Модуль IGBT для частотного преобразователя, эксплуатация на практике

Силовой транзистор IGBT управляется с помощью напряжения, подаваемого на управляемый электрод-«затвор», который изолирован от силовой цепи. Полное название прибора: биполярный транзистор с изолированным затвором.

Характерная черта для этого транзистора – очень малое значение управляющей мощности, использованной для коммутационных операций существенных токовых значений силовых цепей.

Рис. №1. Эффективность использования технологий на основе мощных IGBT-транзисторов

Преобладающее значение приобрело его использование в цепях силового предназначения для частотных преобразователей, для двигателей переменного тока, мощность, которых может доходить до 1 МВт. По своим вольтамперным характеристикам он считается аналогом биполярному транзистору, однако качественные энергетические показатели и чистота коммутационных действий намного выше, чем качество работы других полупроводниковых элементов.

Постоянно совершенствующиеся технологии позволяют улучшить качественные характеристики транзисторов. Созданы элементы, рассчитанные на большую величину напряжения, выше 3 кВ и большие значения тока до нескольких сотен ампер.

Insulated Gate Bipolar Transistor

Заголовок этого раздела переводится как “биполярный транзистор с изолированным затвором” (англ.). Это современный прибор, появившийся примерно в конце прошлого века и сделавший революцию в силовой электронике. Электроэнергия используется человечеством уже давно, по мере развития техники одна часть возникающих проблем была успешно решена как например, отказ от дорогих магнитных сплавов в пользу дешевой стали и медных обмоток возбуждения в двигателях постоянного тока и магнитах (Вернер Сименс). Другая часть проблем долго и упорно не поддавалась решению. К ней, например, можно отнести использование переменного тока в электротранспорте.

Электротехнические устройства всегда содержат элементы коммутации и это самые больные их места. При разрыве многих электрических цепей возникает дуга, пережигающая со временем контакты. Сопротивление контактов в идеале должно быть не больше, чем самый маленький участок остальной цепи, но на практике, именно благодаря окислам от дуги, в месте контакта возникает повышенное сопротивление. По закону Джоуля-Ленца на этом сопротивлении возникает и рассеивается тепловая мощность пропорциональная сопротивлению и квадрату тока. Нагрев током места контакта приводит к его ускоренному старению, чем дальше, тем быстрее, и в результате цепь выходит из строя.

Полупроводниковые переключатели

Задача любого ключа в электротехнике – обеспечить короткое замыкание. Идеальный ключ это тот, который имеет:

  1. бесконечно большое сопротивление в открытом состоянии;
  2. нулевое время включения (замыкания);
  3. нулевое сопротивление в замкнутом состоянии;
  4. нулевое время отключения.

Инженеры долго пытались использовать и вакуум, и различные газы, и ртуть, и масло, и золото с платиной, и еще много чего, для того, чтобы сделать быстродействующие переключатели, не боящиеся дуги и успешно борющиеся с нею. Решение нашлось только в полупроводниковых материалах, появившихся к началу второй половины прошлого века и далеко не сразу. Сначала полупроводниковые диоды, работавшие на промышленной частоте, затем биполярные транзисторы, переход с германия на кремний, некоторое повышение рабочих частот, изобретение тиристора, jfet-транзисторов, примерно таким путем шла электроника к понятию и термину силовой транзисторный ключ (СТК).

В поисках идеального ключа физики твердого тела и и инженеры дошли до MOSFET: “Metal-Oxide-Semiconductor Field Effect Transistor” (“металл-окисел-полупроводник” МОП-транзистор, транзистор с изолированным затвором). Это потрясающий прибор, который сделал первую революцию в силовой импульсной технике. Он способен переключать значительные токи всего лишь присутствием (или отсутствием, в зависимости от типа) электрического поля на затворе. Ток в цепи управления оказался не нужен, однако, при повышении рабочих частот пришлось кормить током паразитную емкость затвора, и это вызвало свои проблемы.

К недостаткам привычных на тот момент биполярных транзисторов относились:

  • большой ток в цепи управления;
  • малый коэффициент передачи тока;
  • сильный разброс параметров от экземпляра к экземпляру;
  • зависимость параметров от температуры;
  • малая допустимая плотность токов в импульсных режимах;
  • знакопеременное напряжение на базе для запирания;
  • склонность к накоплению тока;
  • большое время рассасывания неосновных носителей.

Что касается полевых транзисторов, то они лишены этих недостатков в силу самого принципа своего устройства. В них нет p-n перехода со всеми его проблемами. К недостаткам полевого МОП-транзистора относятся довольно неважные качества прямой проводимости, особенно с ростом рабочего напряжения приборов. Биполярные, в этом отношении, могут иметь довольно малое напряжение коллектор-эмиттер в открытом состоянии. MOSFET нашли себе хорошее применение в высокочастотной импульсной технике.

Проверка исправности

Ревизия и тестирование IGBT полупроводников выполняется при наличии неисправностей электрических устройств. Такую проверку проводят с использованием мультитестера, прозванивая коллекторы и электроды с эмиттером в двух направлениях. Это позволит установить работоспособность транзистора и исключит отсутствие замыкания. При проверке необходимо отрицательно зарядить вход затвора, используя щупы мультиметров типа COM .

Для проверки правильности работы транзистора на входе и выходе затвора заряжают ёмкость положительным полюсом. Выполняется такая зарядка за счёт кратковременного касания щупом затвора, после чего проверяется разность потенциала коллектора и эмиттера. Данные потенциалов не должны иметь расхождение более 1,5 Вольта. Если тестируется мощный IGBT, а тестера не будет хватать для положительного заряда, на затвор подают напряжение питания до 15 Вольт.

IGBT-транзисторы


Объединив положительные качества биполярных и полевых, с изолированным затвором, транзисторов, можно получить для низкочастотной (имеется в виду промышленная частота 50-60 Hz) техники весьма достойный переключающий элемент – IGBT. Его обозначение и упрощенная эквивалентная схема показана на рисунке выше. Схема собрана подобно дарлингтоновской для биполярных. Полевой транзистор с n-каналом фактически служит усилителем тока с большим усилением, и хорошо открывает связанный с ним биполярный транзистор, который служит силовым в данной паре.
Его эмиттер в этой структуре назван коллектором и наоборот (по “принципу утки” – по отношению к клеммам прибор отчасти ведет себя как биполярный транзистор с гигантским усилением). В то же время, нельзя считать IGBT простой схемой, которую “спаяли” из n-канального полевого и pnp-биполярного транзисторов, – это именно полупроводниковая структура, а не схема. Формальные переход база-коллектор биполярной части и канал полевой образуют единую структуру на кристалле.

Область применения IGBT транзисторов по электрическим параметрам лежит от 300 В и выше, по частоте – до 10 кГц. Это как раз хорошо подходит для промышленной частоты (в применении частотников). IGBT применяются в электроприводах, начиная от небольших электроинструментов вплоть до электровозов. То, что они работают в области не очень высоких частот, в отличие от mosfet, избавляет от множества проблем, связанных с паразитными индуктивностями и емкостями – управляющий транзистор в такой структуре чувствует себя вполне комфортно, его частота переключений сравнительно невелика. Значит, легче перезаряжать затворную емкость.

Большой проводимости от него, в данном случае, не требуется. Выходной pnp биполярный транзистор устроен таким образом, что выдерживает большое обратное напряжение и может работать в инверсном режиме. Простота управления IGBT и область безопасной работы оказались гораздо выше, чем у биполярных транзисторов. IGBT, как таковые, не имеют встроенного обратного диода, но такой диод с быстрым восстановлением может быть добавлен в схему или внешним образом, или интегрирован на кристалле, если это нужно для той области, для которой предназначается прибор.

IGBT появились в 1983 году (в IR запатентовали первый образец). Первые образцы неважно переключались и были ненадежными, поэтому на рынок, как следует, не вышли. Трудности были технологическими, связанными с получением пластин толщиной около 100 мкм. Их преодоление, а также появление Trench-технологии для изготовления MOSFET позволили резко снизить сопротивление канала в открытом состоянии, и это позволило приблизить свойства IGBT практически к свойствам традиционного механического выключателя, но без присущего ему образования дуги и на несколько порядков высоким быстродействием.

Транзисторы IGBT применяют в частотных преобразователях, устройствах плавного пуска, они интенсивно вытесняют тиристоры из всех областей, несмотря на свою значительную цену. Из используют в источниках питания, инверторах, электроприводах, сварочных питающих устройствах, на транспорте.

История появления

Первые полевые транзисторы были разработаны в 1973 году, а уже спустя 6 лет появились управляемые биполярные модели, в которых использовался изолированный затвор. По мере совершенствования технологии существенно улучшились показатели экономичности и качества работы таких элементов, а с развитием силовой электроники и автоматических систем управления они получили широкое распространение, встречаясь сегодня практически в каждом электроприборе.

Сегодня используются электронные компоненты второго поколения, которые способны коммутировать электроток в диапазоне до нескольких сотен Ампер. Рабочее напряжение у IGBT — транзисторов колеблется от сотен до тысячи Вольт. Совершенствующие технологии изготовления электротехники позволяют выполнять качественные транзисторы, обеспечивающие стабильную работу электроприборов и блоков питания.

Модули IGBT

Поскольку IGBT, как правило, крайне редко применяются в одиночном варианте, конструкторы стали думать о модульных вариантах их компоновки. Модуль конструктивно гораздо проще и компактнее использовать в изделиях. Но не только это.

Очень важной функцией IGBT-модулей является возможность наращивать мощность частотных преобразователей, инверторов без больших материальных затрат!

Маломощный частотный преобразователь с развитыми функциями управления стоит гораздо дешевле мощного. Мощный IGBT-модуль недешев сам по себе, но мощный IGBT-модуль и недорогой но “умный” частотник по цене могут оказаться в несколько раз дешевле. Потребителям, (да и производителям) есть о чем подумать.

Потребуется, правда, вмешательство достаточно квалифицированных инженеров, так как речь идет о переделке схемы частотников, так как далеко не все модели допускают такое расширение: там нет ни выходов для таких подключений, и ни слова в инструкциях, кроме, разве что, запрета вмешательства в схему преобразователя со стороны потребителей и отказа об ответственности для таких случаев. Кроме технической стороны дела, есть еще и возможная юридическая: возможное нарушение патентов, лицензий и т.д. Это тоже надо иметь в виду.

Сфера использования

Сегодня IGBT транзисторы применяются в сетях с показателем напряжения до 6,5 кВт, обеспечивая при этом безопасную и надежную работу электрооборудования. Имеется возможность использования инвертора, частотно регулируемых приводов, сварочных аппаратов и импульсных регуляторов тока.

Сверхмощные разновидности IGBT используются в мощных приводах управления троллейбусов и электровозов. Их применение позволяет повысить КПД, обеспечив максимально возможную плавность хода техники, оперативно управляя выходом электродвигателей на их полную мощность. Силовые транзисторы применяются в цепях с высоким напряжением. Они используются в схемах бытовых кондиционеров, посудомоечных машин, блоков питания в телекоммуникационном оборудовании и в автомобильном зажигании.

Модуль IGBT для преобразователя частоты

Со схемой управления IGBT-модули связываются при помощи драйверов, так как встроенных драйверов модули не имеют. Это специальные интегральные схемы, которые позволяют эффективно управлять затворами IGBT и выжать из них максимальную эффективность. Главное, для чего нужны драйверы – до предела снизить времена переключения IGBT, и, тем самым, приблизить их к идеальному ключу из учебников по электротехнике. Затем, согласовать их со схемой управления электрически, в том числе, обеспечить гальваническую развязку при необходимости.

Если для усиления частотного преобразователя используются внешние модули IGBT, то остается только подключить к ним выходы драйверов. Ниже показана схема модуля для преобразователя частоты:

Модуль крепится винтами на охлаждающий алюминиевый радиатор через теплопроводящую свинцовую пасту или специальные керамические прокладки. Эти поверхности должны лежать строго в одной плоскости и быть совершенно чистыми при сборке! Иначе не будет обеспечен достаточный теплоотвод. Кстати, о температуре. В модуль встроен термисторный датчик температуры (клеммы 22 и 23). Рабочая температура в модуле не должна превышать 100°C. Для снятия достаточного тока сделаны дополнительные петли на силовых контактах (модуль выполнен под пайку).

Контакты 1,2,3; 4,5,6; 7,8,9 подключаются к питающей трехфазной сети.

Контакты 38,39,40 являются плюсовой шиной сетевого выпрямителя, а контакты 41,42,43 – отрицательной.

Контакты 33,34,35 являются плюсовой шиной выходного инверторного моста, а контакты 30,31,32 – отрицательной. Последние четыре перечисленные группы, а также контакт 29, группа 36,37 образуют выходы для звена постоянного тока.

Контакты 10, 28 служат для подключения к драйверу, управляющему работой выходной фазы частотника. Аналогичную роль играют группы 14, 26 и 18, 24 для двух оставшихся фаз. Контакты 11, 12, 13 – это выход одной фазы инвертора, а группы 15,16,17 и 19,20,21 выходы двух остальных фаз.

Правильные временные диаграммы ШИМ и достаточная эффективность драйверов, которые должны справиться с зарядкой и разрядкой емкости затвора транзистора, – это залог того, что двигатель вообще будет вращаться и ничего не сгорит. Поэтому инверторный мост предварительно надо запитать от маломощного источника постоянного тока с ограничением тока и убедиться, при помощи осциллографа, в отсутствии сквозных токов, правильности “синусов”, формируемых мостом, правильном сдвиге фаз, на всех частотах, которые выдает преобразователь. Питание управления в частотном преобразователе также подается лабораторным способом.

Сигнал обратной связи по температуре модуля также должен быть корректным. Подогревая модуль каким-либо способом в пределах 20…80°C, необходимо контролировать его фактическую температуру точным термометром. Затем найти в меню преобразователя пункт с соответствующим параметром, проконтролировать его.

Если мы убедимся, что драйверы надежно управляют модулем, а сигнал обратной связи по температуре не содержит ошибок, то тогда можно делать монтаж, собирать звено постоянного тока и затем снова сделать проверку на двигателе небольшой мощности, через предохранители, рассчитанные на соответствующий ток, включаемые в каждую фазу.

Причины нагрева модулей и необходимость их охлаждения

Поскольку наши ключи не являются идеальными, то есть, они не обеспечивают идеального короткого замыкания, то в открытом состоянии их сопротивление не равно нулю. Значит, на этом сопротивлении рассеивается джоулево тепло. Это один источник, и не самый значительный.

Кроме открытого состояния, есть еще переходные процессы, связанные с включением и выключением. В этот период сопротивление коллектор-эмиттер уменьшается от нескольких гОм, до единиц или десятков миллиОм. В момент равенства сопротивления ключа сопротивлению остальной цепи, рассеиваемая мощность достигает максимума. Затем мощность спадает до уровня открытого состояния. Получается импульс мощности. Если мы проинтегрируем его по промежутку времени, в течение которого происходит процесс включения, то найдем тепловую энергию этого импульса.

При выключении происходит нечто аналогичное, но в обратном направлении. Потери в цепи управления, на фоне потерь в силовой цепи, выглядят игрушечными ими можно пренебречь (это проблемы не потребителей, а разработчиков). Потери в открытом ключе – это понятие академическое, на практике составляют ноль безоговорочно. Картина включения и выключения IGBT хорошо показана ниже.

V( GE ) – напряжение затвор-эмиттер, I( C ) – ток коллектора.

При включении IGBT возникает импульс тока, при выключении – импульс напряжения, за счет индуктивного характера нагрузки. Динамический диапазон может быть довольно значителен, а скорость переходных процессов весьма небольшая. Чтобы подавить обратные всплески напряжения, нужны импульсные быстродействующие диоды, от которых также, в свою очередь, требуется и быстрое восстановление. IGBT переключаются с частотой ШИМ-модулятора, а это единицы и более десятка кГц.

Чем выше выбирают частоту модуляции, тем точнее можно воспроизвести синусоиду, но тем больше и потерь переключения, те больше греется радиатор модуля и тем больше радиопомех возникает. Чем меньше частота модуляции, тем легче работать модулю IGBT, но тем больше гармоник тока в силовой цепи и ее реактивная мощность. Поэтому потребителю дается возможность выбирать частоту модуляции ШИМ в пределах 2…16 кГц (разные модели частотников имеют разные диапазоны) с дискретным шагом в несколько ступеней.

На радиаторах модулей IGBT может рассеиваться мощность от единиц Вт, до нескольких кВт, в зависимости от мощности модулей. В общем и целом, можно считать, что современные модули IGBT рассеивают в тепло около 0,3…0,5% коммутируемой мощности. Это довольно неплохо, по сравнению с техникой прежних лет.

Ключевые особенности и преимущества IPM

Особенности

  • 600 В, трехфазный мостовой инвертор на базе IGBT, включая ИС управления ключами и диоды свободного хода
  • Защита IGBT от короткого замыкания
  • Полностью изолированный корпус, выполненный по технологии DBC с повышенной теплоотдачей
  • Функция интеллектуального отключения
  • Компаратор для защиты от превышения током предельно допустимого значения при коротком замыкании
  • Операционный усилитель для увеличения чувствительности датчика тока
  • Встроенные ограничительные диоды
  • Малый форм-фактор

Преимущества

  • Удобство управления от микроконтроллера
  • Высокая эффективность и надежность
  • Очень низкое тепловое сопротивление Rth
  • Уменьшенное количество компонентов
  • Оптимизированная топология печатной платы
  • Уменьшение размера печатной платы (компактная конструкция)
  • Малая интенсивность отказов
  • Простота реализации алгоритма управления по полю (FOC) без использования дополнительных датчиков

В таблице 4 представлены основные характеристики IPM компании ST.

Таблица 4. Основные характеристики интеллектуальных силовых модулей (IPM) компании ST

ОсобенностиБазовая версияПолнофункциональная версия
STGIPS10K60ASTGIPS14K60STGIPL14K60STGIPS20K60STGIPL20K60
Рабочее напряжение, В600600600600600
Рабочий ток при TC=25 °C, А1014151820
RthJC max. Для одного IGBT, °C/Вт3,832,82,42,2
Тип корпусаSDIP-25LSDIP-25LSDIP-38LSDIP-25LSDIP-38L
Размер корпуса, мм (X, Y, Z)44,4×22,0×5,444,4×22,0×5,449,6×24,5×5,444,4×22,0×5,449,6×24,5×5,4
Технология DBCДаДаДаДаДа
NTCДаДаДаДаДа
Встроенные ограничительные диодыДаДаДаДаДа
Функция SDНетДаДаДаДа
Компаратор для защиты от коротких замыканийНетДа (1 вывод)Да (3 вывода)Да (1 вывод)Да (3 вывода)
Функция интеллектуального отключенияНетДаДаДаДа
Операционный усилитель для увеличения чувствительности датчика токаНетНетДаНетДа
Функция взаимного выключенияДаДаДаДаДа
Блокировка при перегрузке по напряжениюДаДаДаДаДа
Конфигурация с открытым эмиттеромДа (3 вывода)Да (3 вывода)Да (3 вывода)Да (3 вывода)Да (3 вывода)
Совместимость с входными логическими уровнями 3,3/5 ВДаДаДаДаДа
Входной сигнал для IGBT-транзисторов верхнего плечаВысокий активный уровеньВысокий активный уровеньВысокий активный уровеньВысокий активный уровеньВысокий активный уровень
Входной сигнал для IGBT-транзисторов нижнего плечаВысокий активный уровеньНизкий активный уровеньНизкий активный уровеньНизкий активный уровеньНизкий активный уровень
Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]