Беличья клетка. Конструкция асинхронного короткозамкнутого электродвигателя.

Учитывая то, что электроснабжение традиционно осуществляется путём доставки потребителям переменного тока, понятно стремление к созданию электромашин, работающих на поставляемой электроэнергии. В частности, переменный ток активно используется в асинхронных электродвигателях, нашедших широкое применение во многих областях деятельности человека. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу ряда причин занял прочные позиции в применении.

Секрет такой популярности состоит, прежде всего, в простоте конструкции и дешевизне его изготовления. У электромоторов на короткозамкнутых роторах есть и другие преимущества, о которых вы узнаете из данной статьи. А для начала рассмотрим конструктивные особенности этого типа электрических двигателей.

Варианты исполнений

Специальное исполнение

С – асинхронный электродвигатель с повышенным уровнем скольжения. Полная остановка ротора занимает продолжительное время

Р – с повышенным пусковым крутящим моментом. Для систем, требующих высоких мощностей в момент запуска

К – с фазным ротором

Читайте также: Натуральный логарифм и его свойства

Е – со встроенным электромагнитным тормозным механизмом для обеспечения быстрой остановки ротора двигателя

Асинхронные трехфазные электродвигатели АИР

Среди разнообразия отечественных и импортных двигателей стоит отметить популярную марку АИР. В продаже насчитывается более 300 моделей с различными вариантами исполнений. Огромную популярность они приобрели благодаря высокой надежности, ремонтопригодности и низкой стоимости.

Где применяются электродвигатели:

  • – для систем вентиляции
  • – для печатных машин
  • – для точильных и станков
  • – для привода воздушных компрессоров

В этих сферах возможны применение как высокоскоростных моделей, так и малооборотистых (с частотой вращения менее 1000). Импортная продукция имеет маркировку rpm.

Асинхронный электродвигатель

Англоязычный справочник называет асинхронный электродвигатель индукционным. Сразу точки встают над i. Интернет забит вопросами отличий данного типа машин, нюансы коллекторных, синхронных движков, на деле выходит просто. Единственный вид двигателей, создающий полюсы явлением индукции. Прочие конструкции применяют постоянные магниты, катушки, питаемые током… Только в индукционных (асинхронных) двигателях используются наводки, создающие движущую силу. Фактор определяет особенность – отличие скорости вращения вала от частоты поля.

Двигательный режим

Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой по обмотке ротора начинает течь ток. На проводники с током этой обмотки, расположенные в магнитном поле обмотки возбуждения, действуют электромагнитные силы; их суммарное усилие образует электромагнитный вращающий момент, увлекающий ротор за магнитным полем. Если этот момент достаточно велик, то ротор приходит во вращение, и его установившаяся частота вращения

[об/мин] соответствует равенству электромагнитного момента тормозному, создаваемого нагрузкой на валу, силами трения в подшипниках и инерцией ротора. Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора ЭДС и, в свою очередь, создавать крутящий момент; таким образом, для двигательного режима работы асинхронной машины справедливо неравенство:.

Относительная разность частот вращения магнитного поля и ротора называется скольжением

:
.
Очевидно, что при двигательном режиме

.

Принцип работы

Функционирование асинхронного двигателя осуществляется на основе свойства трёхфазного тока, способного создавать в обмотках статора вращающее магнитное поле. В рассматриваемых электродвигателях синхронная частота вращения электромагнитного поля связана прямо пропорциональной зависимостью с собственной частотой переменного тока.

Существует обратно пропорциональная зависимость частоты вращения от количества пар полюсов в обмотках статора. Учитывая то, что сдвиг фаз составляет 60º, зависимость частоты вращения ротора (в об/мин.) можно выразить формулой:

n1 = (f1*60) / p, где n1 – синхронная частота, f1 – частота переменного тока, а p – количество пар полюсов.

В результате действия магнитной индукции на сердечник ротора, в нём возникнет ЭДС, которая, в свою очередь, вызывает появление электрического тока в замкнутом проводнике. Возникнет сила Ампера, под действием которой замкнутый контур начнёт вращение вдогонку за магнитным полем. В номинальном режиме работы частота вращения ротора немного отстаёт от скорости вращения создаваемого в статоре магнитного поля. При совпадении частот происходит прекращение магнитного потока, ток исчезает в обмотках ротора, вследствие чего прекращается действие силы. Как только скорость вращения вала отстанет, переменными токами магнитных полей, возобновляется действие амперовой силы.

Разницу частот вращения магнитных полей называют частотой скольжения: ns=n1–n2, а относительную величину s, характеризующую отставание, называют скольжением.

s = 100% * ( ns / n1) = 100% * (n1 — n2) / n1 , где ns – частота скольжения; n1, n2 – частоты вращений статорных и роторных магнитных полей соответственно.

С целью уменьшения гармоник ЭДС и сглаживания пульсаций момента силы, стержни короткозамкнутых витков немного скашивают. Взгляните ещё раз на рис. 2 и обратите внимание на расположение стержней, выполняющих роль обмоток ротора, относительно оси вращения.

Скольжение зависит от того, какую механическую нагрузку приложено к валу двигателя. В асинхронных электромоторах изменение параметров скольжения происходит в диапазоне от 0 до 1. Причём в режиме холостого хода набравший обороты ротор почти не испытывает активного сопротивления. S приближается к нулю.

Увеличение нагрузки способствует увеличению скольжения, которое может достигнуть единицы, в момент остановки двигателя из-за перегрузки. Такое состояние равносильно режиму короткого замыкания и может вывести устройство из строя.

Относительная величина отставания соответствующая номинальной нагрузке электрической машины называется номинальным скольжением. Для маломощных электромоторов и двигателей средней мощности этот показатель изменяется в небольших пределах – от 8% до 2%. При неподвижности ротора электродвигателя скольжение стремится к 0, а при работе на холостом ходу оно приближается к 100%.

Во время запуска электромотора его обмотки испытывают нагрузку, что приводит к резкому увеличению пусковых токов. При достижении номинальных мощностей электрические двигатели с короткозамкнутыми витками самостоятельно восстанавливают номинальную частоту ротора.

Обратите внимание на кривую крутящего момента скольжения, изображённую на рис. 3.


Рис. 3. Кривая крутящего момента скольжения

При увеличении крутящего момента коэффициент s изменяется от 1 до 0 (см. отрезок «моторная область»). Возрастает также скорость вращения вала. Если скорость вращения вала превысит номинальную частоту, то крутящий момент станет отрицательным, а двигатель перейдёт в режим генерации (отрезок «генерирующая область»). В таком режиме ротор будет испытывать магнитное сопротивление, что приведёт к торможению мотора. Колебательный процесс будет повторяться, пока не стабилизируется крутящий момент, а скольжение не приблизится к номинальному значению.

Короткозамкнутый ротор

Представления о явлении электромагнитной индукции подскажут нам, что произойдет с замкнутым витком проводника, помещенным во вращающееся магнитное поле, подобное магнитному полю статора асинхронного двигателя. Если поместить такой виток внутри статора, то когда ток на обмотку статора будет подан, в витке будет индуцироваться ЭДС, и появится ток, то есть картина примет вид: виток с током в магнитном поле. Тогда на такой виток (замкнутый контур) станет действовать пара сил Ампера, и виток начнет поворачиваться вслед за движением магнитного потока.

Так и работает асинхронный двигатель с короткозамкнутым ротором, только вместо витка на его роторе расположены медные или алюминиевые стержни, замкнутые накоротко между собой кольцами с торцов сердечника ротора. Ротор с такими короткозамкнутыми стержнями и называют короткозамкнутым или ротором типа «беличья клетка» поскольку расположенные на роторе стержни напоминают беличье колесо.

Короткозамкнутый ротор и беличья клечатка

Проходящий по обмоткам статора переменный ток, порождающий вращающееся магнитное поле, наводит ток в замкнутых контурах «беличьей клетки», и весь ротор приходит во вращение. Поскольку в каждый момент времени разные пары стержней ротора будут иметь различные индуцируемые токи: какие-то стержни — большие токи, какие-то — меньшие, в зависимости от положения тех или иных стержней относительно поля. И моменты никогда не будут уравновешивать ротор, поэтому он и будет вращаться, пока по обмоткам статора течет переменный ток.

Короткозамкнутый ротор асинхронного электродвигателя

К тому же стержни «беличьей клетки» немного наклонены по отношению к оси вращения — они не параллельны валу. Наклон сделан для того, чтобы момент вращения сохранялся постоянным и не пульсировал, кроме того наклон стержней позволяет снизить действие высших гармоник индуцируемых в стержнях ЭДС. Будь стержни без наклона — магнитное поле в роторе пульсировало бы.

Разновидности простейших движков-трансформаторов

Движки переменного тока могут быть синхронными. Схема получается проще, а мотор дешевле. Хотя все асинхронные двигатели содержат статор, аналогичный синхронной машине, конструкция ротора определяет их существенное отличие от них. Его не нужно намагничивать тем или иным способом, как это делается в синхронном движке. Несмотря на отличия моделей асинхронных машин, конструкция их ротора — это эквивалент короткозамкнутой вторичной обмотки.

Самый простой вариант — короткозамкнутый ротор. Его можно просто отлить из ферромагнитного материала и обработать надлежащим образом. Сплавы на основе железа проводят электрический ток и взаимодействуют с магнитным полем. Цельнометаллическая конструкция обладает следующими преимуществами:

  • наиболее проста в изготовлении и по этой причине обладает минимальной себестоимостью;
  • лучше всего переносит усилия, возникающие при работе двигателя;
  • хорошо разгоняется из-за эффективного взаимодействия магнитных полей.


Цельнометаллический вариант

Как преодолеваются недостатки болванки

Однако вполне очевидно то, что такой короткозамкнутый ротор будет не лучшим проводником для токов, индуцируемых статором. Сплавы железа проводят электроток заметно хуже алюминия или меди. Кроме этого ведь неспроста магнитопроводы трансформаторов изготавливают из стальных пластин, а не из цилиндрических болванок. Вихревые токи нагревают литой металл и уменьшают общую эффективность электроустановки. Поэтому недостатки массивности конструкции из железного сплава конструктивно учитывает наиболее эффективный двигатель с короткозамкнутым ротором.

В таком электродвигателе используются алюминиевые или медные детали. Функции применительно к созданию магнитного поля и проводимости тока конструктивно разделяются. Для получения переменного магнитного поля с малыми потерями по аналогии с трансформаторами применяются тонкие изолированные пластины. Каждая из них содержит выемки и по форме эквивалентна поперечному сечению ротора. Ее материалом является трансформаторная сталь.

Как получается беличье колесо (клетка)

После того как пластины собраны, получается цилиндр с канавками. Они образованы выемками, в которые укладываются стержни из алюминия или меди. На торцы цилиндра надеваются пластины или кольца из такого же металла, что и стержни, концы которых крепятся к ним. Каждая пара диаметрально противоположных стержней, таким образом, создает короткозамкнутый виток. Его сопротивление индуцируемому току гораздо меньше, чем у железного сплава. Стержни с пластинами выглядят, как беличья клетка.


Беличья клетка

Поэтому двигатель с короткозамкнутым ротором такой конструкции имеет меньше потерь и по этой причине широко распространен. Но сходство этого электромотора асинхронного электродвигателя короткозамкнутым ротором своим похожего на обычный нагруженный силовой трансформатор ограничено к применению в некоторых электросетях. Не каждая из них может выдержать большой пусковой ток. Если асинхронные электродвигатели с короткозамкнутым ротором будут стартовать одновременно, величина тока будет велика и сравнима с коротким замыканием.

В начале их пуска происходит процесс, аналогичный включению трансформатора с вторичной обмоткой, замкнутой накоротко. В этом начальном положении магнитное поле почти неподвижно, и в этой связи так называемое скольжение получается самым большим. Неподвижный короткозамкнутый ротор асинхронного двигателя создает при пуске наиболее мощное электромагнитное поле. Ведь он собран из листовой стали, отличающейся минимальными вихревыми потерями, а беличье колесо характеризуется минимальным электрическим сопротивлением.

Зачем нужно добавочное сопротивление?

Добавочное сопротивление служит для запуска двигателя с нагрузкой на его валу. Как только достигаются номинальные обороты вала, сопротивление отключается за ненадобность, а кольца закорачиваются. В противном случае работа электродвигателя будет нестабильной, возникнут потери КПД.

Роль добавочного внешнего сопротивления, как правило, выполняет ступенчатый реостат. В этом случае двигатель будет разгонятся тоже ступенчато. Часто используются устройства, способные поднять КПД двигателя, при этом избавляя щетки от излишнего трения о кольца. После разгона устройство поднимает щетки и замыкает кольца.

Для реализации автоматического пуска электродвигателя используется подключенная индуктивность к обмотке ротора. Дело в том, что в тот момент, когда осуществляется пуск, в роторе показатели индуктивности и частоты тока максимальны. При разгоне двигателя эти показатели падают, а в конечном итоге двигатель выходит на нормальный рабочий режим.

Устройство тангенциальных вентиляторов

Назначение и применение тангенциального вентилятора

Внутрипольные конвекторы, электрокамины, фанкойлы, тепловые завесы, дровяные печи, внутренние блоки сплит-систем – все эти устройства требуют наличия компактных вентиляторов с высокой производительностью и малой скоростью воздушного потока.

Именно такими являются тангенциальные вентиляторы, которые активно используются в установках, где напор воздуха не является важным критерием. Их отличительной особенностью является высокий расход воздуха, подача равномерного потока и низкие шумовые характеристики.

Конструкция вентилятора

Вентилятор оснащен длинной крыльчаткой «беличье колесо», полой в центре, выполненной в виде продолговатого цилиндра. Крыльчатка установлена в корпус в виде диффузора, напоминают радиальное колесо. Забор воздуха осуществляется по всей длине вентилятора с фронтальной стороны.

Разновидности устройства

Различают вентиляторы по диаметру и длине крыльчатки, а также по количеству самих крыльчаток. Кроме того, вентиляторы могут отличатся по типу установленного двигателя (АС или ЕС) и рабочему напряжению 12/24 или 220В.

Рис.2 – Разновидности вентиляторов

Рис.3 – Принцип работы: прохождение потока через устройство

Особенности рабочего цикла и принцип действия

Принцип работы заключается в том, что поступающий воздух затягивается лопатками и направляется к диффузору, который задает требуемый вектор. Таким образом, поток движется вдоль периферии вращающейся части двигателя и стремится к выходу, где воздух скапливается в корпусе и поступает к нагнетательному диффузору. Воздушный поток проходит по внешнему диаметру рабочего колеса и 2 раза сквозь крыльчатку по направлению радиуса.

Рис.4 – Принцип работы: 1 – входное отверстие, 2 – рабочее колесо, 3 – выходной диффузор.

Спецификация тангенциального вентилятора

На рисунке ниже представлен чертеж тангенциального вентилятора, на примере модели QL100.

Рис.5 – Габаритные размеры вентилятора QL100

Характеристические кривые

Кривые производительности тангенциального вентилятора указаны на диаграмме на примере двух моделей QL80 и QL100.

Рис.6 — График производительности

По шкале Y отмечено максимальное противодавление, по шкале X – расход воздуха в час для каждой модели соответственно.

Схема подключения и разъемы

Рис.7 – Схема подключения вентиляторов QL80 и QL100

Технические параметры

Ознакомимся с техническими характеристиками на примере агрегата QL80.

QL80 – это тангенциальный вентилятор с ЕС-двигателем, имеет следующие параметры:

Подбор тангенциального вентилятора

Компанией ebm-papst представлен широкий ассортимент устройств, отличающихся между собой модельным рядом, комплектацией, техническими характеристиками. При выборе агрегата под определенные требования решающими факторами являются:

Критерии выбораХарактеристика
Условия эксплуатацииНоминальное напряжение, частота сети электропитания
ПроизводительностьВоздушный поток, уровень шума, КПД, сопротивление
Окружающая средаУсловия эксплуатации, степень защищенности, эксплуатационный период, режим работы, габариты, положение установки и т.д.

Квалифицированный специалист компании поможет подобрать оптимальный вариант, удовлетворяющий требованиям клиента.

Сферы применения тангенциальных вентиляторов

Работа прибора отличается низким уровнем шума что позволяет применять его повсеместно.

Аналогия с муфтой

Рассматривая принцип действия асинхронного электродвигателя, используемого в промышленных машинах, и его технические характеристики, нужно сказать про вращающуюся муфту механического сцепления. Крутящий момент на валу привода должен равняться крутящему моменту на ведомом валу. Кроме того, следует подчеркнуть, что эти два момента являются одним и тем же, поскольку крутящий момент линейного преобразователя вызывается трением между дисков внутри самой муфты.

Похожий принцип действия и у тягового двигателя с фазным ротором. Система такого мотора состоит из восьми полюсов (из которых 4 – основные, а 4 – добавочные), и остовы. На основных полюсах расположены медные катушки. Вращение такого механизма обязано зубчатой передаче, которая получает крутящий момент от вала якоря, так же называемого сердечником. Включение в сеть, производится четырьмя гибкими кабелями. Основное назначение многополюсного электродвигателя – приведение в движение тяжелой техники: тепловозы, тракторы, комбайны и в некоторых случаях, станки.

Конструкция

В каждом электромоторе есть две важных рабочих детали: ротор и статор. Они заключены в защитный кожух. Для охлаждения проводников обмотки на валу ротора установлен вентилятор. Это общий принцип строения всех типов электродвигателей.

Конструкции статоров рассматриваемых электродвигателей ничем не отличаются от строения этих деталей в других типах электромоторов, работающих в сетях переменного тока. Сердечники статора, предназначенного для работы при трехфазном напряжении, располагаются по кругу под углом 120º. На них устанавливаются обмотки из изолированной медной проволоки определённого сечения, которые соединяются треугольником или звездой. Конструкция магнитопровода статора жёстко крепится на стенках цилиндрического корпуса.

Строение электродвигателя понятно из рисунка 1. Обратите внимание на конструкцию обмоток без сердечника в короткозамкнутом роторе.

Рис. 1. Строение асинхронного двигателя с КЗ Ротором

Немного по-другому устроен ротор. Конструкция его обмотки очень похожа на беличью клетку. Она состоит из алюминиевых стержней, концы которых замыкают короткозамыкающие кольца. В двигателях большой мощности в качестве короткозамкнутых обмоток ротора можно увидеть применение медных стержней. У этого металла низкое удельное сопротивление, но он дороже алюминия. К тому же медь быстрее плавится, а это не желательно, так как вихревые токи могут сильно нагревать сердечник.

Конструктивно стержни расположены поверх сердечников ротора, которые состоят из трансформаторной стали. При изготовлении роторов сердечники монтируют на валу, а проводники обмотки впрессовывают (заливают) в пазы магнитопровода. При этом нет необходимости в изоляции пазов сердечника. На рисунке 2 показано фото ротора с КЗ обмотками.

Рис. 2. Ротор асинхронного двигателя с КЗ обмотками

Пластины магнитопроводов таких роторов не требуют лаковой изоляции поверхностей. Они очень просты в изготовлении, что удешевляет себестоимость асинхронных электродвигателей, доля которых составляет до 90% от общего числа электромоторов.

Ротор асинхронно вращается внутри статора. Между этими деталями устанавливаются минимальные расстояния в виде воздушных зазоров. Оптимальный зазор находится в пределах от 0,5 мм до 2 мм.

В зависимости от количества используемых фаз асинхронные электродвигатели можно разделить на три типа:

Они отличаются количеством и расположением обмоток статора. Модели с трехфазными обмотками отличаются высокой стабильностью работы при номинальной нагрузке. У них лучшие пусковые характеристики. Зачастую такие электродвигатели используют простую схему пуска.

Двухфазные двигатели имеют две перпендикулярно расположенных обмотки статора, на каждую из которых поступает переменный ток. Их часто используют в однофазных сетях – одну обмотку подключают напрямую к фазе, а для питания второй применяют фазосдвигающий конденсатор. Без этой детали вращение вала асинхронного электродвигателя самостоятельно не начнётся. В связи с тем, что конденсатор является неотъемлемой частью двухфазного электромотора, такие двигатели ещё называют конденсаторными.

В конструкции однофазного электродвигателя используют только одну рабочую обмотку. Для запуска вращения ротора применяют пусковую катушку индуктивности, которую через конденсатор кратковременно подключают к сети, либо замыкают накоротко. Эти маломощные моторчики используются в качестве электрических приводов некоторых бытовых приборов.

Маломощные аналоги

Исследование трехфазного асинхронного двигателя говорит о том, что данная разновидность является наиболее эффективной в большинстве ситуаций. Однако существуют также одно- и двухфазные моторы. Однофазная схема работы подразумевает наличие на статоре только одной обмотки, которая получает питание в виде переменного напряжения. При этом статор оснащен специальной стартовой обмоткой, на которую поступает пусковой импульс посредством конденсатора либо с применением индуктивности. В некоторых моделях выполняется кратковременное короткое замыкание. Это делается для создания фазового сдвига; без него ротор не начнет вращение из-за пульсации статорного магнитного поля.

Однофазные электродвигатели, асинхронные системы которых используют магнитные поля, также оснащаются роторами в виде цилиндра, имеющего заполненные алюминием пазы и монолитно соединенные с ним охлаждающие лопасти. Такая конструкция ротора называется короткозамкнутой; иногда можно встретить обозначение «беличья клетка». Область применения однофазных моторов – бытовое оснащение малой мощности.

Если в наличии имеется только однофазная переменная сеть энергоснабжения, рациональным будет использование двухфазного мотора. В этих агрегатах также установлен статор с двумя перпендикулярными обмотками. Одна обмотка непосредственно подключена к сети энергоснабжения, а перед второй установлен конденсатор, обеспечивающий фазный сдвиг. Такая схема позволяет задавать вращение магнитного поля и в конечном итоге запускать электродвигатель.

Двухфазные моторы имеют больше возможностей, чем однофазные. Поэтому их сфера эксплуатации – бытовое и промышленное оснащение с низкой и средней нагрузкой. Другое название двухфазных агрегатов – конденсаторные; это обусловлено наличием конденсатора, основного компонента, позволяющего ротору двигаться.

Подключение

Статорные обмотки трёхфазного АДКР можно подключать по схеме «треугольник» либо «звезда». При этом для звёздочки требуется напряжение выше, чем для треугольника.

Обратите внимание на то, что электродвигатель, подключенный разными способами к одной и той же сети, потребляет разную мощность. Поэтому нельзя подключать электромотор, рассчитанный на схему «звезда» по принципу треугольника. Но с целью уменьшения пусковых токов можно коммутировать на время пуска контакты звезды в треугольник, но тогда уменьшится и пусковой момент.

Схемы включения понятны из рисунка 4.

Рис. 4. Схемы подключения

Для подключения трёхфазного электрического двигателя к однофазному току применяют фазосдвигающие элементы: конденсаторы, резисторы. Примеры таких подключений смотрите на рисунке 5. Можно использовать как звезду, так и треугольник.

Рис. 5. Примеры схем подключений в однофазную сеть

С целью управления работой двигателя в электрическую цепь статора подключаются дополнительные устройства.

Расчет иад с ротором типа «беличья клетка»

Методические указания к расчетно-практической работе

по курсу «Расчет элементов и устройств систем управления»

и для выполнения соответствующих разделов

дипломного проектирования для студентов специальности 210100

Балаковского института техники,

технологии и управления

Цель работы: ознакомиться с основами расчета асинхронных исполнительных двигателей

Анализ основных требований

К управляемым двигателям переменного тока предъявляется ряд специфических требований, которые необходимо учитывать при проектировании. Важнейшими из этих требований являются: отсутствие самохода; достаточная линейность механических характеристик (

); получение небольшого значения пускового момента на ватт потребляемой мощности; достаточно малое значение электромеханической постоянной времени (

мсек); минимальное напряжение трогания (

); возможность длительной работы в пусковом режиме (короткое замыкание).

Энергетические показатели работы двигателя: полезная мощность на валу, коэффициент полезного действия,

— принимают во внимание после указанных выше требований. При прочих равных условиях их стремятся получить максимальными, что в ряде случаев определяет выбор ротора управляемого двигателя, число пар полюсов, частоту питающего напряжения.

Необходимо отметить, что одновременное выполнение всех указанных выше требований и получение высоких энергетических показателей двигателя в номинальном режиме невозможно. Обычно приходиться искать разумное компромиссное решение, при котором удовлетворяются наиболее важные для данного типа двигателя требования. Так, например, требования по отсутствию самохода и малой степени нелинейности механической характеристики заставляю выполнять двигатель с большим активным сопротивлением ротора. Естественно, что при этом к.п.д. и полезная мощность двигателя оказывается значительно ниже, чем у аналогичных асинхронных двигателей общего применения. Для получения минимального напряжения трогания двигатель должен иметь наименьшее число пар полюсов р

и полный немагнитный ротор, что не всегда согласуется с оптимальными значениями других характеристик.

Беличье колесо

Бе́личье колесо́

— игрушка для домашних животных, обычно мелких грызунов (белок, мышей, хомяков, бурундучков и т. п.), представляющая собой колесо, внутри которого перемещается животное. Может использоваться также и как временная клетка для переноса животного.

Собственно конструкция представляет собой вращающееся колесо с закреплённой осью вращения и предполагает, что животное может бежать в нём достаточно долго (пока не устанет), но никуда не убегает. Отсюда также выражение «Вертеться (крутиться) как белка в колесе

». Обвод вращающееся колеса может быть как решётчатым, так и сплошным с небольшими выступами. Расстояние между прутьями (выступами) подбирается с учётом анатомических особенностей того или иного вида животного.

Является эффективным тренажёрам для поддержания физического тонуса мелких домашних животных.

Существуют также аналогичные аттракционы для детей и взрослых. При этом как в стационарном (ось вращения закреплена), так и в движущимся варианте (ось вращения не закреплена).

«Беличье колесо» в электротехнике

«Беличье колесо» — способ соединения электрических проводников в роторе асинхронного двигателя переменного тока. Изобретён в 1889 году М. О. Доливо-Добровольским (германский патент №51083 от 8 марта 1889 года под названием «Anker für Wechselstrommotoren»). Внешне похож на игрушку, в которой бегают домашние животные.

См. также

  • Прогулочный шар — схожая игрушка для мелких домашних животных.
  • Беговая дорожка — спортивный тренажёр со схожим принципом работы — бесконечная дорога, позволяющая оставаться бегуну на месте относительно помещения.
Это заготовка статьи по зоологии. Вы можете помочь проекту, дополнив её.

Напишите отзыв о статье «Беличье колесо»

Бегущее магнитное поле

Статор асинхронных двигателей, подключаемых к трехфазной сети, состоит из трех электромагнитов. На них подается напряжение разных фаз сети. А так как разные фазы работают — нарастают и уменьшаются — со сдвигом во времени друг от друга, аналогично будет нарастать и уменьшаться магнитное поле в катушках. Сначала поле возникнет и будет расти в катушке 1 фазы, через одну треть периода точно так же возникнет и будет возрастать поле во второй фазе, а поле в первой при этом постепенно и плавно, по синусоиде, сначала перестанет нарастать, а потом начнет уменьшаться. Все повторится и для катушки третьей фазы — поле появится, будет возрастать, тогда как поле во второй сначала остановит свой рост, потом пойдет на спад. А в это время поле в первой фазе уже дойдет до нуля и будет возрастать в отрицательную сторону.

Структура трехфазного двигателя

Трехфазные асинхронные двигатели, разрез 1 – вал ротора (сталь); 2 – обмотка статора (медный эмалированный провод); 3 – сердечник статора (электротехническая сталь, сплав железа и кремния); 4 – проводники ротора (алюминий); 5 – сердечник ротора (эл. т. сталь); 6 – крыльчатка вентилятора (алюминий); 7 – литой корпус двигателя (сталь)Образование бегающего по кругу вектора магнитного поля На каждой фазовой катушке статора от трехфазного напряжения, изменяющегося синусоидально со сдвигом каждой фазы относительно другой на 120°, возникает такая сила индукции, что результирующий вектор направления магнитного поля начинает бегать по кругу с угловой скоростью, равной частоте напряжения в трехфазной сети

Если в статоре сделать только три обмотки, по числу фаз в питающем напряжении, то магнитное поле будет вращаться с той же частотой, что и напряжение, то есть 50 раз за одну секунду. Но на практике их делают гораздо больше.

Поле в статоре

Тогда бегающее по кругу поле будет иметь частоту вращения меньше, но вращение при этом станет более плавным.

Однофазные и трехфазные д0вигатели асинхронного типа

Договорились – трехфазные коллекторные двигатели достать сложно, текущий раздел речь ведет касательно асинхронных машин. Разновидности перечислим:

  1. Трехфазные асинхронные двигатели снабжены числом выводов три-шесть рабочих обмоток за вычетом различных предохранителей, внутренних реле, разнообразных датчиков. Катушки статора внутри объединяются звездой, делая невозможным напрямую включение в однофазную сеть.
  2. Однофазные двигатели, снабженные пусковой обмоткой, помимо прочего снабжаются парой контактов, ведущих к концевому центробежному выключателю. Миниатюрное устройство обрывает цепь, когда вал раскручен. Пусковая обмотка катализирует начальный этап. Дальнейшим действием будет мешать, снижая КПД двигателя. Принято конструкцию называть бифилярной. Пусковая обмотка наматывается двойным проводом, снижая реактивное сопротивление. Помогает уменьшить емкость конденсатора – критично. Ярким примером однофазных двигателей асинхронного типа с пусковой обмоткой выступают компрессоры бытовых холодильников.
  3. Конденсаторная обмотка, отличаясь от пусковой, работает непрерывно. Двигатели найдем внутри напольных вентиляторов. Конденсатор дает сдвиг фаз 90 градусов, позволяя выбрать направление вращения, поддержать нужную форму электромагнитного поля внутри ротора. Типично на корпусе двигателя конденсатор крепится.
  4. Мелкие асинхронные двигатели, применяемые вытяжками, вентиляторами, способны запускаться без конденсатора вовсе. Начальное движение образуется махом лопастей, либо искривлением проводки (бороздок) ротора в нужном направлении.

Научимся, как отличить однофазные двигатели асинхронного типа от трехфазных. В последнем случае внутри всегда имеется три равноценных обмотки. Поэтому можно найти три пары контактов, которые при исследовании тестером дают одинаковое сопротивление. Например, 9 Ом. Если обмотки объединены звездой внутри, выводов с одинаковым сопротивлением будет три. Из них любая пара дает идентичные показания, отображаемые экраном мультиметра. Сопротивление каждый раз равно двум обмоткам.

Поскольку ток должен выходить, иногда трехфазный двигатель имеет вывод нейтрали. Центр звезды, с каждым из трех других проводов дает идентичное сопротивление, вдвое меньшее, нежели демонстрирует попарная прозвонка. Указанные выше симптомы говорят красноречиво: двигатель трёхфазный, теме сегодняшнего разговора чуждый.

Рассматриваемые рубрикой моторы обмоток содержат две. Одна пусковая, либо конденсаторная (вспомогательная). Выводов обычно три-четыре. Отсутствуй украшающий корпус конденсатор, можно попробовать рассуждать, озадачиваясь предназначением контактов следующим образом:

  1. Выводов четыре штуки – нужно измерить сопротивление. Обычно звонятся попарно. Сопротивление ниже – нашли основную обмотку, подключаемую к сети 230 вольт без конденсатора. Полярность не играет роли, направление вращения задается способом включения вспомогательной обмотки, коммутацией катушек. Проще говоря, осуществите подключение однофазного электродвигателя характерного типа с одной лишь основной обмоткой – в начальный период времени вал стоит стоймя. Куда раскрутишь, туда пойдет вращение. Остерегайтесь производить старт рукой – поломает.
  2. Видим три вывода. Внутри концы катушек соединены, образуя звезду. Подаётся нейтраль (схемный нуль). Касаемо двух других выводов, сопротивление попарное будет наибольшим (равняется обеим обмоткам, включенным последовательно). Самое маленькое значение, как прежде, будет рабочей обмотки, фазу пусковой проходит, минуя конденсатор. Обеспечит сдвиг в нужную сторону. Обычно такой двигатель вращается однонаправленно, нельзя физически изменить полярность включения емкости. Однако существуют сведения (проверим эпюры в другой раз): питая рабочую катушку напряжением через конденсатор, пусковую включив напрямую, выполним реверс. Возможность подключить электродвигатель 3-проводной, реализуя обратное вращение, литературой опускается.

Преимущества и недостатки

Повсеместное использование асинхронных двигателей с короткозамкнутыми роторами обусловлено их неоспоримыми преимуществами:

  • стабильностью работы на оптимальных нагрузках;
  • высокой надёжностью в эксплуатации;
  • низкие эксплуатационные затраты;
  • долговечностью функционирования без обслуживания;
  • сравнительно высокими показателями КПД;
  • невысокой стоимостью, по сравнению с моделями на основе фазных роторов и с другими типами электромоторов.

Из недостатков можно отметить:

  • высокие пусковые токи;
  • чувствительность к перепадам напряжений;
  • низкие коэффициенты скольжений;
  • необходимость в применении устройств, таких как преобразователи частоты, пусковые реостаты и др., для улучшения характеристик электромотора;
  • ЭД с короткозамкнутым ротором нуждаются в дополнительных коммутационных управляющих устройствах, в случаях, когда возникает необходимость регулировать скорость.

Электродвигатели данного типа имеют приличную механическую характеристику. Несмотря на недостатки, они лидируют по показателям их применения.

Двигатель с перманентными магнитами РМ

Синхронный двигатель с постоянными магнитами (PM) – инновационный двигатель с точки зрения технологии электродвигателей, в котором сочетается высочайшая точность управления обычной скорости синхронного двигателя с простой конструкцией и надежностью асинхронного двигателя в беличьей клетке. Механически двигатель PM похож на традиционный асинхронный двигатель с индукцией, тем не менее, с точки зрения производительности может демонстрировать более высокие результаты. Двигатели РМ серии “6S4 – 7S4”состоят из двух роторов с постоянными магнитами, генерирующими постоянное магнитное поле ротор проворачивается на той же скорости магнитного поле, генерируемого обмоткой статоре независимо от крутящего момент, требуемого валом, однако в целом асинхронный двигатель демонстрирует скольжение пропорциональное развиваемому крутящему моменту. Следовательно, отсутствуюют утечки, связанные с намагничиванием ротора, что передается в меньшем использовании электроэнергии для производства механической энергии и меньшего нагрева самого двигателя. Следовательно, синхронизм улучшает динамические характеристики, обеспечивая постоянный момент при обширном диапазоне, высокую производительность в том числе и при низкой частоте (уровень эффективности намного выше, чем у асинхронных двигателей) и без необходимости использования принудительной вентиляции; постоянный момент при различных скоростях вращение ведет к упрощению кинематической цепи, со всеми преимуществами, вытекающими их их эксплуатации. Постоянные магнитные двигателииспользуются в различных секторах. Особенно это выгодно там, где вес, размеры каркаса и расходы на техобслуживание. В последовательности они хорошо подходят для установки в насосных системах, вентиляции ОВКВ и трансмиссии компрессоры и лифты, а также во многих типах промышленного оборудования, например, для текстильной промышленности, металлургической и бумажно-целлюлозной. Наиболее существенные конструктивные преимещства, следующие: • Высокая эффективность • Высокая производительность при всем диапазоне скоростей, особенно на низких оборотах, когда эффективность выше, чем у асинхронных двигателей. • Снижение потерь ротора • Постоянный крутящий моментпри всем диапазоне скоростей • Высокая удельная мощность • Точное управление скоростью даже без энкодера • Снижение перегрева, что ведет к увеличению срока службы изоляции, подшипников и других компонентов двигателя • Уменьшенные габаритные размеры и вес двигателя • Быстрая окупаемость Двигатели с постоянным магнитом РМ могут работать только при помощи инвертора. Компания Elvem может поставлять собственным клиентам комплексные системы: двигатели РМ со встроенным или отдельным инвертором.

ELVEM S.R.L

Via delle Industrie, 42

36050 Cartigliano – Vicenza – Italy

Тел: +39 0424 513972/ +39 0424 35410

Факс: +39 0424 35405

ПОДПИСАТЬСЯ НА НОВОСТНУЮ РАССЫЛКУ

Сертификаты

Privacy Overview

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Пайка медных стержней

При обнаружении трещин на выступающих из активной стали частях стержней принимают меры к их устранению. Если глубина трещины не превышает примерно четвертой части толщины стержня, то ее заваривают, предварительно вырубив в этом месте углубление на величину, превышающую размер трещины.

Рис. 4.Пайка медного стержня: 1 — короткозамыкающее кольцо: 2 — вставка; 3 — стержень Если трещина более глубокая, то стержень разрезают и высверливанием удаляют припаянный к короткозамыкающему кольцу участок. Через образовавшееся в короткозамыкающем кольце отверстие в торце оставшейся в пазу части стержня высверливается отверстие на глубину 6— 7 мм. Диаметр этого отверстия не должен превышать половину диаметра стержня. На место удаленной части стержня устанавливают и припаивают вставку (рис. 4), изготовленную из меди марки Ml и М2. При этом односторонний радиальный зазор а между стержнем и короткозамыкающим кольцом и между торцами ремонтируемого стержня и вставки должен быть равен: 0,2 мм при пайке медно-фосфористым припоем МФ-9; 0,1—0,15 мм — серебросодержащими припоями. Выбор марки припоя определяется условиями эксплуатации (тяжелый пуск) и окружной скоростью. При окружной скорости 50 м/с и более применяют припой ПсР-45. Для двигателей, работающих в более легких условиях, — припой МФ-9. Перед пайкой производят обезжиривание и травление замыкающих колец. Местное обезжиривание производят чистой ветошью, смоченной в пожаробезопасной моющей жидкости, повторяя эту операцию 3—4 раза. Травление выполняют в течение 15—30 с в растворе концентрированной азотной кислоты с содержанием 250—350 г/л при температуре 20°С. Места травления промывают горячей водой, протирают сухой чистой ветошью и просушивают. Пайку выполняют ацетилено-кислородным пламенем горелкой №4 или 5. Пайка должна выполняться не позднее чем через 8 ч после травления. В качестве флюса используют буру или флюс № 209. При выполнении пайки второй горелкой поддерживают температуру стержня и короткозамыкающего кольца и после их разогрева. Расплавление припоя производят касанием им наиболее нагретых мест. Не допускают плавления припоя в пламени горелки. Флюс наносят на спаиваемые поверхности разогретым прутком припоя. Пайку вставки с короткозамыкающим кольцом выполняют при вертикальном положении ротора. После пайки зачищают и опиливают соединенные места и проверяют лупой качество пайки. После ремонта ротор балансируют. Ремонт алюминиевых стержней и короткозамыкающих колец. Участки с трещинами разделывают, как указано на рис. 5. Перед заваркой разделанные места и прилегающие участки шириной 30—40 мм подвергают механической зачистке с предварительным и последующим обезжириванием.

Беличья клетка. Конструкция асинхронного короткозамкнутого электродвигателя

Асинхронные бесколлекторные двигатели нашли наиболее широкое распространение благодаря сравнительной простоте и надежности в эксплуатации. Коллекторные двигатели имеют ограниченное применение в установках, где требуется регулировать скорость приводимых механизмов в широких пределах. Однако они относительно тяжелы, дороги, имеют худшие рабочие характеристики по сравнению с бесколлекторными двигателями, а главное менее надежны в эксплуатации из-за тяжелых условий коммутации тока. Асинхронные бесколлекторные машины имеют два основных исполнения: с короткозамкнутой обмоткой ротора и с фазной обмоткой ротора — с контактными кольцами. С точки зрения происходящих электромагнитных процессов в асинхронном двигателе можно выделить две наиболее важные части: неподвижный статор, обеспечивающий создание вращающегося магнитного поля, и вращающийся ротор, в котором создается электромагнитный момент, передаваемый приводимому механизму. Сердечники статора набираются из листов электротехнической стали толщиной 0,5 мм и реже 0,35 мм, изолированных друг от друга лаковым покрытием (в сердечниках роторов двигателей малой мощности изоляцией служит слой окалины на поверхности листа). В сердечниках статора и ротора сделаны специальные пазы, в которых размещаются соответствующие обмотки.

Рис. 1. Литая алюминиевая беличья клетка ротора короткозамкнутого асинхронного двигателя (с короткозамыкающим кольцом и вентиляционными лопатками) Одной из наиболее распространенных роторных обмоток является короткозамкнутая, так называемая беличья клетка (внешне она. напоминает беличье колесо — рис. 1). Рабочие провода этой обмотки (стержни) укладываются в пазы ротора неизолированными, благодаря чему обеспечиваются хорошее использование площади паза и хорошая теплоотдача от стержней к активной стали. Короткозамкнутые асинхронные двигатели по конструкции ротора имеют следующие модификации: с одиночной беличьей клеткой; глубокопазные; с двойной беличьей клеткой, или двухклеточные. Конструктивное отличие этих модификаций обусловливает различие характеристик этих машин, в первую очередь пусковых. Рис. 2. Пазы и стержни обмоток ротора. а — одиночная беличья клетка; б— глубокий паз; в — двойная беличья клетка. Асинхронные двигатели с одиночной беличьей клеткой на роторе имеют пазы, выштампованные в листовой стали, овальной или круглой формы (рис. 2,а). Сверху эти пазы перекрываются мостиком толщиной 0,4—0,5 мм и заливаются алюминием. С обоих торцов ротора располагаются алюминиевые кольца, которые замыкают все отлитые в пазах стержни. Такая литая единая беличья клетка часто дополнительно снабжается с обеих сторон ротора специальными алюминиевыми крыльями (см. рис. 1). Эти крылья устанавливаются для увеличения теплоотвода от короткозамкнутого ротора и для лучшей вентиляции внутри асинхронной машины. В асинхронных электродвигателях с глубокопазным ротором (рис. 2,б) беличья клетка изготавливается обычно из медных стержней прямоугольного сечения. Короткозамыкающие кольца по торцам ротора, как правило, выполняются также из меди, в которых профрезеровываются прорези в соответствии с размерами прямоугольных стержней. Стержни и кольца припаиваются друг к другу тугоплавкими припоями. Двухклеточный ротор (рис. 1,в) выполняется с двумя беличьими клетками. Внешняя обмотка изготавливается из латуни или специальной бронзы, благодаря чему обеспечиваются относительно большое ее активное сопротивление и сравнительно малое индуктивное. Эта обмотка выполняет функции пусковой в асинхронном двигателе. Другая обмотка ротора — внутренняя — изготавливается из меди с минимальным активным сопротивлением. Она выполняет функции основной рабочей обмотки двигателя. Обе обмотки имеют круглые пазы, однако внутренняя обмотка в ряде случаев выполняется прямоугольной или овальной формы. Короткозамыкающие торцевые кольца для обеих обмоток обычно изготавливаются из меди. Существуют другие модификации пазов ротора (бутылочного профиля, трапецеидального профиля), однако описанные выше являются наиболее характерными для асинхронных двигателей. В асинхронном двигателе частота вращения ротора, увлекаемого магнитным полем статора, меньше частоты вращения самого поля. В самом деле, в случае равенства этих частот прекратилось бы движение поля по отношению к ротору, так как в роторе перестала бы наводиться электродвижущая сила, создающая токи в его обмотках. При этом прекратилось бы взаимодействие ротора с вращающимся полем и устранилась бы причина вращения ротора. В таком случае ротор стал бы неминуемо проскальзывать, т. е. частота его вращения стала бы меньше, чем частота вращения магнитного поля, что и соответствует действительному положению в асинхронном двигателе. Ввиду различия частот вращения поля и ротора рассматриваемые машины получили название асинхронных. При изучении явлений, протекающих в роторе асинхронного двигателя, когда он заторможен (т. е. при неподвижном роторе), можно заключить, что машина в этом режиме по своей физической природе представляет собой трансформатор. Первичной обмоткой трансформатора служит статор, а вторичной — обмотка ротора. В общем случае асинхронный двигатель отличен от трансформатора главным образом своим конструктивным исполнением. У асинхронной машины вторичная обмотка отделена от первичной воздушным зазором, чего нет в общепромышленных трансформаторах. Кроме того, вторичная обмотка двигателя вращается по отношению к первичной. Как было отмечено выше, частота вращения п, с которой вращается ротор, должна отличаться от частоты вращения магнитного поля п1. В зависимости от соотношения этих частот существуют три режима работы асинхронной машины: двигательный, генераторный, тормозной. При работе асинхронной машины в двигательном режиме частота вращения ротора изменяется в пределах 0п1), то асинхронная машина перейдет в генераторный режим. При этом направление вращения поля статора относительно ротора изменится на обратное по сравнению с работой машины в двигательном режиме. Электромагнитный момент на валу, развиваемый асинхронной машиной, становится тормозящим по отношению к двигателю, который приводит ее во вращение. Механическая энергия, передаваемая этим двигателем асинхронной машине, преобразуется в электрическую и отдается в сеть, к которой подключен ее статор. Режим работы асинхронной машины, когда ротор приводится во вращение против направления вращения электромагнитного поля статора, получил название режима электромагнитного тормоза. ?

Трансформаторные подстанции высочайшего качества

с нами приходит энергия

[email protected]

Обмотки типа бельчьей клетки

1. Конструкция. К короткозамкнутым обмоткам типа беличьей клетки относятся обмотки роторов асинхронных двигателей с короткозамкнутым ротором, демпферные (успокоительные) обмотки синхронных генераторов и пусковые обмотки синхронных двигателей. Обмотка образуется из стержней, замкнутых с двух сторон короткоза мыкающим и кольцами. В асинхронных машинах применяется равношаговая, или полная, беличья клетка, у которой расстояния между соседними стержнями одинаковые (рис. 16-23). В синхронных машинах (явнополюсных) применяется неравношаговая, или неполная, беличья клетка, стержни которой располагаются, как правило, только в полюсном наконечнике и отсутствуют в межполюсном пространстве (рис. 16-24). Беличьи клетки роторов асинхронных двигателей мощностью до 200 кВт (в отдельных случаях — до 400 кВт) выполняют литыми алюминиевыми (рис. 16-23). Для заливки роторов электродвигателей общего применения используется » чистый первичный алюминий. Химический состав отлитой беличьей клетки должен соответствовать составу первичного алюминия марки А5 или А6 (не более 0,5% примесей). Литые беличьи клетки технологичны и надежны., Методом литья изготовляют беличьи клетки диаметром до 550 мм и длиной до 700 мм. Литые беличьи клетки применены, в частности, в электродвигателях единых серий А, АО, А2, АО2 до 11-го габарита. Стержни литых беличьих клеток располагаются в закрытых или полузакрытых пазах различной формы (глубокий с параллельными стенками, глубокий трапециевидный, клинообразный, лопаточный — рис. 16-25, а-г). Короткозамкнутые обмотки крупных асинхронных двигателей (мощностью примерно свыше 200 кВт) и явнополюсных синхронных машин выполняются сварными, обычно из медных или латунных стержней и медных (латунных, иногда — стальных) короткозамыкающих колец или сегментов. Сварные короткозамкнутые обмотки асинхронных двигателей могут иметь стержни круглого, прямоугольного (глубокий паз, рис 16-25,е) или специального (колбообразного, клинообразного — рис.16-25, д, ж) профиля, применяются также двойные беличьи клетки, когда стержни обеих обмоток располагаются в полузакрытых пазах на различной глубине (рис. 16-25, з). В асинхронных двигателях с двойной беличьей клеткой обычно стержни рабочей (внутренней) клетки — медные, пусковой (внешней) клетки — латунные (реже — бронзовые). Крупные асинхронные двигатели выпускаемых отечественной промышленностью серий А и A3 (мощностью от 200 до 1 250 кВт) имеют беличью клетку со стержнями преимущественного колбообразного профиля. Стержни беличьих клеток синхронных машин имеют, как правило, круглое сечение и изготовляются из меди или латуни. Стержни располагаются в пазах полюсных наконечников. Стержни каждого полюса припаивают с двух сторон к сегментам, сегменты соседних полюсов соединяют друг с другом болтами (рис 16-24). Соединение стержней с короткозамыкающими кольцами (сегментами) в сварных беличьих клетках выполняется пайкой твердыми припоями (главным образом марок ПСр-15, ПСр-45 и ПМФ-7) с помощью газосварочной горелки.

Как проверить двигатель перед запуском

Перед тем, как запустить асинхронный двигатель в работу, желательно его проверить на работоспособность. С чего же начать?

Внешний осмотр двигателя. Проверьте, нет ли сколов, вмятин, покрутите вал двигателя. Он должен крутиться плавно и без рывков в обе стороны. Этим действием вы проверяете подшипники, на которых держится ротор двигателя. Если вал двигателя подклинивает, то на это могут быть несколько причин: разбиты посадочные места под подшипники, убитые подшипники, либо ротор затирает статор. Для того, чтобы выяснить причину, нужно будет полностью разобрать двигатель и выяснить реальную проблему. Если все ок, то двигаемся к следующему шагу.

Проверяем обмотки двигателя. Для этого берем мультиметр, ставим его на измерение сопротивления и проверяем сопротивление обмоток. Если обмотки подключены по схеме «звезда», то нам будет достаточно замерять сопротивление между клеммами, куда подается напряжение питания. Делается это в три этапа.

Раз.

Два.

Три.

Во всех трех случаях сопротивление должно быть одинаково. Допускается отклонение в несколько Ом.

Этими тремя действиями мы проверили обмотки нашего двигателя и убедились, что они все целые.

И заключительный шаг. Проверяем, не звонятся ли обмотки на землю. Так как все обмотки так или иначе соединяются между собой, достаточно будет встать щупом мультиметра на любую из обмоток, а вторым щупом встать на корпус двигателя. Переключатель на мультиметре поставить на измерение МОм.

В идеале должно получиться бесконечно большое сопротивление, в реале от 100 МОм и выше. Если сопротивление очень маленькое, что то около 1-10 Ом, то это означает, что какая-то из обмоток двигателя звонится на землю, что категорически недопустимо. На практике если же сопротивление меньше 1 МОм, то надо выяснить причину и устранить ее. Скорее всего в двигатель попала влага, грязь, либо произошел пробой диэлектрика медного провода. В этом случае поможет только полная разборка и визуальное выяснение причины.

Все те же самые операции применяются и к двигателю со схемой подключения «треугольник».

Большинство материала для статьи «асинхронный двигатель» было взято из видео ниже. Обязательно к просмотру.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]