Что такое диод шоттки, его характеристики и способ проверки мультиметром

Обозначение, применение и параметры диодов Шоттки

К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.
Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.

Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.

В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.

На принципиальных схемах диод Шоттки изображается вот так.

Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.

Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).

Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.

Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.

У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.

К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).

Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!

Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.

Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.

К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.

К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.

В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.

Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.

Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.

Применение диодов Шоттки в источниках питания.

Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.

Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.

В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.

То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.

Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.

Проверка диодов Шоттки мультиметром.

Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.

Сложнее проверить диод с подозрением на «утечку». Если проводить проверку мультиметром DT-830 в режиме «диод», то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.

Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.

Видео

Во-первых, при кратковременном превышении максимального обратного напряжения, диод Шоттки необратимо выходит из строя, в отличие от кремниевых диодов, которые переходят в режим обратного пробоя, и при условии непревышения рассеиваемой на диоде максимальной мощности, после падения напряжения диод полностью восстанавливает свои свойства.

Во-вторых, диоды Шоттки характеризуются повышенными (относительно обычных кремниевых диодов) обратными токами, возрастающими с ростом температуры кристалла. Для вышеупомянутого 30Q150 обратный ток при максимальном обратном напряжении изменяется от 0.12 мА при +25°C до 6.0 мА при +125°C. У низковольтных диодов в корпусах ТО-220 обратный ток может превышать величину в сотни миллиампер (MBR4015 — до 600 мА при +125°C). При неудовлетворительных условиях теплоотвода положительная обратная связь по теплу в диоде Шоттки приводит к его катастрофическому перегреву.

Вольтамперная характеристика барьера Шоттки имеет ярко выраженный несимметричный вид. В области прямых смещений ток экспоненциально растёт с увеличением приложенного напряжения. В области обратных смещений ток от напряжения не зависит. В обоих случаях, при прямом и обратном смещении, ток в барьере Шоттки обусловлен основными носителями заряда — электронами. По этой причине диоды на основе барьера Шоттки являются быстродействующими приборами, поскольку в них отсутствуют рекомбинационные и диффузионные процессы. Несимметричность вольт-амперной характеристики барьера Шоттки является типичной для барьерных структур. Зависимость тока от напряжения в таких структурах обусловлена изменением числа носителей, принимающих участие в процессах зарядопереноса. Роль внешнего напряжения заключается в изменении числа электронов, переходящих из одной части барьерной структуры в другую.

Диоды Шоттки в блоках питания

В системных блоках питания, диоды Шоттки используются для выпрямления тока каналов +3.3В и +5В, а, как известно, величина выходных токов этих каналов составляет десятки ампер, что приводит к необходимости очень серьезно относиться к вопросам быстродействия выпрямителей и снижения их энергетических потерь. Решение этих вопросов способно значительно увеличить КПД источников питания и повысить надежность работы силовых транзисторов первичной части блока питания.

Итак, для уменьшения динамических коммутационных потерь и устранения режима короткого замыкания при переключении, в самых сильноточных каналах (+3.3В и +5В), где эти потери наиболее значительны, в качестве выпрямительных элементов используются диоды Шоттки. Применение диодов Шоттки в этих каналах обусловлено следующими соображениями:

· Диод Шоттки является практически безынерционным прибором с очень малым временем восстановления обратного сопротивления, что приводит к уменьшению обратного вторичного тока и к уменьшению броска тока через коллекторы силовых транзисторов первичной части в момент переключения диода. Это в значительной степени снижает нагрузку на силовые транзисторы, и, как результат, увеличивает надежность блока питания.

· Прямое падение напряжения на диоде Шоки также очень мало, что при величине тока 15-30 А обеспечивает значительный выигрыш в КПД.

Так как в современных блоках питания очень мощным становится и канал напряжения +12В, то применение диодов Шоттки в этом канале также дало бы значительный энергетический эффект, однако их применение в канале +12В нецелесообразно. Это связано с тем, что при обратном напряжении свыше 50В (а в канале +12В обратное напряжение может достигать величины и 60В), диоды Шоттки начинают плохо переключаться (слишком долго и при этом возникают значительные обратные токи утечки), что приводит к потере всех преимуществ их применения. Поэтому в канале +12В используются быстродействующие кремниевые импульсные диоды. Хотя промышленностью сейчас выпускаются диоды Шоттки и с большим обратным напряжением, но их использование в блоках питания считается нецелесообразным по разным причинам, в том числе и экономического плана. Но в любых правилах имеются исключения, поэтому в отдельных блоках питания можно встретить диодные сборки Шоттки и в каналах +12В.

В современных системных блоках питания компьютеров диоды Шоттки представляют собой, как правило, диодные сборки из двух диодов (диодные полумосты), что однозначно повышает технологичность и компактность блоков питания, а также улучшает условия охлаждения диодов. Использование отдельных диодов, а не диодных сборок, является сейчас показателем низкокачественного блока питания.

Диодные сборки выпускается, в основном, в трех типах корпусов:

· TO-220 (менее мощные сборки с рабочими токами до 20 А, иногда до 25-30А);

· TO-247 (более мощные сборки с рабочими токами 30 — 40 А);

· TO-3P (мощные сборки).

Электрические характеристики диодных сборок, наиболее часто используемых в современных системных блоках питания представлены в табл.1.

Взаимозаменяемость диодных сборок определяется, исходя из их характеристик. Естественно, что при невозможности использовать диодную сборку с абсолютно такими же характеристиками, лучше проводить замену на прибор с большими значениями тока и напряжения. В противном случае гарантировать стабильную работу блока питания будет невозможно. Известны случаи, когда производители применяют в своих блоках питания диодные сборки со значительным запасом по мощности (хотя чаще приходится наблюдать ситуацию, как раз, обратную), и при ремонте можно установить прибор с меньшими значениями тока или напряжения. Однако при такой замене необходимо самым тщательным образом проанализировать характеристики блока питания и его нагрузки, и вся ответственность за последствия такой доработки, естественно, ложится на плечи специалиста, производящего ремонт.

Такой элемент как диод Шоттки

хотя и был изобретен достаточно давно но в обиходе радиолюбителей появился сравнительно недавно и обусловлено это стало тем что диод Шоттки имеет два очень важных и полезных свойства: во-первых очень большое быстродействие и во-вторых малое падение прямого напряжения на переходе. Раньше эти два фактора особого значения не имели но в современной аппаратуре, работающей на более высоких частотах чем ранее,
диод Шотки
просто незаменим.

Давайте рассмотрим устройство диода Шоттки

(его еще называют
диод с барьером Шоттки
).

Самое интересное в диоде Шоттки то что в нем нету p-n перехода (!). Вместо него сделан переход- металл-полупроводник (смотрим картинку)

Обозначения на рисунке: 1- подложка из полупроводника, 2- эпитаксиальная плёнка; 3 — контакт металл — полупроводник; 4 — металлическая плёнка; 5 — внешний контакт.

При прохождении электрического тока через такой переход избыток электронов будет распределяться по приконтактной области металлического вывода создавая своего рода барьер (его назвали барьер Шоттки) и за счет этого образуются выпрямительные свойства. Причем высоту барьера можно еще и изменять меняя тем самым свойства диода.

Обозначение диода Шоттки на схеме

На схемах диод Шоттки обозначается вот так:

Как проверить диод Шоттки

Как уже упоминалось выше диод Шоттки имеет малое падение напряжения на переходе: В то время, как обычные кремниевые диоды имеют прямое падение напряжения около 0,6-0,7V, германиевые около 0,4V, у диода Шоотки и того меньше- около 0,2V. А так как мультиметр при проверке показывает не что иное как падение напряжения на переходе то и показания будет малы: если при проверке обычных диодов показания мультиметра будут около 300…400 для германиевых и 450…650 для кремниевых диодов, то при проверке диода Шоттки мультиметр покажет 100…150.

Недостатки диода Шоттки

Вот вроде всем диод Шоттки хорош: и при ВЧ токах работает и обратной емкости не имеет и падение напряжение на нем минимальное, но все-же при всех своих прелестях у диода Шоттки есть и недостатки:

При кратковременном превышении максимального обратного напряжения диод Шоттки необратимо выходит из строя (КЗ — короткое замыкание), в отличие от обычных кремниевых p-n диодов, которые переходят в режим обратимого пробоя, и, при условии непревышения рассеиваемой на диоде максимальной мощности после падения напряжения, диод полностью восстанавливает свои свойства.

Диоды Шоттки характеризуются повышенными (относительно обычных кремниевых p-n диодов) обратными токами, возрастающими с ростом температуры кристалла. Для 30CPQ150 обратный ток при максимальном обратном напряжении изменяется от 0,12 мА при +25 °C до 6,0 мА при +125 °C. У низковольтных диодов в корпусах ТО220 обратный ток может превышать сотни миллиампер (MBR4015 — до 600 мА при +125 °C). При неудовлетворительных условиях теплоотвода положительная обратная связь по теплу в диоде Шоттки приводит к его катастрофическому перегреву.

Как выглядит диод Шоттки?

Да как и самый обычный диод и определить его можно лишь по маркировке да по схемному обозначению

Во время сборки блоков питания и преобразователей напряжения для автомобильных усилителей часто возникает проблема с выпрямлением тока с трансформатора. Раздобыть мощные импульсные диоды довольно серьезная проблема, поэтому решил напечатать статью, в которой приводится полный перечень и парметры мощных диодов Шоттки. Некоторое время назад лично у меня возникла проблема с выпрямителем преобразователя для авто усилителя. Преобразователь довольно мощный (500-600 ватт), частота выходного напряжения 60кГц, любой распространенный диод, который можно найти в старом хламе, сразу сгорит, как спичка. Единственным доступным вариантом в то время были отечественные КД213А. Диоды достаточно хорошие, держат до 10 Ампер, рабочая частота в пределах 100кГц, но и они под нагрузкой страшно перегревались.

На самом деле мощные диоды можно найти почти у каждого. Компьютерный БП является , который питает целый компьютер. Как правило их делают с мощностью от 200 ватт до 1кВт и более, а поскольку компьютер питается от постоянного тока, значит в блоке питания должен быть выпрямитель. В современных блоках питания для выпрямления напряжения используют мощные диодные сборки Шоттки — именно у них минимальный спад напряжения на переходе и возможность работы в импульсных схемах, где рабочая частота намного выше сетевых 50 Герц. Недавно на халяву принесли несколько блоков питания, откуда и были сняты диоды для этого небольшого обзора. В компьютерных блоках питания можно найти самые разные диодные сборки, единичных диодов тут почти не бывает — в одном корпусе два мощных диода, часто (почти всегда) с общим катодом. Вот некоторые из них:

D83-004 (ESAD83-004)

— Мощная сборка из диодов Шоттки, обратное напряжение 40 Вольт, допустимый ток 30А, в импульсном режиме до 250А — пожалуй, один из самых мощных диодов, который можно встретить в компьютерных блоках питания.
STPS3045CW
— Сдвоенный диод Шоттки, ток выпрямленный 15A, прямое напряжение 570мВ, обратный ток утечки 200мкА, напряжение обратное постоянное 45 Вольт.

Конструкция

Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.

Действительно, металл-полупроводник обладает такими параметрами:

  • Имеет большое значение тока утечки;
  • Невысокое падение напряжения на переходе при прямом включении;
  • Восстанавливает заряд очень быстро, так как имеет низкое его значение.

Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний; намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.

Проверка транзистор-тестером

Проверить на работоспособность полупроводниковых элементов можно с помощью универсального тестера радиокомпонентов. Часто его называют транзистор-тестером.

Это универсальный измерительный прибор с цифровым индикатором. С помощью транзистор-тестера можно проверить различные радиодетали. К ним относятся резисторы, конденсаторы, катушки индуктивности. А также и полупроводниковые приборы, транзисторы, тиристоры, диоды, стабилитроны, супрессоры и т.п.

Для проверки работоспособности, зажмите детальку в ZIF-панельке (специальном разъёме с рычагом для зажимания элементов), после чего на дисплее высвечивается схемное обозначение элемента. Однако рассматриваемые в этой статье элементы проверяются как обычные диоды. Поэтому не стоит рассчитывать, что транзистор тестер определит, на какое напряжение стабилитрон. Для этого все равно нужно будет собрать схему типа той, что показана выше или такую как рассмотрим далее.

Рекомендуем посмотреть видео о том, что такое универсальный транзистор-тестер и как им проверять радиоэлектронные компоненты.

Тестер, также как и мультиметр, проверяет целостность р-n перехода и корректно определяет напряжением стабилизации стабилитронов до 4,5 вольт.

При ремонте аппаратуры, рекомендуется элемент стабилизации менять на новый. Не зависимо от наличия исправного p-n перехода. Т.к. высока вероятность, что у диода изменилось напряжение стабилизации или оно может произвольно меняться в процессе работы аппаратуры.

Миниатюризация

С развитием микроэлектроники стали широко применяться специальные микросхемы, однокристальные микропроцессоры. Все это не исключает использования навесных элементов. Однако если для этой цели использовать радиоэлементы обычных размеров, то это сведет на нет всю идею миниатюризации в целом. Поэтому были разработаны бескорпусные элементы – smd компоненты, которые в 10 и более раз меньше обычных деталей. ВАХ таких компонентов ничем не отличается от ВАХ обычных приборов, а их уменьшенные размеры позволяют использовать такие запчасти в различных микросборках.

Компоненты smd имеют несколько типоразмеров. Для ручной пайки подходят smd размера 1206. Они имеют размер 3,2 на 1,6 мм, что позволяет их впаивать самостоятельно. Другие элементы smd более миниатюрные, собираются на заводе специальным оборудованием, и самому, в домашних условиях, их паять невозможно.

Принцип работы smd компонента также не отличается от его большого аналога, и если, к примеру, рассматривать ВАХ диода, то она в одинаковой степени будет подходить для полупроводников любого размера. По току изготавливаются от 1 до 10 ампер. Маркировка на корпусе часто состоит из цифрового кода, расшифровка которого приводится в специальных таблицах. Протестировать на пригодность их можно тестером, как и большие аналоги.

Стадии

Как и любое другое инфекционное заболевание, микробная экзема протекает в несколько стадий:

  • I — начало болезни (эритематозная экзема). Проявляется зудом и легким покраснением ограниченных участков кожи.
  • II — развитие патологии (папуловезикулярная стадия). Характеризуется появлением узелковых высыпаний, которые со временем заполняются прозрачной жидкостью.
  • III — разгар болезни (стадия мокнутия). Пузырьки самопроизвольно вскрываются с выделением серозной жидкости, в местах папул формируются гнойные очаги.
  • IV — затухание патологии (сухая экзема). Воспаленные участки кожи подсыхают, покрываются серовато-желтыми корками, которые со временем могут трескаться.

Острая микробная экзема диагностируется в случае, когда длительность заболевания не превышает 3 месяца. Воспалительные очаги при этом имеют ярко-красную окраску, подвергаются постоянному мокнутию, сильно зудят.

В случае если симптомы экземы не проходят в период от 3 до 6 месяцев, речь идет о подостром течении патологии. При данной форме пораженные участки кожи имеют менее насыщенный цвет (розоватый, светло-красный), отличаются большей плотностью, сухостью и постоянно шелушатся.

Для хронической формы патологии характерно длительное, более 6 месяцев, течение. Протекает с периодами ремиссии и обострения. В неактивной фазе экземы кожа практически не отличается от здоровой, но имеет более плотную структуру, склонна к повышенной сухости. Клинические симптомы активной фазы болезни сходны с проявлениями острой экземы.

Использование на практике

Выпрямители Шоттки используется в импульсных блоках питания, стабилизаторах напряжения, импульсных выпрямителях. Самыми требовательными по току – 10а и более – это напряжения 3,3 и 5 вольт. Именно в таких цепях вторичного питания приборы Шоттки используют чаще всего. Для усиления значений по току их включают вместе по схеме с общим анодом или катодом. Если каждый из сдвоенных диодов будет на 10 ампер, то получится значительный запас прочности.

Одна из самых частых неисправностей импульсных модулей питания – выход из строя этих самых диодов. Как правило, они либо полностью пробиваются, либо дают утечку. В обоих случаях неисправный диод нужно заменить, после чего проверить мультиметром силовые транзисторы, а также замерить напряжения питания.

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.


прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.


диод в прямом включении

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.


обратное включение диода

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.


обратное включение диода

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Тестирование и взаимозаменяемость

Проверить выпрямители Шоттки можно так же, как и обычные полупроводники, так как они имеют похожие характеристики. Мультиметром необходимо прозвонить его в обе стороны – он должен показать себя так же, как и обычный диод: анод-катод, при этом утечек быть не должно. Если он показывает даже незначительное сопротивление – 2–10 килоом, это уже повод для подозрений.

Проверка диода Шоттки мультиметром

Диод с общим анодом или катодом можно проверить как два обычных полупроводника, соединенных вместе. Например, если анод общий, то это будет одна ножка из трех. На анод ставим один щуп тестера, другие ножки – это разные диоды, на них ставится другой щуп.

Можно ли его заменить на другой тип? В некоторых случаях диоды Шоттки меняют на обычные германиевые. К примеру, Д305 при токе 10 ампер давал падение всего 0,3 вольта, а при токах 2–3 ампера их вообще можно ставить без радиаторов. Но главная цель установки Шоттки – это не малое падение, а низкая емкость, поэтому заменить получится не всегда.

Как видим, электроника не стоит на месте, и дальнейшие варианты применения быстродействующих приборов будет только увеличиваться, давая возможность разрабатывать новые, более сложные системы.

Диоды Шоттки или более точно — диоды с барьером Шоттки — это полупроводниковые приборы, выполненные на базе контакта металл-полупроводник, в то время как в обычных диодах используется полупроводниковый p-n-переход.

Диод Шоттки обязан своим названием и появлением в электронике немецкому физику изобретателю Вальтеру Шоттки, который в 1938 году, изучая только что открытый барьерный эффект, подтвердил выдвинутую ранее теорию, согласно которой хоть эмиссии электронов из металла и препятствует потенциальный барьер, но по мере увеличения прикладываемого внешнего электрического поля этот барьер будет снижаться. Вальтер Шоттки открыл этот эффект, который затем и назвали эффектом Шоттки, в честь ученого.

Исследуя контакт металла и полупроводника можно видеть, что если вблизи поверхности полупроводника имеется область обедненная основными носителями заряда, то в области контакта этого полупроводника с металлом со стороны полупроводника образуется область пространственного заряда ионизированных акцепторов и доноров, при этом реализуется блокирующий контакт — тот самый барьер Шоттки. В каких условиях возникает этот барьер? Ток термоэлектронной эмиссии с поверхности твердого тела определяет уравнение Ричардсона:

Создадим условия, когда при контакте полупроводника, например n-типа, с металлом термодинамическая работа выхода электронов из металла была бы больше, чем термодинамическая работа выхода электронов из полупроводника. В таких условиях, в соответствии с уравнением Ричардсона, ток термоэлектронной эмиссии с поверхности полупроводника окажется больше, чем ток термоэлектронной эмиссии с поверхности металла:

В начальный момент времени, при контакте названных материалов, ток от полупроводника в металл превысит обратный ток (из металла в полупроводник), в результате чего в приповерхностных областях как полупроводника, так и металла — станут накапливаться объемные заряды — положительные в полупроводнике и отрицательные — в металле. В контактной области возникнет электрическое поле, образованное этими зарядами, и будет иметь место изгиб энергетических зон.

Под действием поля термодинамическая работа выхода для полупроводника возрастет, и возрастание будет происходить до тех пор, пока в контактной области не уравняются термодинамические работы выхода, и соответствующие им токи термоэлектронной эмиссии применительно к поверхности.

Шаги

Метод 1 из 2:

Осмотр маркировки

  1. 1

    Изучите принцип работы диода.

    Диод состоит из полупроводников p- и n-типа. Полупроводник n-типа отвечает за отрицательную сторону диода и называется катодом. Полупроводник р-типа является положительной стороной диода и называется анодом.

    • Если положительная сторона источника напряжения соединена с положительной стороной диода (анодом), а отрицательная сторона соединена с отрицательной стороной (катодом), то диод будет проводить ток.
    • Если перевернуть диод обратной стороной, то он не будет пропускать электрический ток (до определенной величины).

  2. 2

    Узнайте, что означают условные обозначения.

    Диоды обозначаются на схеме символом (—▷|—), который показывает, как его следует устанавливать. Стрелка указывает на вертикальную полосу, из которой выходит линия. X Источник информации

    Стрелка указывает на положительную сторону диода, а вертикальная линия — на отрицательную. Проще запомнить так: положительная сторона перетекает в отрицательную, а стрелка указывает на направление потока.

  3. 3

    Найдите большую ленту.

    Если на диоде отсутствуют условные обозначения, найдите на диоде кольцо, ленту или линию. Возле отрицательной стороны (катода) большинства диодов обычно находится большая цветная лента, опоясывающая диод.

  4. 4

    Распознайте положительную сторону светодиода.

    LED — это светодиод, стороны которого легко различить по его ножкам. Длинная ножка будет положительным концом (анодом). X Источник информации

    Если ножки были обрезаны, осмотрите внешний корпус светодиода. Электрод, который находится ближе в плоскому краю, является отрицательным (катодом).

Метод 2 из 2:

С помощью мультиметра

  1. 1

    Настройте мультиметр на проверку диода.

    Диод можно проверить и без этого режима на мультиметре. Для этого установите ручку мультиметра в режим для измерения сопротивления (Ω).

    Для этого поверните ручку на условное обозначение диода (—▷|—). В этом режиме мультиметр пропустит через диод немного тока, что облегчит его проверку.

  2. 2

    Подсоедините мультиметр к диоду.

    Приставьте положительный щуп мультиметра к одному концу диода, а отрицательный — к другому. Показания отобразятся на экране мультиметра. X Источник информации

    • Если на мультиметре есть режим проверки диода и вы правильно подключили его щупы к диоду (положительный к положительному, отрицательный к отрицательному), то экран покажет наличие напряжения. В противном случае вы ничего не увидите.
    • Если на мультиметре нет режима для проверки диода и вы правильно подключили его щупы к диоду (положительный к положительному, отрицательный к отрицательному), то дисплей покажет низкое сопротивление. В противном случае на экране отобразится очень сильное сопротивление, которое может быть выражено символами «OL».

  3. 3

    Проверьте светодиод.

    LED — это светодиод. Поверните ручку на мультиметре в положение для проверки диода. Приставьте положительный щуп мультиметра к одному концу диода, а отрицательный — к другому. Если светодиод загорится, значит, положительный щуп касается положительного конца (анода), а отрицательный щуп — отрицательного (катода). Если светодиод не загорится, значит, щупы касаются противоположных концов.

Что это такое

Это полупроводниковый диод с минимальным падением уровня напряжения во время прямого включения. Он имеет две главные составляющие: собственно, полупроводник и металл. Как известно, допустимый уровень обратного напряжения в любых промышленных электронный устройствах составляет 250 В. Такое U находит практическое применение в любой низковольтной цепи, препятствуя обратному течению тока.

Структура самого устройства несложна и выглядит следующим образом:

  • полупроводник;
  • стеклянная пассивация;
  • металл;
  • защитное кольцо.

При прохождении электрического тока по цепи положительные и отрицательные заряды скапливаются по всему периметру устройства, включая защитное кольцо. Скопление частиц происходит в различных элементах диода. Это обеспечивает возникновение электрического поля с последующим выделением определенного количества тепла.

Отличие от других полупроводников

Главное его отличие от других полупроводников состоит в том, что преградой служит металлический элемент с односторонней проводимостью.

Такие элементы изготавливают из целого ряда ценных металлов:

  • арсенида галлия;
  • кремния;
  • золота;
  • вольфрама;
  • карбида кремния;
  • палладия;
  • платины.

От того, какой металл выбирается в качестве материала, зависят характеристики нужного показателя напряжения и качество работы электронного устройства в целом. Чаще всего применяют кремний — по причине его надежности, прочности и способности работать в условиях большой мощности. Также используется и арсенид галлия, соединенный с мышьяком, либо германий.

Плюсы и минусы

При работе с устройствами, включающими в себя диод Шоттки, следует учитывать их положительные и отрицательные стороны. Если подключить его в качестве элемента электрической цепи, он будет прекрасно удерживать ток, не допуская его больших потерь.

К тому же, металлический барьер обладает минимальной емкостью. Это значительно увеличивает износостойкость и срок службы самого диода. Падение напряжения при его использовании минимально, а действие происходит очень быстро — стоит только провести подключение.

Однако большой процент обратного тока является очевидным недостатком. Поскольку многие электроприборы обладают высокой чувствительностью, нередки случаи, когда небольшое превышение показателя, всего лишь на пару А, способно надолго вывести прибор из строя. Также, при небрежной проверке напряжения полупроводника, может произойти утечка самого диода.

Ссылки

  1. Активные твердотельные Диод Светодиод Фотодиод Полупроводниковый лазер Диод Шоттки Стабилитрон Стабистор Варикап Вариконд Магнитодиод Диодный мост Лавинный диод Лавинно-пролётный диод Туннельный диод Диод Ганна Транзистор Биполярный транзистор Полевой транзистор КМОП-транзистор Однопереходный транзистор Фототранзистор Составной транзистор Баллистический транзистор Интегральная схема Цифровая интегральная схема Аналоговая интегральная схема Аналого-цифровая интегральная схема Гибридная интегральная схема
    • Тиристор
    • Симистор
    • Динистор
    • Фототиристор
    • Оптрон
    • Резисторная оптопара
    • Датчик Холла
    Активные вакуумные и газоразрядные
    • Электронная лампа
    • Электровакуумный диод
    • Триод
    • Маячковая лампа
    • Тетрод
    • Лучевой тетрод
    • Пентод
    • Гексод
    • Гептод
    • Пентагрид
    • Октод
    • Нонод
    • Механотрон
    • Клистрон
    • Магнетрон
    • Амплитрон
    • Платинотрон
    • Электронно-лучевая трубка
    • Лампа бегущей волны
    • Лампа обратной волны
    • Тиратрон
    • Кенотрон
    • Игнитрон
    Устройства отображения
    • Электронно-лучевая трубка
    • ЖК-дисплей
    • Светодиод
    • Газоразрядный индикатор
    • Вакуумно-люминесцентный индикатор
    • Блинкерное табло
    • Семисегментный индикатор
    • Матричный индикатор
    • Кинескоп
    Акустические
    • Микрофон
    • Громкоговоритель
    • Тензорезистор
    • Пьезокерамический излучатель
    Термоэлектрические
    • Терморезистор
    • Термопара
    • Элемент Пельтье

Сфера применения

Диод Шоттки может включать в себя любой аккумулятор.

Он входит в устройство солнечной батареи. Солнечные панели, которые уже давно успешно работают в условиях космического пространства, собираются именно на основании барьерных переходов Шоттки. Такие гелиосистемы устанавливаются на космических аппаратах (спутниках и телескопах, проводящих работу в жестких условиях безвоздушного пространства).

Устройство незаменимо при работе компьютеров, бытовой техники, радиоприемников, блоков электропитания. При правильном использовании диод Шоттки увеличивает производительность любого устройства, предотвращает потери тока. Он способен принимать на себя альфа-, бета- и гамма-излучение. Именно поэтому он незаменим в условиях космоса.

С помощью такого устройства можно осуществить параллельное соединение диодов, используя их в качестве сдвоенных выпрямителей. Таким образом можно объединить межлу собой два параллельных источника питания. Один корпус включает в себя два полупроводника, а концы положительного и отрицательного зарядов связываются друг с другом. Есть и более простые схемы, где диоды Шоттки очень малы. Это характерно для очень мелких деталей в электронике.

Диод Шоттки является незаменимым элементом во многих электронных устройствах. Главное — понимать специфику его работы и использовать его корректно.

Индекс цветопередачи CRI

Один из неочевидных параметров в кодировке – значение CRI, определяющее, насколько естественным выглядит свечение. Средний параметр равен 100 – это солнечный свет; меньшее значение применимо к источникам искусственного света. Соответственно, чем выше CRI, тем лучше.

Помимо определения нужного типа прибора в магазине, цветовую маркировку можно использовать в практических целях. Например, зная расположение и цвет элементов, можно рассчитать сопротивление резистора. Для этого достаточно занести данные в форму онлайн калькулятора. Понимание систем маркировки облегчает правильное использованию диодов и решает множество проблем, связанных с выбором нужного типа устройства.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]