Как измерять напряжения в тысячи вольт с помощью мультиметра


Принципиальная схема приставки для возможности измерения высоких напряжений (много тысяч Вольт) с помощью мультиметра. В некоторых случаях требуетсяизмерять очень большие напряжения (десятки киловольт). Для таких целей существуют специальные приборы — «киловольтметры».

Покупать специально киловольтметр имеет смысл только когда вам нужно довольно часто измерять «киловольты». В повседневной же радиолюбительской практике такие измерения проводить приходится крайне редко.

И в этом случае можно обойтись и простым мультиметром. Но верхний предел измерения напряжение у стандартного мультиметра, обычно не бывает более 2000V.

Для того, чтобы мультиметром можно было измерять значительно более высокое напряжение, его необходимо дополнить приставкой в виде высокоомного и высоковольтного делителя напряжения.

Как измерить высокое напряжение мультиметром

Основная сложность измерения высокого напряжения мультиметром – это создание схемы делителя.

Обычно в бытовых поверенных приборах предусматривают возможность измерения напряжения номиналом до 1-2 тысяч вольт. И это оправдано, ведь работа с бОльшими потенциалами опасна для здоровья, а необходимость в таких манипуляциях дома крайне маловероятна.

В каких случаях может пригодиться измерение высоких напряжений

Если исключить ситуации получения нового опыта, саморазвития и т.п., то наиболее вероятными причинами можно назвать следующие:

  • Проверка работоспособности специфичных силовых блоков, например: Высокое напряжение на аноде ТДКС (сейчас применение кинескопов в телевизорах – большая редкость);
  • Напряжение накала в трансформаторах для СВЧ печей;
  • И т.п.
  • Измерение напряжения высоковольтных линий передач.
  • Аналогичная задача при работе с промышленным силовым оборудованием.
  • В последних двух случаях следует применять только специальные килоомметры, соответствующие допустимым параметрам измерений.

    В быту же особая точность не важна, да и сила тока повышающих трансформаторов часто небольшая.

    Поэтому применение делителя при разовых измерениях более чем оправдано.

    Как сделать делитель

    Основной принцип построения – создание плеча из двух сопротивлений, номинал которых соотносится кратно.

    Например: 20 МОм и 2 кОм. Соотношение – 1:10 000.

    Принципиальная схема делителя может быть представлена следующим образом.

    Рис. 1. Принципиальная схема делителя

    В этом случае напряжение U2 будет рассчитываться как U·R2/(R1+R2).

    То есть при соотношении R1:R2 как 1:1000 получается U1 = U·1/(1000+1) = U/1001.

    При соотношении 1:10000 – U/10001 и так далее.

    Единицей в конце в данном случае можно просто пренебречь, так как сами резисторы могут иметь отклонения в номинале, а на погрешности измерений при таких потенциалах это скажется незначительно.

    Таким образом, достаточно собрать делитель из доступных сопротивлений, которые будут соотносится с нужным коэффициентом.

    Резисторы не обязательно должны быть в одном экземпляре. Можно собрать их последовательно или параллельно, но тогда следует обязательно рассчитать итоговый номинал, а для дополнительной уверенности измерить сопротивление после сборки.

    Один из вариантов делителя с последовательной сборкой

    Рис. 2. Один из вариантов делителя с последовательной сборкой

    Чем выше точность резисторов, тем лучше. Но даже допуск в 1-3% здесь – не проблема.

    Меры безопасности

    Работа с высокими напряжениями всегда опасна.

    Чтобы предотвратить перегрев резисторов, следует использовать модели, предназначенные для работы с высокими напряжениями (например, 30-40 кВ, модели КЭВ или МЛТ-2) и с высоким коэффициентом рассеивания тепла (от 2Вт и выше, а лучше на 8Вт).

    Все соединения из составных элементов следует выполнить так, чтобы исключить возникновение тока пробоя. К примеру, резисторы расположить последовательно без пересечения и наложения в плоскости, поместить в стеклянную колбу или внутрь другого материала, обладающего высокой электрической плотностью (полистирол, оргстекло, текстолит и т.п.).

    Не меньшую осторожность стоит проявить в процессе самих измерений:

    • Проверяемый прибор должен быть отключён при подключении делителя и измерительного прибора.
    • Обратите внимание, что в кинескопах (на аноде) может накапливаться заряд.
    • После измерений проверяемый прибор снова следует обесточить.

    Как производить измерения

    Делитель подключается к измеряемому участку цепи. В примере выше – это контакты X1 и X2.

    Измерительный прибор подключается одним щупом к контакту COM (он же X2). А вторым – к выводу V (в точке деления).

    Полученный числовой результат умножается на коэффициент делителя (он будет зависеть от используемых номиналов и рассчитывается индивидуально).

    Автор: RadioRadar

    Проверка параметров электроцепи

    При проверке электрических цепей можно тестировать многие их параметры. Это и ток, и напряжение в сети, и частота сигнала. Но для определения исправности требуется только прозвонить цепь на целостность и проверить сопротивление изоляции. И то, и другое можно выполнить мультиметром.

    Для того чтобы знать, как прозванивать мультиметром электрическую проводку, нужно правильно настроить измерительный прибор и верно выполнить действия по измерению. Для проверки целостности провода нужно:

    Таким же образом тестируются провода в автомашине и шлейфа различных электронных приборов.

    Кроме проверки целостности, провода тестируются на сопротивление изоляции. Это тоже можно сделать мультиметром:

    Какое освещение Вы предпочитаете

    ВстроенноеЛюстра

    1. Щупы остаются в тех же отверстиях, как и при проверке целостности;
    2. Режим измерения выбирается тот же — проверка сопротивления;
    3. Предел измерения нужно выбрать наибольший — 20 или 200 мегаом;
    4. Прикоснуться щупами к разноименным жилам кабеля: к фазному и нулю или к фазному и экрану. В автомобиле это масса и сигнальная жила;
    5. На экране должно оставаться показание бесконечности, если вместо этого какое-либо значение, значит, где-то есть замыкание. Изменяющиеся значения говорят о помехах в сети.

    После этого нужно найти концы провода и подключить к ним щупы мультиметра. На экране прибора будет отображено сопротивление этого провода. Оно должно быть в пределах от 1 до 10 кОм.

    Способ №3 – Современное слежение

    Ну и последний, самый удобный и эффективный вариант, позволяющий проверить напряжение в розетке – использование специального реле контроля. Этот вид автоматики является своеобразным устройством защиты от перенапряжения в сети. Установив его дома, Вы сможете не только замерить нужный параметр, но и защитите отдельный электроприбор от скачков в сети.

    Недостаток последнего способа в том, что не целесообразно на каждую розеточку покупать отдельное реле. Поэтому такой вариант защиты и контроля мы советуем ставить на самые ценные электроприборы, к примеру, электроплиту либо холодильник.

    Теперь Вы знаете, как проверить напряжение в розетке мультиметром и индикаторной отверткой. Если что-либо было непонятно, в комментариях либо просмотрите предоставленные видео примеры!

    Мнение эксперта

    It-Technology, Cпециалист по электроэнергетике и электронике

    Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

    Проверка силы тока Для определения величины потребляемого переменного тока например, для какого-либо бытового прибора также может быть использован мультиметр. Спрашивайте, я на связи!

    Пробник — он же индикаторная отвертка

    Этот инструмент, несмотря на простоту, имеет множество возможностей и способен решить большинство бытовых задач — надо только подобрать правильную модель и правильно ей пользоваться.

    Пробники бывают нескольких видов, заметно отличающихся по функциональности:

    1. Индикаторные отвертки без питания с неоновой лампочкой или ЖК-индикатором. Это самый простой и недорогой вид индикаторных отверток, но функционал их невелик.

    С помощью такого пробника можно только определить фазный провод. Для этого следует коснуться жалом проверяемого проводника или клеммы, прижав палец к контакту на ручке.

    Если на проводнике есть 220 В, лампочка загорится. Но больше ничего пробником без питания сделать не получится — ни найти нулевой провод, ни проверить его целостность, ни даже определить наличие напряжения ниже 60-70 В.

    2. Индикаторные отвертки со своим питанием от батареек и схемой на полевом транзисторе. Внешне они могут быть очень похожи на рассмотренные ранее, но отличить их довольно просто: во-первых, у моделей с прозрачным корпусом внутри видны батарейки-таблетки.

    Во-вторых, если прикоснуться одновременно к жалу и к контакту на корпусе, индикатор загорится.

    В-третьих, некоторые модели снабжены выключателем, что также говорит о наличии автономного питания.

    Это уже более функциональный инструмент, с помощью которого можно выполнить множество задач:

    3. Бесконтактные пробники с высокой чувствительностью, не требующие контакта с проводом для определения фазы или заземления.

    Они отличаются максимальной безопасностью, так как для работы с ними не требуется доступ к оголенным проводам. Также с помощью бесконтактных пробников обычно можно искать скрытую проводку, причем не обязательно под напряжением — они могут работать как детектор металлов.

    Мнение эксперта

    It-Technology, Cпециалист по электроэнергетике и электронике

    Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

    Как пользоваться мультиметром: понятно для каждого — Блог о строительстве Поэтому измерить номинальное напряжение в розетках необходимо, чтобы понять разумность подключения нового прибора в систему. Спрашивайте, я на связи!

    Микросхемы TI со встроенным шунтом для измерения тока

    В обширном ассортименте продукции компании Texas Instruments (TI) нашлось место и для измерителей тока со встроенным шунтом. Представляем два типа подобных микросхем, каждая из которых предназначена для решения различных специфических задач. Используя встроенный шунт, микросхемы INA250 и INA260 позволяют измерять двунаправленный ток нагрузки со стороны шины питания или шины заземления.

    Интеграция в микросхемы прецизионного резистора для контроля тока обеспечивает высокую точность измерения, сравнимую с калиброванной, и минимальную зависимость характеристик от колебаний температуры. Кроме того, обе микросхемы используют оптимизированное 4-точечное подключение токоизмерительного шунта (схема Кельвина).

    INA250

    Микросхема INA250 является токоизмерительным усилителем с выходным напряжением, пропорциональным измеряемому току. Прецизионный встроенный резисторный шунт позволяет с высокой точностью измерять ток при синфазном напряжении, которое может изменяться от 0 до 36 В независимо от величины напряжения питания микросхемы.

    Семейство INA250 доступно с четырьмя типами шкалы выходного напряжения: 200 мВ/A, 500 мВ/A, 800 мВ/A и 2 В/A. Все микросхемы рассчитаны на номинальный ток до 15 А (10 А – при максимальной температуре 125°C). Однополярное напряжение питания для INA250 составляет 2,7…36 В, а максимальный потребляемый ток достигает 300 мкА. Микросхема работает в расширенном температурном диапазоне -40…125°C и выпускается в 16-выводном корпусе типа TSSOP.

    Основные характеристики INA250

    • Встроенный прецизионный резисторный шунт сопротивление шунта: 2 мОм
    • допустимая погрешность сопротивления шунта: 0,1% (макс.);
    • номинальный измеряемый ток: до 15 A при температуре -40…85°C;
    • температурный коэффициент: 10 ppm/°C в диапазоне 0…125°C.
  • Повышенная точность измерения:
      погрешность коэффициента усиления (шунт и усилитель): 0,3% (макс.);
  • ток смещения: 50 мА (макс., для INA250A2).
  • Четыре коэффициента усиления
      INA250A1: 200 мВ/A;
  • INA250A2: 500 мВ/A;
  • INA250A3: 800 мВ/A;
  • INA250A4: 2 В/A.
  • Широкий диапазон синфазного сигнала: -0,1…36 В
  • Рабочий диапазон температур: -40…125°C
  • INA260

    Микросхема INA260 предназначена для контроля тока, мощности и напряжения с использованием встроенного шунтирующего резистора высокой точности. Цифровой выход этого интегрального монитора обеспечивает совместимость с шинами I²C и SMBus™.

    Микросхема обеспечивает высокую точность измерений тока и мощности в сочетании с возможностью обнаружения превышения тока в режиме синфазных напряжений, уровень которых может изменяться от 0 до 36 В независимо от напряжения питания. У INA260 можно задать до 16 адресов для работы нескольких микросхем на единой шине I²C. Цифровой интерфейс позволяет программировать критические уровни тока, время преобразования и усреднение аналого-цифрового преобразователя (ЦАП). Для упрощения использования измерителя внутренний множитель обеспечивает прямые отсчеты тока в амперах и мощности в ваттах.

    Выполненный в 16-ти выводном корпусе TSSOP интегральный измеритель INA260 работает от источника питания напряжением 2,7…5,5 В при среднем потребляемом токе 310 мкА в диапазоне рабочих температур -40…125°C.

    Основные характеристики INA260

    • Интегрированный резисторный шунт высокой точности сопротивление шунта: 2 мОм;
    • эквивалентная погрешность: не более 0,1%;
    • номинальный ток: до 15 A при температуре -40…85°C;
    • температурный коэффициент: 10 ppm/°C (0…125°C).
  • Измеряемое шинное напряжение: 0…36 В
  • Измерение в цепи между источником питания и нагрузкой или между нагрузкой и общим проводом
  • Считываемые данные о токе, напряжении и мощности
  • Повышенная точность
      системная погрешность усиления: 0,15% (макс.);
  • ток смещения: 5 мА (макс.).
  • Настраиваемые функции усреднения
  • 16 программируемых адресов
  • Напряжение питания: 2,7…5,5 В;
  • Корпус типа TSSOP, 16 выводов.
  • Применение закона Ома

    Основной закон электротехники, он же закон Ома, гласит: I=U/R

    где I-это ток в амперах, U-напряжение в вольтах, R-сопротивление в омах. Эта формула говорит нам, что если в разрыв измеряемой нагрузки (где нужно измерить ток) включить шунт (R) и измеренное на шунте напряжение (U) подставить в формулу, по двум величинам R и U мы узнаем нужную нам I — протекающий ток.

    Пример: мы ожидаем ток 20-30 А, а может и больший от потребления двигателем шуруповерта. У нас имеется проволочный шунт, сопротивлением 0,035 Ом. Шунт подключается в разрыв плюса или минуса, это не важно — действующий ток одинаков на всех участках цепи. Так же параллельно шунту подключается вольтметр — по его показания можно судить о токе, потребляемом нагрузкой. У меня при почти полном торможении вала двигателя вольтметр показывал около 0,9 В. Подставив известные нам значения в формулу I=0,9/0,035=25,7А — такой ток потребляет мотор.

    Обратите внимание: При измерении пульсирующих и динамически меняющихся токов, цифровой вольтметр не очень подходит, так как его контроллер очень медленно снимает показания. Для данной цели больше подходит стрелочный вольтметр.

    Подобрав шунт нужного сопротивления, можно измерять любые постоянные или пульсирующие токи, хоть до 300 А и более. Хотя я сомневаюсь, что такие измерения вам понадобятся. Обычные резисторы не подходят в роли шунта для больших токов, так как обладают малой мощностью рассеяния. Рассчитать примерную мощность рассеяния шунта можно умножив ожидаемый ток в амперах на падение на нем в вольтах. Для выше приведенного примера это 25,7*0,9=23,13 Вт, такой мощностью обладают проволочные резисторы.

    Калькулятор расчета тока по сопротивлению и напряжению на шунте

    Напряжение на шунте, В

    Сопротивление шунта,
    Ом
    Ток, А

    Рассеиваемая мощьность на шунте,
    Вт

    Рейтинг
    ( 1 оценка, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]