Выпрямители: Основные виды сглаживающих фильтров и особенности их применения в выпрямителях

Всем доброго времени суток. Сегодня продолжение темы про выпрямители и поговорим мы о сглаживающих фильтрах выпрямителей

. Сглаживающие фильтры включаются между выпрямителем и нагрузкой для уменьшения переменных составляющих (пульсаций) выпрямленного напряжения. Эти фильтры выполняются из индуктивных элементов – дросселей и из ёмкостных элементов – конденсаторов. Простейший сглаживающий фильтр может состоять только из одного элемента, например дросселя или конденсатора. В малогабаритной аппаратуре сравнительно малой мощности индуктивные элементы фильтра могут быть заменены активными (резисторами).

Сглаживающие фильтры, прежде всего, характеризуются коэффициентом сглаживания q, представляющим собой отношение коэффициентов пульсаций на входе S0 и выходе S0H фильтра:

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Индуктивный сглаживающий фильтр

Применяется в маломощных выпрямителях, но может входить в состав сложных многозвенных фильтров. Параметры дросселя следует выбирать так, чтобы активное сопротивление обмотки rдр было много меньше сопротивления нагрузки (rдр << Rн), а индуктивное сопротивление Xдр = 2πfпLф на частоте пульсаций fп – много больше, чем Rн(Xдр >> Rн). В этом случае почти вся постоянная составляющая напряжения будет приложена к нагрузке, а переменная составляющая – к дросселю.

По заданному коэффициенту сглаживания q можно рассчитать необходимую индуктивность сглаживающего фильтра

Индуктивный фильтр прост, дешев, имеет малые потери мощности; коэффициент сглаживания фильтра растёт с увеличением индуктивности дросселя, числа фаз питающего напряжения и с уменьшением сопротивления нагрузки. Поэтому индуктивные фильтры обычно применяются совместно с многофазными мощными выпрямителями. При отключении нагрузки или скачкообразном изменении ее сопротивления возможно возникновение перенапряжений; в этом случае параллельно обмотке дросселя необходимо включать защитные устройства, например разрядники. В маломощных однофазных выпрямителях индуктивный фильтр может являться звеном более сложного фильтра.

Принципиальная схема фильтра

Рассмотрим сначала схему фильтра, приведенную на рис. 3. Для большей эффективности он сделан двухкаскадным и от классического отличается только тем, что катушки дросселей L1 — L2 и L3 — L4 выполнены на магнитопроводе и благодаря магнитной связи между обмотками обеспечивают более эффективное подавление низкочастотной, наведенной одновременно на обоих проводах линии (синфазной) помехи.

Для этого надо соблюдать фазировку подключения выводов, как это показано на схеме, а также обеспечить симметричность намотки катушек — в этом случае подмагничивания магнитопровода сердечника не будет. Катушки L1 — L2 и конденсаторы С1 — С2 обеспечивают подавление самых высокочастотных помех, a L3 — L4 и остальные конденсаторы — частот ниже 200 кГц.

Рис. 3. Схема двухкаскадного сетевого фильтра на 220В для самостоятельного изготовления.

Обмотки L1 и L2 содержат по 12 витков и намотаны нихромо-вым проводом (00,8…0,9 мм) на кольцевом ферритовом сердечнике М2000НМ типоразмера КЗ 1x19x7,5 с небольшим шагом (для уменьшения межвитковой емкости).

Обмотки располагаются раздельно на противоположных частях сердечника, с зазором между выводами обмоток (2…4 мм). Благодаря использованию нихрома (его нужно два отрезка длиной по примерно 450 мм) эти катушки будут являться одновременно и ограничивающими ток резисторами (с сопротивлением около 0,8 Ом), что потребуется в дальнейшем, если мы будем вводить в схему элементы защиты от импульсных помех. Их индуктивность получается примерно 0,16 мГн.

До намотки катушек острые ребра магнитопровода надо закруглить наждачной бумагой или напильником, после чего сердечник обматывается фторопластовой лентой в два слоя.

Обмотки катушек L3 и L4 имеют индуктивность по 0,7 мГн — в этом желательно убедиться по прибору и добиться их симметричности, т. е. одинаковых значений индуктивности. В качестве сердечника подойдет любое железо от сетевого трансформатора, но получить минимальные габариты конструкции удастся только при использовании кольцевого магнитопровода из феррита марки М1000…М4000НМ (К40х25х7,5 — 2 штуки) или, что еще лучше, аль-сиферового сплава МП 140 типоразмера КП36х25х7,5 (2 части).

Так, например, для сердечника марки МП140, чтобы получить указанную индуктивность, потребуется намотать каждую обмотку по 70 витков проводом ПЭВ диаметром 0,85 мм (намотка виток к витку).

Но так как вся обмотка не поместится в одном слое, ее остаток доматывается после изоляции первого слоя (на противоположных сторонах катушек оставить свободным зазор между обмотками 2…3 мм). Внешний вид намотки и расположение обмоток для Т2 показано на рис. 4. В качестве изоляционного материала лучше взять узкую (5 мм) фторопластовую ленту.

Сами катушки фиксируются на плате длинным винтом, как это показано на рис.4, 6.

При монтаже катушек на плату надо под Т1 подложить асбестовую или слюдяную прокладку — в этом случае при перегрузке нагрев обмотки не повредит плату. А так как нихром плохо паяется, выводы катушек L1 и L2 крепятся к печатной плате винтами М2,5×6.

Для того чтобы обеспечить эффективную работу фильтра и на высоких частотах, при изготовлении в первом каскаде все конденсаторы необходимо применять высокочастотные из серий, допускающих работу на переменном токе при напряжении не менее 500 В, например К15-5-1,6 кВ (номиналы допустимо использовать и большие, чем это указано на схеме, если габариты деталей позволяют их разместить на приведенной ниже печатной плате).

Рис. 4. Конструкция и вид намотки катушек на магнитопроводе МП 140.

Так как такие конденсаторы не выпускаются на большие номиналы, приходится увеличивать индуктивность катушек и использовать дополнительно низкочастотные конденсаторы С5-С7 — они позволяют эффективно подавлять низкочастотные помехи бытового и промышленного происхождения, проникающие из сети. В качестве конденсаторов С5-С7 из отечественных можно использовать К73-16В, К73-15, К73-11, К42У-2 на 630 В или аналогичные.

Казалось бы, что для лучшей фильтрации надо значительно увеличивать емкость входных конденсаторов, но при этом увеличивается и реактивная составляющая мощности в цепи, что плохо. По этой причине обычно входную емкость не используют больше 1 мкФ, но и такие конденсаторы конструктивно не удобны из-за своих больших габаритов.

Если кого-то заинтересует полный инженерный расчет сетевого фильтра, то его можно найти в книге [Л 19]. Здесь же будет приведена только минимально необходимая информация, которая может сейчас пригодиться.

Диаметр провода для намотки катушек L3-L4 зависит от максимального тока (суммы токов) всех потребителей, который вы хотите получить на выходе фильтра следующим образом:

где:

  • d — диаметр провода, мм;
  • I — максимальный действующий ток в цепи, А;
  • j — допустимая максимальная плотность тока, А/мм2 (в данном случае ее можно принять любую из интервала 6… 10 А/мм2).

При максимальной плотности тока 8 А/мм2 диаметр провода для тока 10 А составит 1,26 мм (Рнагр = 2,2 кВт — такая мощность вряд ли когда потребуется); для 8 А — 1,13 мм (Рнагр = 1,76 кВт); для 4,54 А — 0,85 мм (Рнагр = 1 кВт).

Так как удобнее иметь два фильтра по 1 кВт, чем один на 2,2 кВт, мы остановимся на меньшей мощности (1 кВт) и выбираем для намотки провод диаметром 0,85 мм.

Конструктивное выполнение фильтра тоже имеет большое значение. Надо исключить проникновение помехи со входа на выход через паразитные емкости монтажа и электромагнитную связь, для чего необходимо рбеспечить экранирование каскадов, выделенных на схеме пунктиром.

Для индикации наличия напряжения на контактах выходных розеток служит светодиод HL1 (подойдет любой из серии КИПД). В качестве соединительного кабеля можно использовать гибкий многожильный провод, имеющий 3 жилы с сечением каждой не менее 0,75 мм2.

Eмкостной сглаживающий фильтр

Емкостной сглаживающий фильтр

состоит из конденсатора Сф, подключённого параллельно сопротивлению нагрузки Rн. Принцип действия заключается в накоплении электрической энергии конденсатором фильтра и последующей отдачи этой энергии в нагрузку. Заряд и разряд конденсатора фильтра происходит с частотой пульсаций fп выпрямленного напряжения.

Для расчёта ёмкости конденсатора сглаживающего фильтра

можно воспользоваться следующей формулой

, где

результируещее значение ёмкости выражено в микрофарадах, SOH – коэффициент пульсаций в процентах, %; RH – сопротивление нагрузки в омах, Ом; fc – частота сети в герцах, Гц; m – число используемых при выпрямлении полупериодов за период напряжения сети,m = 1 – для однополупериодных, m = 2 – для двухполупериодных.

Емкостной фильтр целесообразней всего применять совместно с однофазными и маломощными схемами выпрямления.

Сетевой фильтр своими руками

Схема простейшего фильтра состоит из выключателя и варистора, вот как она выглядит:

V1 – это и есть варистор, его маркировка «471», значит, что его напряжение срабатывания 470В, при этом чем больше его диаметр, тем большую энергию он сможет погасить не взорвавшись при этом. Это значит, что чем больший варистор вы поставите, тем лучше, лишь бы он влез по габаритам. Вот пример сетевого фильтра собранного по этой схеме, но в заводском исполнении. Из вышесказанного следует, что это дешевый прибор, который не фильтрует то, что должен, а лишь гасит импульсы.

Чтобы ваш сетевой фильтр еще и действительно был фильтром помех, необходимо добавить фильтрующий элемент – дроссель.

Схемы – это, конечно, хорошо, но как сделать сетевой фильтр из подручных средств? Достаточно просто! Почти всегда у любителя что-нибудь мастерить, можно найти старый ненужный или нерабочий блок питания, в нём есть такой фильтр на входе. Осталось только его выпаять. На фото он стоит в ближнем к нам углу платы.

Это дроссель с двумя обмотками, через одну из них проходит фаза, а через другую ноль, таким образом индуктивность входит в состав сетевого фильтра и снижает уровень помех.

Кстати блок питания может работать и без него, многие китайцы так и делают свои товары, часто это встречается в дешевых БП для компьютера и не только.

Если вы не нашли такого элемента в своих запасах – можно поискать ферритовое колечко с магнитной проницаемостью 400-2000 НМ и обмотать проводом ПЭВ-2 (можно смотать с 50 Гц сетевого трансформатора). Намотать на колечко так, как показано на картинке.

Не допускайте межвиткового замыкания и оставляйте зазоры как здесь изображено, иначе получите фейерверк от перемыкании фазы на ноль. Петельку на конце разрезать, в идеальном случае – сразу мотать двумя проводами. На кольцо перед намоткой наложить изолирующий слой, например из лакоткани.

Хорошая схема, которую легко сделать своими руками выглядит следующим образом:

А вот вариант его реализации «в железе». За основы взята пара фильтров от БП.

Конденсаторы лучше применять керамические или пленочные. Их можно также достать из блока питания, часто там встречаются в прямоугольном корпусе с острыми углами (параллелепипед).

Если есть ненужный БП можно просто отрезать часть платы с фильтром и использовать её. Вот пример на фото с указанием, что нужно отпилить для получения сетевого фильтра за пару минут.

И вот еще один вариант схемы для повторения. Именно она и используется во множестве блоков питания стандарта ATX:

Сетевой фильтр – полезное и простое устройство, которое не сложно сделать самому в домашних условиях. А если учесть все изобилие техники, прошедшей через современных обывателей и то, что у многих есть несколько ненужных и не работоспособных устройств, то запчасти валяются буквально у нас под ногами.

Сглаживающие RC фильтры

В схемах выпрямления малой мощности дроссель фильтра может быть заменён резистором RФ. Такие типы фильтров называют RC фильтрами

Расчёт сглаживающего RC фильтра должен вестись с учётом следующих условий

Коэффициент сглаживания фильтра

Сопротивление резистора RФ обычно задаются в пределах RФ = (0,15…0,5)RH; КПД резистивно-емкостного фильтра сравнительно мал и обычно составляет 0,6…0,8, причем при ηф = 0,8 RФ = 0,25RH. Емкость Cф (в микрофарадах), обеспечивает требуемый коэффициент сглаживания q при частоте сети fC = 50 Гц, находят из выражения

Преимущества резистивно-емкостных фильтров: малые габариты, масса и стоимость; недостаток – низкий КПД.

Устройство

Если говорить об устройстве такой вещи, как сетевой фильтр, то следует сказать, что он может относиться к одной из 2 категорий:

  1. стационарно-многоканальной;
  2. встроенной.

В целом схема обычного сетевого фильтра, рассчитанного на напряжение в 220 В, будет стандартной и в зависимости от типа устройства может лишь чуть-чуть отличаться.

Если говорить о встроенных моделях, то их особенностью является то, что контактные платы таких фильтров будут часть внутреннего устройства электронного оборудования.

Такие платы имеет и другая техника, что относится к категории сложных. Такие платы обычно состоят из следующих компонентов:

  • конденсаторы добавочного типа;
  • индукционные катушки;
  • дроссель тороидального типа;
  • варистор;
  • предохранитель термического типа;
  • VHF-конденсатор.

Варистором является резистор, что имеет переменное сопротивление. Если нормативный порог напряжения в 280 вольт превышается, то его сопротивление снижается. Причем оно может снизиться не в один десяток раз. Варистор по своей сути представляет предохранитель от импульсного перенапряжения. А стационарные модели обычно отличаются тем, что имеют несколько розеток. Благодаря этому появляется возможность подключить через сетевой фильтр к электрической сети несколько моделей электрической техники.

Кроме того, все сетевые фильтры оснащены LC-фильтрами. Такие решения применяются для аудиотехники. То есть такой фильтр – помехоподавляющий, что для аудио и работы с ним будет крайне важно. Также сетевые фильтры иногда оснащаются термическими предохранителями, что позволяют предотвратить появление скачков напряжения. Иногда в ряде моделей используются одноразовые предохранители плавкого типа.

Многозвенные сглаживающие фильтры

Если с помощью индуктивно-емкостного фильтра необходимо обеспечить коэффициент сглаживания пульсаций более 40…50, то вместо однозвенного фильтра целесообразнее использовать двухзвенный сглаживающий фильтр

.

Фильтры с тремя и более звеньями

на практике применяются редко. В общем случае коэффициент сглаживания многозвенного фильтра равен произведению коэффициентов сглаживания отдельных звеньев: q = q’q’’q’’’ …

Сглаживающие индуктивно-емкостные фильтры достаточно просты и эффективны в выпрямительных устройствах средней и большой мощностей. Однако масса и габариты таких фильтров весьма значительны, коэффициент сглаживания снижается с ростом тока нагрузки, фильтры малоэффективны при появлении медленных изменений сетевого напряжения. Индуктивные элементы фильтра являются источниками магнитных полей рассеяния, а совместно с паразитными емкостными элементами создают колебательные контуры, способствующие появлению переходных процессов.

Транзисторный сглаживающий фильтр

Транзисторные фильтры

по сравнению с индуктивно-емкостными сглаживающими фильтрами имеют меньшие габариты, массу и более высокий коэффициент сглаживания пульсаций.

Фильтры могут быть выполнены по схемам с последовательным или параллельным включением силового транзистора по отношению к сопротивлению нагрузки, а также с включением нагрузки RH в цепь коллектора или эмиттера транзистора. Недостатком фильтров с нагрузкой в цепи коллектора является большое изменение выходного напряжения при изменении сопротивления нагрузки. Поэтому чаще используют фильтры, в которых сопротивление нагрузки включено в цепь эмиттера силового транзистора.

Фильтр с последовательным транзистором

Транзисторный сглаживающий фильтр с последовательным включением транзистора и нагрузкой в цепи эмиттера

эквивалентен П-образному LC фильтру. Принцип действия его основан на том, что коллекторный и эмиттерный токи транзистора в режиме усиления практически не зависит от напряжения коллектор-эмиттер. Если выбрать рабочую точку транзистора на горизонтальном участке выходной вольт-амперной характеристики, то его сопротивление для переменного тока будет значительно большим, чем для постоянного тока.

Транзисторный фильтр

В схеме базовый ток транзистора VT задается резистором Rб. Конденсатор Сб достаточно большой емкости устраняет напряжение пульсаций на переходе эмиттер-база. Поэтому переменная составляющая напряжения пульсаций прикладывается к переходу база-коллектор и выделяется на транзисторе VT. В коллекторном и эмиттерном токе переменная составляющая практически отсутствует, поэтому пульсации в нагрузке RH также очень малы.

Коэффициент сглаживания транзисторного фильтра тем больше, чем больше коэффициент передачи тока транзистора VT и чем больше значение отношений

то есть чем меньше напряжение пульсаций на переходе эмиттер-база силового транзистора.

Составной транзистор

Для более успешного выполнения этих соотношений конденсатор Сб может быть заменён одно- или двухзвенным RC сглаживающим фильтром, а для увеличения коэффициента передачи тока транзистор VT можно выполнить составным

Транзисторный фильтр со стабилитроном

Еще эффективней работает транзисторный фильтр, у которого в цепь базы транзистора включен стабилитрон

Коэффициент полезного действия транзисторного фильтра будет тем больше, чем меньше падание постоянного напряжения на силовом транзисторе. Однако амплитуда переменной составляющей напряжения на транзисторе не должна превышать значение постоянного напряжения на нём, иначе фильтр потеряет свою работоспособность.

Фильтр с параллельным транзистором


Фильтр с балластным резистором и параллельным включением транзистора Фильтр с балластным резистором и последовательным включением транзистора
Транзисторные фильтры с балластным резистором Rбл и параллельным включением транзистора

относительно нагрузки, в отличие от
схем с последовательным включением
, применяется при сравнительно небольшом выпрямленном напряжении (десятки вольт). Режим работы транзистора VT – минимальное значение тока IK.min – устанавливается соответствующим выбором сопротивлений R1 и R2. Переменная составляющая напряжения в этой схеме прикладывается к переходу эмиттер-база транзистора VT, усиливается и выделяется на балластном резисторе Rбл. Эта составляющая оказывается в противофазе с переменной составляющей напряжения, выделяющейся на Rбл при непосредственном протекании тока нагрузки. Выбором Rбл и IK.min можно добиться их полной компенсации. Амплитуда переменной составляющей тока транзистора VT должна быть меньше протекающего постоянного тока IK.min, иначе схема будет неработоспособна. Ток IK.min, не должен быть очень малым, так как иначе потребуется увеличение сопротивления Rбл, что приведёт к снижению КПД фильтра. Слишком большой ток также нецелесообразен, так как увеличивается мощность потерь на транзисторе и снижается КПД.

Коэффициент сглаживания параллельного транзисторного фильтра будет тем больше, чем больше сопротивление Rбл, емкость конденсаторов С1 и С2, крутизна вольт-амперной характеристики транзистора. Недостатком транзисторного фильтра с параллельным включением транзистора является значительное изменение среднего значения коллекторного тока транзистора, при изменении среднего значения выпрямленного напряжения, поступающего на вход фильтра. Это приводит к снижению КПД фильтра.

Следует помнить, что транзисторные фильтры не обеспечивают стабилизацию постоянной составляющей выпрямленного напряжения, а при изменении тока нагрузки, температуры окружающей среды и воздействия других дестабилизирующих факторов вносят дополнительную нестабильность выпрямленного напряжения.

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ

В сетевых фильтрах часто используют хитрые конденсаторы с непонятными многим надписями — X1, Y2 итп. Это — помехоподавляющие конденсаторы. Разобраться в том, зачем они нужны и чем отличаются от «просто конденсаторов» поможет эта статья.


Помех в сети всегда хватало — сначала они появлялись от щеточных двигателей, а теперь их в промышленных масштабах производят импульсные блоки питания. То, что помехи — это плохо, лишний раз распинаться не стоит. Сетевое напряжения в крайних случаях выглядит как-то вот так:


Видно, что это сильно отличается от синусоиды, которая там должна быть. Для того, чтобы избавиться от помех, нужно сформировать беспрепятственный путь, по которому ток помехи может вернутся к источнику. Обычно такой путь, по закону Мерфи, лежит через самое чувствительное оборудование. Наша задача сделать так, чтобы помехам не «захотелось» залазить в «нежные места» наших схем, но дать току помех течь туда, куда он «хотел» течь (в нейтраль, к примеру). С другой стороны, можно не доводить сеть до плачевного состояния, не выпуская помехи за пределы устройства.

Для того, чтобы уменьшить помехи, применяют фильтры. Тип фильтра и даже его расположение зависит от конкретного случая. К примеру, если помехи создаются одним источником (двигателем, например), то лучше всего поместить фильтр поближе к этому источнику – замкнуть ток помехи (как на рисунке выше).

Если помехи создаются распределенной схемой в металлическом корпусе (компьютерный блок питания), то фильтр лучше поместить как можно ближе к сетевому шнуру – замкнуть ток помехи внутри корпуса и соединить корпус с самым “чистым” местом схемы, чтобы он сам не излучал.

На рисунке – типичная схема фильтра компьютерного блока питания. Красным показан путь излучаемой помехи, а зеленым – помехи, передающейся по проводам.

Помеха имеет две составляющих – синфазную и противофазную.

Противофазная составляющая помехи — это напряжение помехи между фазой и нейтралью. Для ее подавления используются конденсаторы типа X. Само название X происходит от английского “across-the-line”, буква X похожа на крест (“cross”). На рисунке выше, это конденсатор – C1.

К этим конденсаторам предъявляются такие требования – они должны выдерживать максимально допустимые в сети всплески, не загораться при выходе из строя и не поддерживать горение.

Сейчас используются два основных подкласса X-конденсаторов – X1 и X2.

  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4кВ.
  • X2 – самый распространенный класс конденсаторов. Используется в бытовых приборах с номинальным напряжением сети до 250В, выдерживают всплеск до 2.5кВ.

Емкость X конденсаторов варьируется от 0.1мкФ до 1мкФ. Какую емкость нужно выбрать для данного конкретного прибора можно выяснить только с осциллографом.

Синфазная составляющая помехи — это напряжение помехи между обоими сетевыми проводами и корпусом устройства. Понять, что это такое и зачем нужно немного сложнее.

Рассмотрим типичный импульсный источник питания. Между первичной и вторичной обмоткой трансформатора T1 всегда есть паразитная емкость (нарисована зелененьким). Представим, что конденсатора C7 пока нет. Высокочастотные пульсации беспрепятственно проникают со стока транзистора (самое шумное место схемы!) на вторичную обмотку через зелененькую емкость. Таким образом, на всей выходной части блока питания присутствуют пульсации (с частотой блока питания) относительно заземления и обоих сетевых проводов. Напряжение эти пульсаций может доходить до тысяч вольт. Наш мега-чувствительный прибор будет излучать эти пульсации в эфир, а излучать помехи – это тоже самое, что ловить помехи только с обратным знаком. Прибору будет плохо.

Теперь добавим конденсатор C7. Ток помехи, который просочился через зеленый конденсатор теперь может вернуться туда, откуда взялся по более короткому и менее сложному пути, чем в предыдущем случае и в наш мега-чувствительный прибор ему больше течь не хочется!

Заметьте, что конденсатор C7 теперь связывает сеть с выходом блока питания! Но ведь это-же опасно! Человек, который дотронется одновременно к выходу такого блока питания (к корпусу устройства) и к заземлению (к батареи отопления, к примеру), получит заметный, но не страшный удар. А что будет, если конденсатор C7 сломается? Правильно, выход блока питания станет “электрическим стулом”. Именно поэтому и сделали конденсаторы типа Y – они предназначены для работы в тех местах, где выход их из строя угрожает жизни людей.

Конденсаторы Y – типа делятся на 2 основных класса

  • Y1 – Работают при номинальном сетевом напряжении до 250В и выдерживают импульсное напряжение до 8кВ
  • Y2 – Самый популярный тип, может быть использован при сетевом напряжении до 250В и выдерживает импульсы в 5кВ

Теперь немного фактов.

  • Конденсаторы Y типа можно использовать вместо конденсаторов X типа, но нельзя использовать конденсаторы X типа вместо конденсаторов Y типа.
  • Конденсаторы Y типа имеют обычно намного меньшую емкость, чем конденсаторы X типа.
  • Если для конденсаторов X типа чем больше емкости, тем лучше, то емкость конденсаторов Y типа нужно выбирать как можно меньшей. Типичное значение 2.2нФ уже прилично бьется, если хватануться за выход БП и за батарею.
  • Несмотря на все меры безопасности, производители рекомендуют вынимать вилку из розетки, когда вы на долго покидаете дом.

Рекомендую также почитать документ

CAPACITORS FOR RFI SUPPRESSION OF THE AC LINE: BASIC FACTS

rfi_fact.pdf

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]