Силовой транзистор IGBT управляется с помощью напряжения, подаваемого на управляемый электрод-«затвор», который изолирован от силовой цепи. Полное название прибора: биполярный транзистор с изолированным затвором.
Характерная черта для этого транзистора – очень малое значение управляющей мощности, использованной для коммутационных операций существенных токовых значений силовых цепей.
Рис. №1. Эффективность использования технологий на основе мощных IGBT-транзисторов
Преобладающее значение приобрело его использование в цепях силового предназначения для частотных преобразователей, для двигателей переменного тока, мощность, которых может доходить до 1 МВт. По своим вольтамперным характеристикам он считается аналогом биполярному транзистору, однако качественные энергетические показатели и чистота коммутационных действий намного выше, чем качество работы других полупроводниковых элементов.
Постоянно совершенствующиеся технологии позволяют улучшить качественные характеристики транзисторов. Созданы элементы, рассчитанные на большую величину напряжения, выше 3 кВ и большие значения тока до нескольких сотен ампер.
Insulated Gate Bipolar Transistor
Заголовок этого раздела переводится как “биполярный транзистор с изолированным затвором” (англ.). Это современный прибор, появившийся примерно в конце прошлого века и сделавший революцию в силовой электронике. Электроэнергия используется человечеством уже давно, по мере развития техники одна часть возникающих проблем была успешно решена как например, отказ от дорогих магнитных сплавов в пользу дешевой стали и медных обмоток возбуждения в двигателях постоянного тока и магнитах (Вернер Сименс). Другая часть проблем долго и упорно не поддавалась решению. К ней, например, можно отнести использование переменного тока в электротранспорте.
Электротехнические устройства всегда содержат элементы коммутации и это самые больные их места. При разрыве многих электрических цепей возникает дуга, пережигающая со временем контакты. Сопротивление контактов в идеале должно быть не больше, чем самый маленький участок остальной цепи, но на практике, именно благодаря окислам от дуги, в месте контакта возникает повышенное сопротивление. По закону Джоуля-Ленца на этом сопротивлении возникает и рассеивается тепловая мощность пропорциональная сопротивлению и квадрату тока. Нагрев током места контакта приводит к его ускоренному старению, чем дальше, тем быстрее, и в результате цепь выходит из строя.
Полупроводниковые переключатели
Задача любого ключа в электротехнике – обеспечить короткое замыкание. Идеальный ключ это тот, который имеет:
- бесконечно большое сопротивление в открытом состоянии;
- нулевое время включения (замыкания);
- нулевое сопротивление в замкнутом состоянии;
- нулевое время отключения.
Инженеры долго пытались использовать и вакуум, и различные газы, и ртуть, и масло, и золото с платиной, и еще много чего, для того, чтобы сделать быстродействующие переключатели, не боящиеся дуги и успешно борющиеся с нею. Решение нашлось только в полупроводниковых материалах, появившихся к началу второй половины прошлого века и далеко не сразу. Сначала полупроводниковые диоды, работавшие на промышленной частоте, затем биполярные транзисторы, переход с германия на кремний, некоторое повышение рабочих частот, изобретение тиристора, jfet-транзисторов, примерно таким путем шла электроника к понятию и термину силовой транзисторный ключ (СТК).
В поисках идеального ключа физики твердого тела и и инженеры дошли до MOSFET: “Metal-Oxide-Semiconductor Field Effect Transistor” (“металл-окисел-полупроводник” МОП-транзистор, транзистор с изолированным затвором). Это потрясающий прибор, который сделал первую революцию в силовой импульсной технике. Он способен переключать значительные токи всего лишь присутствием (или отсутствием, в зависимости от типа) электрического поля на затворе. Ток в цепи управления оказался не нужен, однако, при повышении рабочих частот пришлось кормить током паразитную емкость затвора, и это вызвало свои проблемы.
К недостаткам привычных на тот момент биполярных транзисторов относились:
- большой ток в цепи управления;
- малый коэффициент передачи тока;
- сильный разброс параметров от экземпляра к экземпляру;
- зависимость параметров от температуры;
- малая допустимая плотность токов в импульсных режимах;
- знакопеременное напряжение на базе для запирания;
- склонность к накоплению тока;
- большое время рассасывания неосновных носителей.
Что касается полевых транзисторов, то они лишены этих недостатков в силу самого принципа своего устройства. В них нет p-n перехода со всеми его проблемами. К недостаткам полевого МОП-транзистора относятся довольно неважные качества прямой проводимости, особенно с ростом рабочего напряжения приборов. Биполярные, в этом отношении, могут иметь довольно малое напряжение коллектор-эмиттер в открытом состоянии. MOSFET нашли себе хорошее применение в высокочастотной импульсной технике.
Проверка исправности
Ревизия и тестирование IGBT полупроводников выполняется при наличии неисправностей электрических устройств. Такую проверку проводят с использованием мультитестера, прозванивая коллекторы и электроды с эмиттером в двух направлениях. Это позволит установить работоспособность транзистора и исключит отсутствие замыкания. При проверке необходимо отрицательно зарядить вход затвора, используя щупы мультиметров типа COM .
Для проверки правильности работы транзистора на входе и выходе затвора заряжают ёмкость положительным полюсом. Выполняется такая зарядка за счёт кратковременного касания щупом затвора, после чего проверяется разность потенциала коллектора и эмиттера. Данные потенциалов не должны иметь расхождение более 1,5 Вольта. Если тестируется мощный IGBT, а тестера не будет хватать для положительного заряда, на затвор подают напряжение питания до 15 Вольт.
IGBT-транзисторы
Объединив положительные качества биполярных и полевых, с изолированным затвором, транзисторов, можно получить для низкочастотной (имеется в виду промышленная частота 50-60 Hz) техники весьма достойный переключающий элемент – IGBT. Его обозначение и упрощенная эквивалентная схема показана на рисунке выше. Схема собрана подобно дарлингтоновской для биполярных. Полевой транзистор с n-каналом фактически служит усилителем тока с большим усилением, и хорошо открывает связанный с ним биполярный транзистор, который служит силовым в данной паре.
Его эмиттер в этой структуре назван коллектором и наоборот (по “принципу утки” – по отношению к клеммам прибор отчасти ведет себя как биполярный транзистор с гигантским усилением). В то же время, нельзя считать IGBT простой схемой, которую “спаяли” из n-канального полевого и pnp-биполярного транзисторов, – это именно полупроводниковая структура, а не схема. Формальные переход база-коллектор биполярной части и канал полевой образуют единую структуру на кристалле.
Область применения IGBT транзисторов по электрическим параметрам лежит от 300 В и выше, по частоте – до 10 кГц. Это как раз хорошо подходит для промышленной частоты (в применении частотников). IGBT применяются в электроприводах, начиная от небольших электроинструментов вплоть до электровозов. То, что они работают в области не очень высоких частот, в отличие от mosfet, избавляет от множества проблем, связанных с паразитными индуктивностями и емкостями – управляющий транзистор в такой структуре чувствует себя вполне комфортно, его частота переключений сравнительно невелика. Значит, легче перезаряжать затворную емкость.
Большой проводимости от него, в данном случае, не требуется. Выходной pnp биполярный транзистор устроен таким образом, что выдерживает большое обратное напряжение и может работать в инверсном режиме. Простота управления IGBT и область безопасной работы оказались гораздо выше, чем у биполярных транзисторов. IGBT, как таковые, не имеют встроенного обратного диода, но такой диод с быстрым восстановлением может быть добавлен в схему или внешним образом, или интегрирован на кристалле, если это нужно для той области, для которой предназначается прибор.
IGBT появились в 1983 году (в IR запатентовали первый образец). Первые образцы неважно переключались и были ненадежными, поэтому на рынок, как следует, не вышли. Трудности были технологическими, связанными с получением пластин толщиной около 100 мкм. Их преодоление, а также появление Trench-технологии для изготовления MOSFET позволили резко снизить сопротивление канала в открытом состоянии, и это позволило приблизить свойства IGBT практически к свойствам традиционного механического выключателя, но без присущего ему образования дуги и на несколько порядков высоким быстродействием.
Транзисторы IGBT применяют в частотных преобразователях, устройствах плавного пуска, они интенсивно вытесняют тиристоры из всех областей, несмотря на свою значительную цену. Из используют в источниках питания, инверторах, электроприводах, сварочных питающих устройствах, на транспорте.
История появления
Первые полевые транзисторы были разработаны в 1973 году, а уже спустя 6 лет появились управляемые биполярные модели, в которых использовался изолированный затвор. По мере совершенствования технологии существенно улучшились показатели экономичности и качества работы таких элементов, а с развитием силовой электроники и автоматических систем управления они получили широкое распространение, встречаясь сегодня практически в каждом электроприборе.
Сегодня используются электронные компоненты второго поколения, которые способны коммутировать электроток в диапазоне до нескольких сотен Ампер. Рабочее напряжение у IGBT — транзисторов колеблется от сотен до тысячи Вольт. Совершенствующие технологии изготовления электротехники позволяют выполнять качественные транзисторы, обеспечивающие стабильную работу электроприборов и блоков питания.
Модули IGBT
Поскольку IGBT, как правило, крайне редко применяются в одиночном варианте, конструкторы стали думать о модульных вариантах их компоновки. Модуль конструктивно гораздо проще и компактнее использовать в изделиях. Но не только это.
Очень важной функцией IGBT-модулей является возможность наращивать мощность частотных преобразователей, инверторов без больших материальных затрат!
Маломощный частотный преобразователь с развитыми функциями управления стоит гораздо дешевле мощного. Мощный IGBT-модуль недешев сам по себе, но мощный IGBT-модуль и недорогой но “умный” частотник по цене могут оказаться в несколько раз дешевле. Потребителям, (да и производителям) есть о чем подумать.
Потребуется, правда, вмешательство достаточно квалифицированных инженеров, так как речь идет о переделке схемы частотников, так как далеко не все модели допускают такое расширение: там нет ни выходов для таких подключений, и ни слова в инструкциях, кроме, разве что, запрета вмешательства в схему преобразователя со стороны потребителей и отказа об ответственности для таких случаев. Кроме технической стороны дела, есть еще и возможная юридическая: возможное нарушение патентов, лицензий и т.д. Это тоже надо иметь в виду.
Сфера использования
Сегодня IGBT транзисторы применяются в сетях с показателем напряжения до 6,5 кВт, обеспечивая при этом безопасную и надежную работу электрооборудования. Имеется возможность использования инвертора, частотно регулируемых приводов, сварочных аппаратов и импульсных регуляторов тока.
Сверхмощные разновидности IGBT используются в мощных приводах управления троллейбусов и электровозов. Их применение позволяет повысить КПД, обеспечив максимально возможную плавность хода техники, оперативно управляя выходом электродвигателей на их полную мощность. Силовые транзисторы применяются в цепях с высоким напряжением. Они используются в схемах бытовых кондиционеров, посудомоечных машин, блоков питания в телекоммуникационном оборудовании и в автомобильном зажигании.
Модуль IGBT для преобразователя частоты
Со схемой управления IGBT-модули связываются при помощи драйверов, так как встроенных драйверов модули не имеют. Это специальные интегральные схемы, которые позволяют эффективно управлять затворами IGBT и выжать из них максимальную эффективность. Главное, для чего нужны драйверы – до предела снизить времена переключения IGBT, и, тем самым, приблизить их к идеальному ключу из учебников по электротехнике. Затем, согласовать их со схемой управления электрически, в том числе, обеспечить гальваническую развязку при необходимости.
Если для усиления частотного преобразователя используются внешние модули IGBT, то остается только подключить к ним выходы драйверов. Ниже показана схема модуля для преобразователя частоты:
Модуль крепится винтами на охлаждающий алюминиевый радиатор через теплопроводящую свинцовую пасту или специальные керамические прокладки. Эти поверхности должны лежать строго в одной плоскости и быть совершенно чистыми при сборке! Иначе не будет обеспечен достаточный теплоотвод. Кстати, о температуре. В модуль встроен термисторный датчик температуры (клеммы 22 и 23). Рабочая температура в модуле не должна превышать 100°C. Для снятия достаточного тока сделаны дополнительные петли на силовых контактах (модуль выполнен под пайку).
Контакты 1,2,3; 4,5,6; 7,8,9 подключаются к питающей трехфазной сети.
Контакты 38,39,40 являются плюсовой шиной сетевого выпрямителя, а контакты 41,42,43 – отрицательной.
Контакты 33,34,35 являются плюсовой шиной выходного инверторного моста, а контакты 30,31,32 – отрицательной. Последние четыре перечисленные группы, а также контакт 29, группа 36,37 образуют выходы для звена постоянного тока.
Контакты 10, 28 служат для подключения к драйверу, управляющему работой выходной фазы частотника. Аналогичную роль играют группы 14, 26 и 18, 24 для двух оставшихся фаз. Контакты 11, 12, 13 – это выход одной фазы инвертора, а группы 15,16,17 и 19,20,21 выходы двух остальных фаз.
Правильные временные диаграммы ШИМ и достаточная эффективность драйверов, которые должны справиться с зарядкой и разрядкой емкости затвора транзистора, – это залог того, что двигатель вообще будет вращаться и ничего не сгорит. Поэтому инверторный мост предварительно надо запитать от маломощного источника постоянного тока с ограничением тока и убедиться, при помощи осциллографа, в отсутствии сквозных токов, правильности “синусов”, формируемых мостом, правильном сдвиге фаз, на всех частотах, которые выдает преобразователь. Питание управления в частотном преобразователе также подается лабораторным способом.
Сигнал обратной связи по температуре модуля также должен быть корректным. Подогревая модуль каким-либо способом в пределах 20…80°C, необходимо контролировать его фактическую температуру точным термометром. Затем найти в меню преобразователя пункт с соответствующим параметром, проконтролировать его.
Если мы убедимся, что драйверы надежно управляют модулем, а сигнал обратной связи по температуре не содержит ошибок, то тогда можно делать монтаж, собирать звено постоянного тока и затем снова сделать проверку на двигателе небольшой мощности, через предохранители, рассчитанные на соответствующий ток, включаемые в каждую фазу.
Причины нагрева модулей и необходимость их охлаждения
Поскольку наши ключи не являются идеальными, то есть, они не обеспечивают идеального короткого замыкания, то в открытом состоянии их сопротивление не равно нулю. Значит, на этом сопротивлении рассеивается джоулево тепло. Это один источник, и не самый значительный.
Кроме открытого состояния, есть еще переходные процессы, связанные с включением и выключением. В этот период сопротивление коллектор-эмиттер уменьшается от нескольких гОм, до единиц или десятков миллиОм. В момент равенства сопротивления ключа сопротивлению остальной цепи, рассеиваемая мощность достигает максимума. Затем мощность спадает до уровня открытого состояния. Получается импульс мощности. Если мы проинтегрируем его по промежутку времени, в течение которого происходит процесс включения, то найдем тепловую энергию этого импульса.
При выключении происходит нечто аналогичное, но в обратном направлении. Потери в цепи управления, на фоне потерь в силовой цепи, выглядят игрушечными ими можно пренебречь (это проблемы не потребителей, а разработчиков). Потери в открытом ключе – это понятие академическое, на практике составляют ноль безоговорочно. Картина включения и выключения IGBT хорошо показана ниже.
V( GE ) – напряжение затвор-эмиттер, I( C ) – ток коллектора.
При включении IGBT возникает импульс тока, при выключении – импульс напряжения, за счет индуктивного характера нагрузки. Динамический диапазон может быть довольно значителен, а скорость переходных процессов весьма небольшая. Чтобы подавить обратные всплески напряжения, нужны импульсные быстродействующие диоды, от которых также, в свою очередь, требуется и быстрое восстановление. IGBT переключаются с частотой ШИМ-модулятора, а это единицы и более десятка кГц.
Чем выше выбирают частоту модуляции, тем точнее можно воспроизвести синусоиду, но тем больше и потерь переключения, те больше греется радиатор модуля и тем больше радиопомех возникает. Чем меньше частота модуляции, тем легче работать модулю IGBT, но тем больше гармоник тока в силовой цепи и ее реактивная мощность. Поэтому потребителю дается возможность выбирать частоту модуляции ШИМ в пределах 2…16 кГц (разные модели частотников имеют разные диапазоны) с дискретным шагом в несколько ступеней.
На радиаторах модулей IGBT может рассеиваться мощность от единиц Вт, до нескольких кВт, в зависимости от мощности модулей. В общем и целом, можно считать, что современные модули IGBT рассеивают в тепло около 0,3…0,5% коммутируемой мощности. Это довольно неплохо, по сравнению с техникой прежних лет.
Ключевые особенности и преимущества IPM
Особенности
- 600 В, трехфазный мостовой инвертор на базе IGBT, включая ИС управления ключами и диоды свободного хода
- Защита IGBT от короткого замыкания
- Полностью изолированный корпус, выполненный по технологии DBC с повышенной теплоотдачей
- Функция интеллектуального отключения
- Компаратор для защиты от превышения током предельно допустимого значения при коротком замыкании
- Операционный усилитель для увеличения чувствительности датчика тока
- Встроенные ограничительные диоды
- Малый форм-фактор
Преимущества
- Удобство управления от микроконтроллера
- Высокая эффективность и надежность
- Очень низкое тепловое сопротивление Rth
- Уменьшенное количество компонентов
- Оптимизированная топология печатной платы
- Уменьшение размера печатной платы (компактная конструкция)
- Малая интенсивность отказов
- Простота реализации алгоритма управления по полю (FOC) без использования дополнительных датчиков
В таблице 4 представлены основные характеристики IPM компании ST.
Таблица 4. Основные характеристики интеллектуальных силовых модулей (IPM) компании ST
Особенности | Базовая версия | Полнофункциональная версия | |||
STGIPS10K60A | STGIPS14K60 | STGIPL14K60 | STGIPS20K60 | STGIPL20K60 | |
Рабочее напряжение, В | 600 | 600 | 600 | 600 | 600 |
Рабочий ток при TC=25 °C, А | 10 | 14 | 15 | 18 | 20 |
RthJC max. Для одного IGBT, °C/Вт | 3,8 | 3 | 2,8 | 2,4 | 2,2 |
Тип корпуса | SDIP-25L | SDIP-25L | SDIP-38L | SDIP-25L | SDIP-38L |
Размер корпуса, мм (X, Y, Z) | 44,4×22,0×5,4 | 44,4×22,0×5,4 | 49,6×24,5×5,4 | 44,4×22,0×5,4 | 49,6×24,5×5,4 |
Технология DBC | Да | Да | Да | Да | Да |
NTC | Да | Да | Да | Да | Да |
Встроенные ограничительные диоды | Да | Да | Да | Да | Да |
Функция SD | Нет | Да | Да | Да | Да |
Компаратор для защиты от коротких замыканий | Нет | Да (1 вывод) | Да (3 вывода) | Да (1 вывод) | Да (3 вывода) |
Функция интеллектуального отключения | Нет | Да | Да | Да | Да |
Операционный усилитель для увеличения чувствительности датчика тока | Нет | Нет | Да | Нет | Да |
Функция взаимного выключения | Да | Да | Да | Да | Да |
Блокировка при перегрузке по напряжению | Да | Да | Да | Да | Да |
Конфигурация с открытым эмиттером | Да (3 вывода) | Да (3 вывода) | Да (3 вывода) | Да (3 вывода) | Да (3 вывода) |
Совместимость с входными логическими уровнями 3,3/5 В | Да | Да | Да | Да | Да |
Входной сигнал для IGBT-транзисторов верхнего плеча | Высокий активный уровень | Высокий активный уровень | Высокий активный уровень | Высокий активный уровень | Высокий активный уровень |
Входной сигнал для IGBT-транзисторов нижнего плеча | Высокий активный уровень | Низкий активный уровень | Низкий активный уровень | Низкий активный уровень | Низкий активный уровень |