Расчет количества теплоты, необходимой для нагревания тела или выделяемого им при охлаждении

ОГЭ 2022 по физике ›

1. Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количеством теплоты.

Количеством теплоты называется изменение внутренней энергии тела в процессе теплопередачи без совершения работы.

Количество теплоты обозначают буквой ​\( Q \)​. Так как количество теплоты является мерой изменения внутренней энергии, то его единицей является джоуль (1 Дж).

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

2. Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество теплоты требуется ему для нагревания. То же самое и с охлаждением: тело большей массы при охлаждении отдаёт большее количество теплоты. Эти тела сделаны из одного и того же вещества и нагреваются они или охлаждаются на одно и то же число градусов.

\[ Q\sim m \]

​3. Если теперь нагревать 100 г воды от 30 до 60 °С, т.е. на 30 °С, а затем до 100 °С, т.е. на 70 °С, то в первом случае на нагревание уйдёт меньше времени, чем во втором, и, соответственно, на нагревание воды на 30 °С, будет затрачено меньшее количество теплоты, чем на нагревание воды на 70 °С. Таким образом, количество теплоты прямо пропорционально разности конечной ​\( (t_2\,^\circ C) \)​ и начальной \( (t_1\,^\circ C) \) температур: ​\( Q\sim(t_2-t_1) \)​.

4. Если теперь в один сосуд налить 100 г воды, а в другой такой же сосуд налить немного воды и положить в неё такое металлическое тело, чтобы его масса и масса воды составляли 100 г, и нагревать сосуды на одинаковых плитках, то можно заметить, что в сосуде, в котором находится только вода, температура будет ниже, чем в том, в котором находятся вода и металлическое тело. Следовательно, чтобы температура содержимого в обоих сосудах была одинаковой нужно воде передать большее количество теплоты, чем воде и металлическому телу. Таким образом, количество теплоты, необходимое для нагревания тела зависит от рода вещества, из которого это тело сделано.

5. Зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

Физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К), называется удельной теплоёмкостью вещества.

Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой ​\( c \)​. Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Удельная теплоёмкость свинца 140 Дж/кг °С. Это значит, что для нагревания 1 кг свинца на 1 °С необходимо затратить количество теплоты 140 Дж. Такое же количество теплоты выделится при остывании 1 кг воды на 1 °С.

Поскольку количество теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты ​\( Q \)​, необходимое для нагревания тела массой ​\( m \)​ от температуры \( (t_1\,^\circ C) \) до температуры \( (t_2\,^\circ C) \), равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

\[ Q=cm(t_2{}^\circ-t_1{}^\circ) \]

​По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

6. Пример решения задачи. В стакан, содержащий 200 г воды при температуре 80 °С, налили 100 г воды при температуре 20 °С. После чего в сосуде установилась температура 60 °С. Какое количество теплоты получила холодная вода и отдала горячая вода?

При решении задачи необходимо выполнять следующую последовательность действий:

  1. записать кратко условие задачи;
  2. перевести значения величин в СИ;
  3. проанализировать задачу, установить, какие тела участвуют в теплообмене, какие тела отдают энергию, а какие получают;
  4. решить задачу в общем виде;
  5. выполнить вычисления;
  6. проанализировать полученный ответ.

1. Условие задачи.

Дано: ​\( m_1 \)​ = 200 г ​\( m_2 \)​ = 100 г ​\( t_1 \)​ = 80 °С ​\( t_2 \)​ = 20 °С ​\( t \)​ = 60 °С ______________

​\( Q_1 \)​ — ? ​\( Q_2 \)​ — ? ​\( c_1 \)​ = 4200 Дж/кг · °С

2. СИ: ​\( m_1 \)​ = 0,2 кг; ​\( m_2 \)​ = 0,1 кг.

3. Анализ задачи. В задаче описан процесс теплообмена между горячей и холодной водой. Горячая вода отдаёт количество теплоты ​\( Q_1 \)​ и охлаждается от температуры ​\( t_1 \)​ до температуры ​\( t \)​. Холодная вода получает количество теплоты ​\( Q_2 \)​ и нагревается от температуры ​\( t_2 \)​ до температуры ​\( t \)​.

4. Решение задачи в общем виде. Количество теплоты, отданное горячей водой, вычисляется по формуле: ​\( Q_1=c_1m_1(t_1-t) \)​.

Количество теплоты, полученное холодной водой, вычисляется по формуле: \( Q_2=c_2m_2(t-t_2) \).

5. Вычисления. ​\( Q_1 \)​ = 4200 Дж/кг · °С · 0,2 кг · 20 °С = 16800 Дж \( Q_2 \) = 4200 Дж/кг · °С · 0,1 кг · 40 °С = 16800 Дж

6. В ответе получено, что количество теплоты, отданное горячей водой, равно количеству теплоты, полученному холодной водой. При этом рассматривалась идеализированная ситуация и не учитывалось, что некоторое количество теплоты пошло на нагревание стакана, в котором находилась вода, и окружающего воздуха. В действительности же количество теплоты, отданное горячей водой, больше, чем количество теплоты, полученное холодной водой.

Понятие количества теплоты.

Мы знаем, что внутреннюю энергию тела можно изменить двумя способами. Путем совершения работы и путём теплообмена. При осуществлении 2 способа изменение внутренней энергии равно количеству переданной теплоты. Количество теплоты может быть, как положительным, так и отрицательным.
Если внутренняя энергия тела увеличивается в процессе теплообмена, то количество теплоты больше нуля. Если внутренняя энергия тела уменьшается в процессе теплообмена, то количество теплоты меньше нуля. То есть тело отдает количество теплоты. Отсюда можно сделать вывод:

Количеством теплоты называют ту часть внутренней энергии, которую тело теряет или получает при теплопередаче.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Удельная теплоёмкость серебра 250 Дж/(кг · °С). Что это означает?

1) при остывании 1 кг серебра на 250 °С выделяется количество теплоты 1 Дж 2) при остывании 250 кг серебра на 1 °С выделяется количество теплоты 1 Дж 3) при остывании 250 кг серебра на 1 °С поглощается количество теплоты 1 Дж 4) при остывании 1 кг серебра на 1 °С выделяется количество теплоты 250 Дж

2. Удельная теплоёмкость цинка 400 Дж/(кг · °С). Это означает, что

1) при нагревании 1 кг цинка на 400 °С его внутренняя энергия увеличивается на 1 Дж 2) при нагревании 400 кг цинка на 1 °С его внутренняя энергия увеличивается на 1 Дж 3) для нагревания 400 кг цинка на 1 °С его необходимо затратить 1 Дж энергии 4) при нагревании 1 кг цинка на 1 °С его внутренняя энергия увеличивается на 400 Дж

3. При передаче твёрдому телу массой ​\( m \)​ количества теплоты ​\( Q \)​ температура тела повысилась на ​\( \Delta t^\circ \)​. Какое из приведённых ниже выражений определяет удельную теплоёмкость вещества этого тела?

1) ​\( \frac{m\Delta t^\circ}{Q} \)​ 2) \( \frac{Q}{m\Delta t^\circ} \)​ 3) \( \frac{Q}{\Delta t^\circ} \)​ 4) \( Qm\Delta t^\circ \)​

4. На рисунке приведён график зависимости количества теплоты, необходимого для нагревания двух тел (1 и 2) одинаковой массы, от температуры. Сравните значения удельной теплоёмкости (​\( c_1 \)​ и ​\( c_2 \)​) веществ, из которых сделаны эти тела.

1) ​\( c_1=c_2 \)​ 2) ​\( c_1>c_2 \)​ 3) \( c_1 4) ответ зависит от значения массы тел

5. На диаграмме представлены значения количества теплоты, переданного двум телам равной массы при изменении их температуры на одно и то же число градусов. Какое соотношение для удельных теплоёмкостей веществ, из которых изготовлены тела, является верным?

1) \( c_1=c_2 \) 2) \( c_1=3c_2 \) 3) \( c_2=3c_1 \) 4) \( c_2=2c_1 \)

6. На рисунке представлен график зависимости температуры твёрдого тела от отданного им количества теплоты. Масса тела 4 кг. Чему равна удельная теплоёмкость вещества этого тела?

1) 500 Дж/(кг · °С) 2) 250 Дж/(кг · °С) 3) 125 Дж/(кг · °С) 4) 100 Дж/(кг · °С)

7. При нагревании кристаллического вещества массой 100 г измеряли температуру вещества и количество теплоты, сообщённое веществу. Данные измерений представили в виде таблицы. Считая, что потерями энергии можно пренебречь, определите удельную теплоёмкость вещества в твёрдом состоянии.

1) 192 Дж/(кг · °С) 2) 240 Дж/(кг · °С) 3) 576 Дж/(кг · °С) 4) 480 Дж/(кг · °С)

8. Чтобы нагреть 192 г молибдена на 1 К, нужно передать ему количество теплоты 48 Дж. Чему равна удельная теплоёмкость этого вещества?

1) 250 Дж/(кг · К) 2) 24 Дж/(кг · К) 3) 4·10-3 Дж/(кг · К) 4) 0,92 Дж/(кг · К)

9. Какое количество теплоты необходимо для нагревания 100 г свинца от 27 до 47 °С?

1) 390 Дж 2) 26 кДж 3) 260 Дж 4) 390 кДж

10. На нагревание кирпича от 20 до 85 °С затрачено такое же количество теплоты, как для нагревания воды такой же массы на 13 °С. Удельная теплоёмкость кирпича равна

1) 840 Дж/(кг · К) 2) 21000 Дж/(кг · К) 3) 2100 Дж/(кг · К) 4) 1680 Дж/(кг · К)

11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Количество теплоты, которое тело получает при повышении его температуры на некоторое число градусов, равно количеству теплоты, которое это тело отдаёт при понижении его температуры на такое же число градусов. 2) При охлаждении вещества его внутренняя энергия увеличивается. 3) Количество теплоты, которое вещество получает при нагревании, идёт главным образом на увеличение кинетической энергии его молекул. 4) Количество теплоты, которое вещество получает при нагревании, идёт главным образом на увеличение потенциальной энергии взаимодействия его молекул 5) Внутреннюю энергию тела можно изменить, только сообщив ему некоторое количество теплоты

12. В таблице представлены результаты измерений массы ​\( m \)​, изменения температуры ​\( \Delta t \)​ и количества теплоты ​\( Q \)​, выделяющегося при охлаждении цилиндров, изготовленных из меди или алюминия.

Какие утверждения соответствуют результатам проведённого эксперимента? Из предложенного перечня выберите два правильных. Укажите их номера. На основании проведенных измерений можно утверждать, что количество теплоты, выделяющееся при охлаждении,

1) зависит от вещества, из которого изготовлен цилиндр. 2) не зависит от вещества, из которого изготовлен цилиндр. 3) увеличивается при увеличении массы цилиндра. 4) увеличивается при увеличении разности температур. 5) удельная теплоёмкость алюминия в 4 раза больше, чем удельная теплоёмкость олова.

Часть 2

C1.Твёрдое тело массой 2 кг помещают в печь мощностью 2 кВт и начинают нагревать. На рисунке изображена зависимость температуры ​\( t \)​ этого тела от времени нагревания ​\( \tau \)​. Чему равна удельная теплоёмкость вещества?

1) 400 Дж/(кг · °С) 2) 200 Дж/(кг · °С) 3) 40 Дж/(кг · °С) 4) 20 Дж/(кг · °С)

Отчего зависит Q

Опыт № 1: Возьмём два одинаковых сосуда. Нальем в один из них воду массой 400 г, а в другой растительное масло массой 400 г. Начнём их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров. Мы видим, что масло нагревается быстрее. Значит количество теплоты зависит от температуры. Опыт 2: Возьмём 1 кг воды и 1 кг подсолнечного масла. Нагреем оба сосуда на 1 градус. На нагревание воды было потрачено 4.200 Дж. А для нагревания масла потрачено 1700 Дж. Отсюда можно сделать вывод: Количество теплоты зависит от рода вещества.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 градус называется удельной теплоемкостью вещества.

Обозначается буквой С. Измеряется в Дж, поделить на кг, умножить на градус по Цельсию.

Опыт 3: Возьмём в одном сосуде 400 г воды, а в другом сосуде 200 г воды. Нагреем оба сосуда на одинаковое количество градусов. Для нагревания 1 сосуда потребовалось потратить большее количество теплоты. Вывод: количество теплоты зависит от массы.

Формулировка закона Джоуля-Ленца

Правило было обобщено и сформулировано на основе трудов двух физиков — британского и русского. Джоуль и Ленц свой закон вывели практически одновременно, но независимо друг от друга, поэтому он и был назван именами обоих ученых.

Формулировка закона хорошо иллюстрирует следующее: если на участок цепи пустить электричество, то провод начнет нагреваться. В бытовых условиях тепловое действие тока наблюдается в лампах накаливания и всех электроприборах. Если подключить устройство со спиралью на конце участка цепи в розетку, то она нагреется, и выделит тепло. Например, подключенный к электричеству сварочный аппарат начнет плавить электрод, электрический чайник или кипятильник нагреют воду, а настольная лампа наполнит комнату светом.

Кратко закон Джеймса Джоуля и Эмиля Ленца можно сформулировать так: количество выделяемой теплоты при нагревании полупроводника либо проводника прямо пропорционально определенному количеству времени, за которое происходит воздействие тока, плюс сопротивлению и квадрату рабочей силы электрического тока.

Q требуется

При нагревании

Формула: Q = cm (t2 -t1)

При плавлении вещества

Плавлением называют переход вещества из твердого состояния в жидкое состояние.

Формула: Q = m * λ

.

Физический смысл удельной теплоты плавления: лямбда показывает, какое количество теплоты необходимо для того, чтобы расплавить 1 кг вещества при температуре плавления.

Единица измерения: Дж/кг.

Суть теплового закона

Закон электромагнитной индукции — формула

Упомянутые выше ученые (Джоуль Ленц) практически одновременно (1841-1842 гг.) установили зависимость нагрева от силы тока. Для наглядного эксперимента можно использовать следующий комплект:

  • проводник размещают в емкости с водой;
  • термометром будет измеряться изменение температуры жидкости при подключении цепи к источнику электропитания;
  • с помощью вольтметра и амперметра уточняют напряжение и ток в контрольных точках.


Аналогичный опыт можно воспроизвести в емкости с раствором соли, который обладает определенной проводимостью

По закону Ома ток (I) можно определить через напряжение (U) и электрическое сопротивление (R):

I= U/R.

Выполняемую работу (A) записать следующим образом:

A = I * U * t = I * (I*R) * t = (U/R) * U * t = I2*R*t = (U2/R) * t.

Здесь t обозначает соответствующий интервал времени.

На этом этапе следует вспомнить первый закон термодинамики, который определяет сохранение энергии в замкнутой системе. Этот постулат позволяет описывать рассматриваемое явление с помощью созданной формулы. Подразумевается равенство количества тепла (Q) выполненной работе (A). Итоговое выражение (закон Ленца):

Q = I2*R*t = (U2/R) * t = I * U * t.

Суть явления объясняется столкновением заряженных частиц с молекулами проводника. Если образец – твердый материал, речь идет об электронах и компонентах кристаллической решетки, соответственно.

Количество теплоты выделяется

  1. При горении топлива.
  2. При охлаждении вещества.
  3. При кристаллизации жидкости.
  4. При конденсации пара.

Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива.

Различают виды топлива: уголь, нефть, бензин, керосин, торф, спирт, природный газ и так далее.

Энергия, выделяющееся при полном сгорании топлива, называют теплотой сгорания топлива.

Формула: Q = m * q

где q называется удельной теплотой сгорания топлива.

Физический смысл: q показывает какое количество теплоты выделится при горении 1 кг топлива.

Единицы: Дж / кг.

При охлаждении веществ: (Так же как и при нагревании вещества).

Формула Q = cm (t2 — t1)

При кристаллизации веществ: (Так же как и при плавлении вещества).

Формула Q = m * λ

Какие величины называют удельными

Физики часто применяют удельные величины, так как они достаточно удобны для вычислений.

Удельная величина – величина, приходящаяся на единицу массы, длины, площади, или объема.


Рис. 3. Удельная величина – это величина, приходящаяся на единицу чего-либо (например, массы, длины и т. п.)

В обычной жизни мы, так же, пользуемся удельными величинами. К примеру, цена товара – это удельная величина, так как она приходится на единицу товара. Зная количество товара, легко посчитать общую цену покупки.

Например, булочка стоит 20 рублей. Нужно купить 3 булочки. Общую сумму денег найдем, перемножив цену одной булочки (удельную величину) на количество штук.

Известно, что при горении топлива выделяется энергия. Удельная теплота сгорания и количество сгоревших килограммов топлива помогут посчитать выделившуюся тепловую энергию.

Интегральная и дифференциальная формулы

Закон Ома в дифференциальной форме

Установленные в предыдущем разделе зависимости справедливы при неподвижности проводника. В этом случае можно считать, что работа приложенных сторонних сил расходуется непосредственно на повышение температуры. С учетом заданной темы перемещение зарядов (q) обеспечивает разница потенциалов, которая эквивалентна напряжению (U = ϕ1 – ϕ2). Соответственно, A = q * (ϕ1 – ϕ2) = q * U. Заряд можно выразить через ток:

q = I*t.

После элементарных математических преобразований получится A = Q = I * U * t. Если взять изменение теплоты (dQ) за интервал времени (dt), можно составить выражение закона Джона Ленца в интегральной форме:

dQ = I2 * R * dt.

Для дальнейших рассуждений нужно ввести понятие плотности тепловой мощности (W). Этим термином обозначают количество энергии, которое выделяется за единицу времени в единичном объеме (V) контрольного проводника:

W = Q/(V*t).

Электрическое сопротивление можно выражать через удельный показатель (p):

R = p* (dL/dS),

где:

  • L – длина;
  • S – поперечное сечение.

Добавив плотность тока (j = I/S = G *E) и понятие проводимости (G = 1/R), можно записать закон Ленца в дифференциальном виде следующим образом:

W = G * E2.

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]