Делитель тока — это простейшая линейная электрическая цепь, позволяющая разделять и использовать только часть от подаваемого в цепь тока. Простейший делитель тока — это два резистора, соединенных параллельно.
В данном обзоре мы рассмотрим, как работает и где применяется делитель тока. Также будет представлен онлайн калькулятор и программа, где можно просчитать токи на каждом параллельном участке цепи с резистором.
Как работает делитель тока
Принцип действия делителя тока основан на первом Законе Кирхгофа, согласно которому сумма всех токов втекающих в узел равна сумме всех токов вытекающих из узла. Законы Кирхгофа устанавливают соотношения между токами и напряжениями в разветвленных электрических цепях произвольного типа.
Если рассматривать простую электрическую цепь с одним источником питания, то здесь для понимания деления тока достаточно воспользоваться правилом параллельного соединения резисторов. И именно им мы и будем пользоваться далее.
Параллельное соединение резисторов — это такое взаимное соединение компонентов, при котором оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Рассмотрим простую схему с источником постоянного тока и двумя параллельно соединенными резисторами:
Что происходит в такой цепи? В первую очередь отметим, что напряжение источника питания и номиналы резисторов приведены условно, и они больше подходят для переменного напряжения, которое далее в примерах и будет участвовать. Также, возвращаясь к постоянному току, следует не путать условное направление тока от «+» к «-» от направления движения носителей электрического заряда (электронов) от «-» к «+».
В цепи с напряжением 220 В и суммарным сопротивлением от двух резисторов 30 и 20 Ом сила тока 18,3 А. При этом ток доходя до места параллельного соединения разделяется и проходит по двум путям, имеющим разные сопротивления. На синем пути с резистором 30 Ом сила тока 7,3 А. На зеленом пути с резистором 20 Ом сила тока 11 А. То есть на том пути, где сопротивление больше электроны замедляются и сила тока меньше. На пути, где сопротивление меньше, электроны движутся быстрее — соответственно и сила тока на этом отрезке больше. Пройдя участок с параллельным соединением ток опять сливается и по одному пути возвращается к источнику питания с силой 18,3 А (сумма сил тока на двух предыдущих участках 7,3 + 11).
В рассмотренном примере для анализа делителя тока была использована программа Multisim, которая просчитывает с помощью соответствующих приборов силу тока на каждом участке цепи с учетом напряжения источника питания и сопротивления резисторов. Стоит отметить, что в составе делителя тока может быть любое количество резисторов. Помимо параллельного соединения в цепи может быть и последовательное соединение резисторов. Полученное смешанное соединение также легко просчитывается в программе.
Все расчеты в цепи с делителем тока можно произвести и самостоятельно с использованием соответствующих формул. Далее мы приведем онлайн калькулятор делителя тока и рассмотрим пример расчета.
Преобразованные формулы Закона Ома и Джоуля-Ленца
Встретил в Интернете картинку в виде круглой таблички, в которой удачно размещены формулы Закона Ома и Джоуля-Ленца и варианты математического преобразования формул. Табличка представляет собой не связанные между собой четыре сектора и очень удобна для практического применения
По таблице легко выбрать формулу для расчета требуемого параметра электрической цепи по двум другим известным. Например, нужно определить ток потребления изделием по известной мощности и напряжению питающей сети. По таблице в секторе тока видим, что для расчета подойдет формула I=P/U.
А если понадобится определить напряжение питающей сети U по величине потребляемой мощности P и величине тока I, то можно воспользоваться формулой левого нижнего сектора, подойдет формула U=P/I.
Подставляемые в формулы величины должны быть выражены в амперах, вольтах, ваттах или Омах.
Калькулятор делителя тока онлайн
Представленный онлайн-калькулятор позволяет рассчитать силу тока при использовании последовательных резистивных делителей на любом участке цепи. Для расчета необходимо ввести общую силу тока цепи и значения сопротивлений резисторов на параллельном участке. Калькулятор делителя тока поддерживает до 10 резисторов одновременно.
Калькулятор делителя тока на резисторах:
Сила тока источника, А | |
Резистор | Сила тока на участке резистора, А |
Расчёт при смешанном соединении устройств
Произвести расчет сопротивления цепи, когда она разветвлена и наполнена разными видами резистивных соединений, просто не получится. Затрудняет решение задачи множество участков, где детали подключены друг другу в разных комбинациях. В таких обстоятельствах желательно выполнять ряд преобразований, добиваясь упрощения схемы вводом отдельных эквивалентных элементов. Выявляют при этом подходящие контуры последовательных и параллельных присоединений.
Например, выискав некоторое количество последовательных подключений резисторов, заменяют их на один эквивалентный компонент. Определив элементы, соединённые последовательно, также рисуют вместо него эквивалент. Вновь начинают искать подобные простые соединения.
Метод называют «методом свёртывания». Схему упрощают до тех пор, пока в ней не останется одно Rэкв.
Важно! Метод эквивалентных преобразований применяется тогда, когда питание рассматриваемого участка цепи осуществляется от одного источника электрического тока, а также при определении Rэкв. в замкнутом контуре с одной ЭДС
Такой относительный способ определения Rэкв используют и для изучения зависимости токов в некоторой цепи от значения R нагрузки. Это метод эквивалентного генератора, при котором сложный двухполюсник, являющийся активным, представляют эквивалентным генератором. При этом считают, что ЭДС его соответствует Uх.х. (холостого хода) на зажимах, R внутреннее соответствует R входному двухполюсника пассивного на тех же зажимах. Для такого определения источники тока разъединяют, а канал ЭДС закорачивают.
Делитель тока — расчет по формулам
Для примера возьмем схожую с рассмотренной ранее схему. На параллельном участке три резистора 30, 20 и 10 Ом. Напряжение источника питания 220 В. Программа Multisim просчитала силу тока на каждом участке.
Нам же нужно рассчитать силу тока на разных участках самостоятельно. Исходные данные следующие:
- R1 = 30 Ом, R2 = 20 Ом, R3 = 10 Ом.
- В первом случае известно только напряжение источника питания U1 = 220 В (вольтметр V1).
- Во втором случае известна только общая сила тока в цепи I4 = 40,333 А.
Требуется определить силу тока I1, I2, I3 (амперметры U1, U2, U3) на участках с резисторами R1, R2, R3.
Решение:
- Если неизвестно напряжение источника питания, то в первую очередь нужно определить сумму сопротивлений всех резисторов, соединенных параллельно. По каждому резистору течет свой ток. Сумма токов всех резисторов дает общую силу тока цепи: I = I1+I2+I3+…+In. Соответственно общая проводимость параллельной цепи равна сумме ее отдельных проводимостей. Проводимость есть величина, обратная сопротивлению, поэтому эквивалентное сопротивление параллельно соединенных резисторов определяется следующим отношением: 1/R = 1/R1+1/R2+1/R3+…+1/Rn. Соответственно 1/R = 1/30+1/20+1/10 = (2+3+6)/60 (привели к общему знаменателю) = 11/60. Отсюда R = 60/11 = 5,45 Ом (сумма резисторов R1, R2, R3).
- Зная общую силу тока цепи и общее сопротивление, находим напряжение. U = I×R = 40,333×5,45 ≈ 219,8 ≈ 220 В.
- При параллельном соединении резисторов напряжение во всей цепи и на каждом участке одинаково и равно напряжению источника питания. Соответственно I1 = U/R1; I2 = U/R2; I3 = U/R3.
- I1 = 220/30 = 7,333 A.
- I2 = 220/20 = 11 A.
- I1 = 220/10 = 22 A.
Определение эквивалентного сопротивления
При рассмотрении схем любых электрических или электронных устройств можно увидеть, что такие компоненты, как резисторы, имеют разные типы соединений между собой. Чтобы определить эквивалентное соединение, необходимо рассматривать два элемента, включенных в определённом порядке. Несмотря на то, что на чертеже их может быть несколько десятков, и соединены они по-разному, есть только два типа включения их друг с другом: последовательное и параллельное. Остальные конфигурации – это лишь их вариации.
Особенности делителя тока
Выделим основные особенности делителя тока, состоящего из параллельно соединенных резисторов:
- Общее сопротивление всегда меньше сопротивления любого параллельно включенного резистора.
- Увеличение числа параллельно соединенных резисторов ведет к уменьшению общего сопротивления и увеличению общей силы тока в цепи.
- Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.
- Если в цепи используются резисторы одного номинала, то формула общего сопротивления упрощается и принимает вид R = R1 / N (R1 – номинальное сопротивление резистора; N – количество резисторов с одинаковым номинальным сопротивлением).
Видео
Кофе капсульный Nescafe Dolce Gusto Капучино, 3 упаковки по 16 капсул
1305 ₽ Подробнее
Кофе в капсулах Nescafe Dolce Gusto Cappuccino, 8 порций (16 капсул)
435 ₽ Подробнее
Звуковые карты Creative
Где применяется делитель тока
Делитель тока очень часто встречается в электротехнике. Важно не путать делитель тока с делителем напряжения, так как после анализа общедоступных источников была выявлена противоречивая информация даже в википедии.
Цитирование из википедии: «Делитель тока имеет важное значение в схемотехнике в качестве элемента цепи для подключения устройства с номинальным током меньшим, чем протекающий в цепи.» Цитирование из другого источника: «При проектировании электрических цепей возникают случаи, когда в цепи протекает ток одного номинала, а номинально-допустимый ток нагрузки должен быть меньше. Для этих целей используют делители тока.» А вот к чему все это приводит — цитирование очередного электротехнического блога: «Проще говоря, если вместо одного из резисторов подключить, например, вентилятор, то изменяя сопротивление второго резистора, мы будем также изменять силу тока, а значит и мощность, проходящую через вентилятор.»
Важно понимать, что напряжение во всей цепи одинаково для каждого резистора. И сила тока на участке резистора зависит только от его сопротивления. Поэтому, если рассмотреть пример с вентилятором, изменяя сопротивление другого резистора, мы не можем изменить силу тока, проходящую через вентилятор. Мощность останется прежней. Чтобы изменить силу тока и соответственно мощность, вместе с вентилятором должна быть последовательно соединена нагрузка, а не параллельно. Последовательное соединение — это делитель напряжения. Параллельное соединение — это делитель тока. Информацию из википедии трудно назвать неверной, но она не полная. Там не хватает уточнения, что для подключения устройства с номинальным током меньшим, чем протекающий в цепи, нужно совмещать делитель тока с делителем напряжения.
Вернемся к примерам использования делителя тока. Цепи делителей тока находят применение в измерительных схемах, где требуется, чтобы часть измеряемого тока проходила через чувствительный прибор. Используя формулу делителя тока, можно подобрать подходящий шунтирующий резистор таким образом, чтобы через измерительный прибор всегда проходила точно заданная доля общего тока:
Теперь обратимся к примерам делителя тока, которые буквально рядом с каждым. Любой частный дом или квартира — это параллельное соединение, соответственно и делитель тока. Совокупность всех повторных заземлителей нейтрали трансформатора — это тоже делитель тока. А не самый приятный пример параллельного соединения — это ситуация, когда ток одновременно уходит через заземлитель и человека, прикоснувшегося к корпусу заземленного электроприбора. В этом случае заземлитель с небольшим сопротивлением в сумме с большим сопротивлением человека дает общее небольшое сопротивление. Можно даже не считать, а просто воспользоваться одним из правил — общее сопротивление всегда меньше сопротивления любого параллельно включенного резистора. И здесь важно понимать, что ток, проходя эту связку заземлитель-человек, далее на своем пути встречает еще одно сопротивление — например от заземлителя нейтрали трансформатора. Получается делитель напряжения, который в совокупности с делителем тока и является основой безопасности использования заземления. То есть на каждом заземлителе происходит падение напряжения. А чем меньше напряжение, тем меньше сила тока.
Виды пассивных элементов
Данные устройства характеризуются тем, что вместо рассеивания энергии склонны к ее накоплению. Разные типы таких деталей создают различные формы сопротивления.
Катушка индуктивности
Это радиокомпонент, представляющий собой проводниковый элемент спиральной или винтообразной формы, покрытый изоляцией. В схемах катушки используют для нивелирования помех и искажений, снижения величины переменного тока, генерации магнитного поля. Длинные тонкие элементы носят название соленоидов. Катушки отличаются небольшими величинами активной сопротивляемости и емкости, но обладают индуктивностью, генерируя электродвижущую силу.
Подключение катушки в электрическую цепь
Емкостной элемент
Примером этого вида деталей является конденсатор. Он включает в себя две проводящие обкладки, между которыми находится диэлектрический материал. Протекание электротока обусловлено накоплением и отдачей обкладками своего заряда.
Подсоединение конденсатора в электроцепь