампа накаливания 100 Вт | 1550 | 1300 | 15 |
Люминесцентная лампа 40 Вт | 2500 | 2200 | 60 |
Газоразрядная лампа 35 Вт (ксенон с учетом оптики фары) | 3000 | 15000 | 90 |
Светодиод 6 Вт | 1226 | 550 | 200 |
Люксы
Люкс (от лат. lux — свет) — единица измерения освещённости в системе СИ.
Люкс равен освещённости поверхности площадью 1 кв м при световом потоке падающего на неё излучения, равном 1 люмен.
Освещённость прямо пропорциональна силе света источника света. При удалении его от освещаемой поверхности её освещённость уменьшается обратно пропорционально квадрату расстояния. Другими словами, если 100 люменов собрать и спроецировать на 1-метровую квадратную область,освещенность области составит 100 люкс. Те же самые 100 люменов, направленные на 10 квадратных метров, дадут освещенность 10 люкс. Или, если мы возьмём источник света, подвесим его в центре комнаты и померим освещённость люксметром на расстоянии от него 1м, люксметр покажет, например, 100Лк, а на расстоянии 2м от лампочки люксметр покажет 25Лк.
Когда лучи света падают наклонно к освещаемой поверхности, освещённость уменьшается пропорционально косинусу угла падения лучей.
Для измерения уровня светового излучения и фактической освещенности окружающего пространства используют люксметр
– специализированный электронный прибор. Он имеет спектральную характеристику, совпадающую со спектральной характеристикой глаза обычного человека.
Хотелось бы отметить, что в компании Новолампа есть спектрометр UPRTEK MK350N-PREMIUM-HANDHELD с помощью которого можно проверить верность данных по расчетной освещенности. Спектрометр учитывает, в том числе, косинусную коррекцию.
Рекомендации
- Дейнтит, Джон; Гулд, Уильям (2006). Астрономический словарь The Facts on File
. Факты о файловой библиотеке (5-е изд.). Издание информационной базы. п. 489. ISBN 0-8160-5998-5 . - Палей, А. Б. (август 1968 г.). «Интегрирующие фотометры». Советская астрономия
.
12
: 164. Bibcode:1968Сва …. 12..164П.CS1 maint: ref = harv (связь) - Шеррод, П. Клей; Коед, Томас Л. (2003). Полное руководство по любительской астрономии: инструменты и методы астрономических наблюдений
. Астрономическая серия. Courier Dover Publications. п. 266. ISBN 0-486-42820-6 . - Круми, Эндрю (2014). «Порог контрастности человека и астрономическая видимость». Ежемесячные уведомления Королевского астрономического общества
.
442
(3): 2600–2619. arXiv:1405.4209. Bibcode:2014МНРАС.442.2600С. Дои:10.1093 / mnras / stu992. - Спарк и Галлахер (2000), § 5.1.2)
- Абсолютные звездные величины Солнца в разных цветовых диапазонах могут быть получены из Бинни и Меррифилд (1998) или же Абсолютная звездная величина Солнца в нескольких диапазонах В архиве 2007-07-18 на Wayback Machine
- На основе эквивалентности 21,83 маг. Дуги−2 = 2×10−4 кд м−2, из описания «действительно темного неба», Раздел 1.3 Круми, А. (2014). Порог контрастности человека и астрономическая видимость. MNRAS 442, 2600–2619.
- Кларк, Роджер (2004-03-28). «Яркость поверхности объектов глубокого космоса». Получено 2013-06-29.. Преобразование в нит основано на величине 0, равной 2,08 микролюкс.
Физическое представление
A в физике рассматриваемую величину можно выразить через понятие работы. Работа понимается как обмен энергиями между системой и внешней средой. Обмен может происходить в форме электромагнитного излучения. Интенсивность излучения как раз и будет определять яркость. Если понимать, в чем измеряется работа в физике, можно определить физическое представление яркости. Работа в физике измеряется в джоулях, которые можно представить, как Ватт-секунды. То есть мощность излучения, умноженная на время, будет считаться работой. Чем больше мощность светового излучения, тем более ярким будет источник света.
Яркость в искусстве и дизайне
Оптические иллюзии и эффекты
Художники часто манипулируют яркостью, чтобы достичь того или иного эффекта или иллюзии. Например, если яркость цвета двух находящихся рядом предметов одинакова, то их линия соприкосновения кажется размытой. Художники используют это свойство, чтобы изобразить иллюзию движения. Один из самых известных примеров — картина Моне «Впечатление. Восходящее солнце»
на иллюстрации. Здесь иллюзия мерцающего солнца и солнечной дорожки вызвана именно этим свойством — яркость солнца и окружающего его неба, а также яркость солнечной дорожки и моря — очень близки. Цвет и яркость обрабатываются разными отделами мозга. Отдел, ответственный за яркость, также отвечает за местоположение в пространстве, перспективу и движение. Благодаря разному цвету мозг понимает, что предмет другого цвета существует, но из-за одинаковой яркости не может определить, где он находится, поэтому создается иллюзия дрожания или движения. Эту технику можно использовать, например, чтобы создать иллюзию блестящих звезд на вечернем небосводе.
Фестиваль тюльпанов в Оттаве, Канада
В фотографии этот эффект тоже нередко используется. Снимая закат, фотограф ждет момента, когда солнце или облака станут одинаковой яркости, но разного цвета с небом. Если удастся снять этот момент, то иногда кажется, что солнце или облака мерцают на фотографии.
Такие краски встречаются в природе не только на закате и рассвете. Аналогичное сочетание цветов может встретиться и на лугу, и на клумбе. Например, тюльпаны на фотографии как бы слегка покачиваются, благодаря тому, что их яркость сливается с яркостью травы. Это хорошо видно на черно-белой фотографии.
Отель «Шато-Лорье», Оттава, Канада
В некоторых случаях такое сочетание цветов может быть жутковатым. Оранжевые огни в замке на фотографии кажутся мерцающими, так как одинаковы по яркости со стенами замка. Если же их цвет изменить до красного и затемнить окружающее небо, то крепость продолжает мерцать, но выглядит уже не гостеприимным дворцом, а зловещим замком с привидениями.
С другой стороны, использование цветов с контрастной яркостью, например сочетание ярких и темных цветов, передает изображению объем, как на написанной маслом розовой камелии. Цветок выглядит настолько объемным, что хочется провести по нему рукой, чтобы в этом убедиться — хотя на самом деле рисунок сделан на плоскости. С темными цветами труднее передать контраст, чем со светлыми — это хорошо видно на рисунке с камелией и особенно заметно на черно-белом изображении. Светлый цветок переходит от почти белого к темно-красному, и выглядит объемно. У темных листьев гораздо меньше разницы в контрасте, чем у цветка, и они выглядят более плоскими. Удобство в работе со светлыми цветами для передачи контраста заметил еще Леонардо да Винчи, и многие художники работают в такой технике.
Камелия
Дизайн
Цель большинства художников — заставить зрителя задуматься, вызвать в нем разные чувства. Для этого и используются различные эффекты, как те, что описаны выше. В дизайне, наоборот, важнее не специальные эффекты, а ясность. Это особенно важно на знаках, например дорожных, или на предупреждениях об опасности. Чтобы те, для кого предназначено это сообщение, как можно лучше его поняли, дизайнеры используют контрастные цвета, с большой разницей в яркости между сообщением и фоном. Это делает текст или изображение более заметным.
Яркость текста почти совпадает с яркостью фона | Яркость текста почти совпадает с яркостью фона |
Поэтому текст трудно читается | Поэтому текст трудно читается |
Разница в контрасте делает текст читаемым, а маленькие детали — заметными. Если, наоборот, между текстом или изображениями и фоном маленькая разница в контрасте, то текст или изображения плохо видны, и они начинают танцевать в глазах. На рисунке показан именно такой текст, который плохо читается из-за того, что он хоть и отличается по цвету от фона, но сливается с ним по яркости.
По мере уменьшения насыщенности цвета, читаемость текста ухудшается. В нашем примере с текстом, красный цвет больше похож на фон по яркости, чем зеленый, но более насыщен. Поэтому и читается он немного лучше, несмотря на то, что зеленый сильнее отличается от фона своей яркостью. Для того, чтобы текст как можно лучше читался, разницу в яркости между ним и фоном делают максимальной, а также увеличивают насыщенность.
Если в дизайне используется несколько цветов с разной яркостью, то самый большой контраст между яркостью фона и текста следует сделать для самого важного текста. Остальной текст может быть менее контрастным, и наименее существенный — с самой низкой разницей в яркости.
На более светлом фоне проще увидеть разницу между двумя изображениями с разной яркостью, поэтому, чтобы усилить контраст, желательно осветлить фон. Это не всегда работает, так как это не помогает людям, которые вынуждены находиться в очень светлой среде — например летчикам. Также нужно быть осторожным при выборе цвета текста, если фон часто изменяется, как, например, на картах навигаторов. Не стоит забывать также, что дизайн для дисплеев ограничен диапазоном воспроизводимых дисплеем цветов.
Воздушная перспектива. Озеро Тоба, Северная Суматра, Индонезия. Фотография опубликована с разрешения автора.
Устройства для измерения
Для количественной оценки освещенности используют специальный прибор – люксметр.
Главными его составляющими являются:
- Встроенный или выносной датчик с фотоэлементом.
- Преобразователь.
- Индикатора в виде шкалы со стрелкой (аналоговые модели) или жидкокристаллического дисплея (цифровые).
Фотоэлемент изготовлен из полупроводников. При попадании света на его поверхность он генерирует ток, величина которого прямо пропорциональна интенсивности излучения. Далее электрический сигнал обрабатывается преобразователем и подается на индикатор.
На показания прибора влияет спектральный состав излучения. При выполнении измерений в условиях естественного и искусственного освещения результаты будут разными.
У недорогих моделей погрешность может превышать 10%, поэтому полученные данные корректируют с помощью поправочных коэффициентов, учитывающих тип освещения.
Дорогие люксметры лишены этого недостатка. Они оснащены оптическими фильтрами, в силу чего воспринимают свет подобно человеческому глазу.
Применение в астрономии
В астрономии также используются единицы измерения яркости для небесных тел. Они характеризуют небесные тела по излучательной или отражательной способности. Отраженный свет небесных тел может быть весьма ярким, достаточно вспомнить свет Луны или затмевающую свет многих звезд утреннюю Венеру. Оба этих небесных тела светят отраженным светом Солнца.
Единица яркости небесных тел выражается звездной величиной участка неба размером одна квадратная секунда. Простыми словами звездную величину можно определить как светимость точечного объекта звездного неба. Квадратной секундой считается 1/648000 от объемного угла, именуемого стерадиан.
Астрономическую яркость можно сравнить с обычной. Одна звездная величина с квадратной секунды равна 8,96 микрокандел на квадратный метр.
Яркость неба в безлунную ночь выражается величиной 0,0002 кд/м2. Измерять светлоту темных объектов важно для фотометрии: таким образом можно понять, какой объект звездного неба и насколько перекрывает светимостью другие объекты. По уменьшению интенсивности света звезд судят о возможном закрытии их светящегося диска планетами, и даже о размере и составе атмосферы этих планет! Эта величина играет важную роль в астрономии, фотографии и видеографии, а также у художников и специалистов по освещенности рабочих мест.