Основные параметры световых волн: длина волны, частота, период, амплитуда, скорость распространения.


Почему небо голубое, а трава зеленая?

Вообще-то это два вопроса, а не один. И поэтому мы дадим два разных, но связанных между собой ответа. Мы видим ясное небо в полдень голубым, потому что короткие волны света более эффективно рассеиваются при столкновении с молекулами газа в атмосфере, чем длинные. Так что голубизна, которую мы видим в небе — это синий свет, рассеянный и многократно отраженный молекулами атмосферы.

Но на восходе и закате небо может приобретать красноватый цвет. Да, и такое бывает, поверьте. Это происходит потому, что когда Солнце находится близко к горизонту, свету, чтобы достичь нас, приходится проделать более долгий путь через гораздо более плотный слой атмосферы (к тому же еще и довольно пыльный), чем когда Солнце находится в зените. Все короткие волны поглощаются, и нам остается довольствоваться длинными, отвечающими за красную часть спектра.

А вот с травой все слегка по-другому. Она выглядит зеленой, потому что поглощает все длины волн, кроме зеленых. Зеленые ей, видите ли, не по душе, поэтому она их отражает обратно нам в глаза. По этой же причине любой объект имеет свой цвет — мы видим ту часть спектра света, которую он не смог поглотить. Черные предметы выглядят черными, потому что поглощают все длины волн, практически ничего при этом не отражая, а белые — наоборот, отражают весь видимый спектр света. Это также объясняет, почему черное нагревается на солнце гораздо сильнее, чем белое.

Небо голубое, трава зеленая, собака — друг человека

Уторова Лилия

Старший инженер-светотехник

Работает в светотехнической отрасли с 2015 года. Выпускница Санкт-Петербургского научно-исследовательского университета информационных технологий, механики и оптики. Любимая цитата: «Нет никаких причин чувствовать себя одиноким, когда в мире есть любовь и свет.»

Введение

Ежедневно на протяжении всей своей жизни мы неразрывно связаны со светом, что оказывает влияние не только на наше зрительное восприятие окружающего мира, но и на здоровье, самочувствие, продуктивность и настроение.

С давних времен по своей природе человек с восходом солнца просыпается, когда солнце находится в своём пике – работает, а с наступлением ночи готовится ко сну. Это не случайно и взаимосвязано со светом. Каким образом? Для этого необходимо рассмотреть характеристики света

Световое излучение характеризуется такими параметрами, как световой поток, сила света, яркость, освещенность и др., но подробней хотелось бы остановиться на спектральных характеристиках и их взаимосвязи с природой.

Свет – это видимая область электромагнитного излучения в диапазоне длин волн от 380 нм до 780 нм. Именно в этом диапазоне оптическое излучение способно возбуждать сетчатку глаза человека и создавать зрительный образ.

Помимо видимой области излучения в светотехнике рассматривают также ультрафиолетовое (длина волны от 1 нм до 380 нм) и инфракрасное излучение (длина волны от 780 нм до 1 мк).

Видимое излучение с разной длиной волны воспринимаются глазом как разные цвета:

Таблица 1. Длины волн различных цветов

Длина волны Цвет
от 380 нм до 450 нм фиолетовый
от 450 нм до 480 нм синий
от 480 до 510 голубой
от 510 до 550 зеленый
от 550 до 575 жёлто-зеленый
от 575 до 590 жёлтый
от 590 до 610 оранжевый
более 610 красный

Границы цветов приблизительны – разные люди отличаются друг от друга восприятием цветовых сигналов головным мозгом. Для нас же самым наглядным примером видимого спектра в природе является радуга.

Полный видимый спектр на шкале излучений различных длин волн выглядит так:

Белый свет является смешением всех (или нескольких) цветов спектра в определенной пропорции. Если луч белого света пропустить через стеклянную призму, то он разложится на спектр (явление дисперсии света).

Различные цвета мы видим каждый день и не придаём значения тому, что это очень сложный процесс восприятия. Цвет предмета определяется спектральным составом света и спектральными характеристиками отражения и пропускания материалов.

Цвет – это объективная величина, которая может быть измерена и выражена конкретными параметрами. Для этого чаще всего используют колориметрическую систему координат цветности:

На рис. 3 представлено поле реальных цветов. На ограничивающей его кривой линии отмечены длины волн монохроматических излучений, воспринимаемых глазом – от 380 (фиолетовый цвет) до 700 (красный цвет) нм.

Средняя часть цветового поля – это область белых цветов. В ней проходит линия – кривая теплового излучения, то есть кривая координат цветности белого света.

Цветность белого света зависит от цветовой температуры – температуры чёрного тела, при которой оно испускает излучение того же цветового фона, что и рассматриваемое излучение. Цветовая температура измеряется в градусах Кельвина.

Цвет излучения тепловых источников света (ламп накаливания) очень точно соответствует данной кривой на графике.

На рис. 4 представлено наглядное сравнение источников света с различной цветовой температурой.

Многие ошибаются, полагая, что чем выше цветовая температура, тем свет «теплее», чем ниже – «холоднее». Ассоциация происходит с температурой тела и воздуха, когда при повышении температуры становится теплее.

В случае цветовой температуры света можно провести аналогию с цветом звёзд.

Цвет звезды зависит от температуры на поверхности: чем больше тепла звезда излучает, тем более голубой цвет она имеет, и наоборот, самые холодные звёзды по температуре на поверхности имеют оранжевый и красный цвет. Как видно из рис. 5, самые горячие небесные тела – голубые звёзды с температурой 30000 К, самые холодные звёзды – красные с температурой 3500 К, солнце в середине дня имеет температуру на поверхности 6000 К и желто-белый цвет.

Влияние цветовой температуры источников света на человека

В современном мире большая часть нашего активного времени суток проходит на рабочем месте, т.е. под воздействием искусственного освещения. Качество света и его достаточное количество – важная составляющая верного восприятия окружающего мира. Формы объектов, цвета, люди, предполагаемые опасности распознаются нами, если обеспечивается достаточные уровень освещенности, время воздействия света и его цветность. Наравне с визуальными эффектами, цветность влияет также и на другие сферы жизни человека.

С конца 20-го века было проведено большое количество исследований незрительного воздействия света на организм. Оказалось, что в глазах человека имеются не только известные рецепторы – колбочки и палочки, воспроизводящие изображения предметов, но и фоторецепторы, воспринимающие свет без образования изображения – меланопсин. Эти рецепторы отвечают за выработку гормона мелатонина, кортизола, регулируя циркадные ритмы человека.

Циркадные ритмы – это внутренние фундаментальные биологические циклы организма с периодом 24 часа, такие как сон, температура тела, пищеварение. Циркадные ритмы влияют на выработку гормона «сна» — мелатонина, производят и выравнивают определенные физиологические реакции в зависимости от уровня освещенности и цветовой температуры.

Гормон мелатонин отвечает за отдых и расслабление организма и работает в партнерстве с другими гормонами (кортизол, серотонин, допамин). В течение дня кортизол обеспечивает бодрость и стрессовую реакцию организма, серотонин контролирует импульс и углеводную потребность, а допамин обеспечивает хорошее настроение, удовольствие, бдительность и координацию.

Высокий уровень мелатонина является причиной сонливости, но он может быть урегулирован воздействием на другие гормоны. Т.к. в течение рабочего дня регулировать уровень естественного освещения сложно, то оказывать влияние на эти четыре гормона, следовательно, и на циркадные ритмы, можно благодаря правильному выбору цветовой температуры источников искусственного освещения.

Воздействие на циркадные ритмы человека происходит за счет изменения уровня освещенности и цветовой температуры в определенные фазы суток. Например, синяя спектральная составляющая подавляет мелатонин и активизирует кортизол, что подходит для середины дня, обеспечивая высокую работоспособность человека, умственную и физическую активность. Излучения в желтом спектре подходят для утра и вечера, когда организм расслабляется и восполняет жизненные силы. Таким образом, изменяя цветовую температуру можно напрямую влиять на самочувствие человека, его настроение и работоспособность в течении дня, не нарушая жизненных циклов.

Практическое применение различной цветовой температуры в искусственном освещении

В настоящее время стало возможным применить на практике знания, что освещение в теплом спектре активизирует гормоны отдыха и действует расслабляюще на организм, освещение в нейтрально белом цвете обеспечивает комфортное выполнение текущих задач, а освещение в холодном спектре способствует умственной активности.

Для этого можно обеспечить биологически и эмоционально эффективное освещение двумя способами:

  1. Первый способ – это эффективное распределение освещения с различной цветовой температурой по времени и зонам:

Например, для стандартного рабочего времени подходит цветовая температура источников света равная 4000 К.

Для совещаний и важных переговоров необходима цветовая температура в 5000 К. За счёт более холодной цветовой температуры активизируется выработка гормона кортизола, что приводит к улучшению мозговой деятельности и концентрации.

Но в течение рабочего дня человеку необходим ещё и отдых для восстановления сил. Для этой цели в помещениях отдыха обеспечивают цветовую температуру источников света 3000 К.

  1. Второй способ – это обеспечение повторения суточного солнечного цикла с помощью источников света.

В основе данного метода лежит зависимость естественного солнечного цикла от цветовой температуры излучения и зависимость человека от солнечного цикла. Если понаблюдать за солнцем в течение дня, то можно увидеть следующую картину:

Как известно, человек ориентируется во времени по естественному освещению (смена дня и ночи), и что свет имеет влияние на человеческие биоритмы.

Утром, при восходе солнца (при теплой цветовой температуре) начинает снижаться выработка мелатонина, и организм пробуждается. Днём (при переходе от нейтральной цветовой температуры к холодной) при выработке кортизола повышается работоспособность. Вечером (при тёплой цветовой температуре) выработка кортизола уменьшается, мелатонина – увеличивается, организм входит в состояние покоя и готовится ко сну. Сохранить гармоничный для организма человека цикл цветовой температуры в искусственном освещении можно, организовав запрограммированное изменение цветовой температуры источников света.

Таблица 2. Зависимость организма от цветовой температуры источников света

Цветовая температура Что происходит Эффект
2700 – 3000 К, тёплая Выработка гормона мелатонина, снижение выработки гормона кортизола Утром – пробуждение, днём – отдых, расслабление, вечером – подготовка ко сну
4000 – 5000 К, нейтральная Выработка гормона кортизола, снижение выработки гормона мелатонина Основное рабочее время – увеличение концентрации
5000 – 6500 К, холодная Выработка гормона кортизола Пик активности мозга, концентрации, внимания и продуктивности

Таким образом, обеспечив один из подходов управления освещением на рабочем месте, можно грамотно положительно влиять на самочувствие и продуктивность сотрудников.

Торговое освещение

Где ещё можно наблюдать влияние цветовой температуры источников света на человека? В магазине. Да, это влияние не меняет настроения покупателя, но помогает сделать выбор. При правильном освещении булочки будут выглядеть вкуснее, а рыба и мясо – свежее.

В настоящее время вопрос, какой товар и в каком магазине выбрать, возникает каждый день. Современного потребителя, т.е. каждого из нас, окружает множество магазинов, конкурирующих между собой, но мы всегда пойдём в тот, где товар лучше. А товар лучше там, где его правильно презентуют.

В чём состоит взаимосвязь презентации товара и спектральных характеристик света?

Для торгового освещения важным требованием является качественная передача визуальной информации о товаре потребителю, что можно обеспечить с помощью качественного освещения. За это отвечают такие параметры как высокий уровень освещенности, высокий индекс цветопередачи, правильно подобранная цветовая температура источника и использование специальных спектров.

Различные группы товаров требуют различного освещения: существуют специальные спектры излучения источников, подчеркивающие натуральные оттенки предметов.

К примеру, мясо подсвечивают спектром со смещением в красный цвет, чтобы оно выглядело аппетитно.

Замороженные продукты и рыбу подсвечивают светом с холодной цветовой температурой (5000-6500 К), что подчеркивает свежесть, блеск и охлажденность.

Хлебобулочные изделия подсвечивают теплым светом (2700-3000 К). Как правило, хлеб выложен на натуральных материалах теплых оттенков (дереве), что усиливает гармоничный вид.

Фрукты и овощи освещают направленным светом с высокой цветопередачей, чтобы товар выглядел ярким, свежим и привлекательным.

В табл. 3 приведены дополнительные виды товаров, которые также можно выгодно подчеркнуть:

Таблица 3. Виды товарного ассортимента и необходимые им цветовая температура и смещение спектра

Товарный ассортимент Цветовая температура, К;

Смещение спектра в цвет

Бытовые товары 3000 – 4000 К
Одежда и обувь 3000 – 4000 К
Автомобили 3000 – 4000 К
Охлажденное мясо 3700 К, красный
Охлажденная рыба 5000 – 6500 К, синий
Фрукты и овощи 2700 – 3000 К, жёлтый
Хлебобулочные изделия 2700 К, жёлтый
Молоко 3000 – 4000 К
Колбаса и копчености 3700 К, красный

Важно помнить, что обеспечение комфортной среды для покупок – это сложная и точная настройка различных параметров источников света, на которой не следует экономить при проектировании, ведь человек охотней совершит покупки в магазине, который для себя воспринимает как комфортный и с качественным товаром.

Заключение

В статье рассмотрены важнейшие спектральные характеристики источников света, умело используя которые, можно создать комфортную среду для нашей жизни и работы.

Оптимизация искусственного освещения в рабочем пространстве способствует поддержанию циркадного ритма человека, что напрямую влияет на самочувствие, настроение и продуктивность.

Грамотное проектирование искусственного освещения в магазинах с учетом требований различных товаров помогает создавать в магазине комфортную среду и представлять товары в самом выгодном свете для покупателей, что положительно сказывается на уровне продаж.

Источники:

  1. «Справочная книга по светотехнике», под ред. Ю.Б. Айзенберга, 3-е издание, 2006
  2. «Элементарная светотехника», Л.П. Варфоломеев, 2013
  3. Журнал «Современная светотехника», №4, 2018
  4. Буклет по решениям «Биологически и эмоционально эффективное освещение (Human Centric Lighting), Световые технологии, 2019
  5. Интернет-ресурс: v-kosmose.com
  6. Рисунки 4 и 6 — нарисованы и принадлежат bigpro.ru; остальные — взяты с интернет-ресурса: pinterest.ru.

#свет #спектр #цветоваятемпература #статья #рекомендации #внутреннееосвещение #естественныйсвет

А что там — за видимой областью спектра?

По мере того, как волны становятся короче, цвет меняется от красного к синему, доходит до фиолетового и, наконец, видимый свет исчезает. Но сам свет не исчез — а перешел в область спектра, которая называется ультрафиолетом. Хоть эту часть спектра света мы уже не воспринимаем, но именно она заставляет светиться люминесцентные лампы, некоторые виды светодиодов, а также всякие прикольные светящиеся в темноте штучки. Дальше уже идут рентгеновское и гамма-излучение, с которыми лучше дел не иметь вообще.

С другого конца области спектра видимого света, там где заканчивается красный цвет, начинается инфракрасное излучение, которое скорее тепло, чем свет. Вполне может вас поджарить. Затем идет микроволновое излучение (очень опасное для яиц), а еще дальше — то, что мы привыкли называть радиоволнами. У них длины уже измеряются сантиметрами, метрами и даже километрами.

Мы окружены

Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение — это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1).

Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.

На Рисунке 1 видимое излучение

представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это
спектр
. Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет — всего лишь звено одной очень длинной электромагнитной волны.

И как это все относится к освещению?

Очень относится! С тех пор как мы узнали многое про спектр видимого света и про то, как мы его воспринимаем, производители светового оборудования постоянно работают над улучшением качества источников света для удовлетворения наших ежесекундно растущих потребностей. Так появились лампы «полного спектра», свет которых почти неотличим от естественного. Цвет света стали измерять по шкале Кельвина, чтобы иметь реальные цифры для сравнения и маркетинговых трюков. Стали выпускаться специальные лампы для различных нужд: например, лампы для выращивания комнатных растений, дающие больше ультрафиолета и света из красной области спектра для лучшего роста и цветения, или «тепловые лампы» различных видов, которые обосновались в бытовых обогревателях, тостерах, и гриле в «Шаурме от Ашота».

Каким бывает свет

Световой поток

Яркость – это сила светового потока в определенном направлении. Приведенные выше сведения подтверждают необходимость учета других факторов для тщательного анализа практических параметров излучения.


Цветовая температура

В зависимости от восприятия, применяют следующую шкалу распределения диапазонов спектра в Кельвинах (К):

  • теплый цвет – 2650-3600;
  • естественный (нейтральный) – 3700-4900;
  • холодный – более 5000.

По каким параметрам измеряется интенсивность света

Люмен — единица измерения светового потока

Что такое яркость, понятно из приведенных выше формулировок. Однако по мере удаления источника от наблюдателя уменьшается светимость. Маленькое изначально пятно на поверхности, куда был направлен луч, увеличивается с одновременным снижением интенсивности.

Для учета отмеченных изменений введено понятие освещенности (E). В простейшем примере для точечного источника действительна формула:

E=(I/r2) * cos u,

где:

  • I – сила света;
  • r – расстояние между источником и поверхностью;
  • u – угол наклона лучей.

Опыт Т. Юнга

Для демонстрации явления интерференции и для определения длины волны света Т.Юнг поставил специальный эксперимент.

Для получения четкой интерференционной картины необходимо иметь два когерентных световых луча, то есть, луча, обладающих одинаковой длиной волны и имеющих постоянную разность фаз. Освещая две близких щели, можно за ними на экране получить условия для сложения и вычитания световых волн – интерференцию. Главная идея опыта Юнга была в том, чтобы для освещения щелей использовать не простой световой луч, который использовали исследователи до Юнга, а луч, прошедший через маленькое отверстие, за которым, в соответствии с принципом Гюйгенса будет возбуждена единая когерентная волна, и именно она должна использоваться для освещения двух щелей, с получением за ними интерференционной картины.


Рис. 2. Опыт интерференции Юнга.

Закон прямолинейного распространения света

Любой школьник, перешедший в 9-11 класс, должен знать, что свет в однородной среде распространяется по прямолинейной траектории, а его скорость равна 3х108
м/с
. С такой скоростью луч долетает от Земли до Луны (расстояние между которыми 384 000 километров) всего примерно за 1,2-1,3 секунды!

Исходя из прямолинейного распространения света, выводятся многие понятия, такие как тень, угол падения и отражения, и многое другое. Разный раздел науки по-разному использует эти данные, но они имеют большое значение в технике и теории.

Подытоживая скажем, что лексическое значение греческого слова «фотон» четко передает его смысл – это свет. Свет одновременно является и электромагнитной волной, и потоком частиц фотонов, которые распространяются от источника излучения и заполняют собой все окружающее пространство по законам прямолинейного распространения, дифракции, интерференции и т. д.

И естественное, и искусственное освещение имеют одинаковые свойства, за исключением, разве что длины волны, ее амплитуды и других, более конкретных характеристик каждой волны.

В чем измеряется сила света

Так как в продаже можно увидеть продукцию разных производителей, не исключены ошибки в процессе изучения сопроводительной документации. Чтобы исключить проблемы, рекомендуется ознакомиться с применяемой терминологией.

Что такое «кандела»

Единичный параметр (1 кандела) соответствует освещенности поверхности световым потоком малой мощности (1/689 Вт/ст). Частота электромагнитного излучения фиксирована – 540 * 1012 Гц.

Люмены и люксы

В люксах (лк) измеряют яркость на площадке. Один лк создает световой поток силой 1 люмен (лм), который падает перпендикулярно на поверхность. Для измерения берут базовую площадь 1 м кв.

Люмен и ватт

Выше рассмотрены комплексный показатель, светоотдача. Однако можно проводить сравнение по люменам, которые создают определенный источник, и количеству потребляемой энергии в Ваттах.

Кратные единицы люмена

Для удобства измерений и записи полученных данных при высокой силе света применяют кратные приставки:

  • кило – 103;
  • мега – 106;
  • гига – 109.

Дольные единицы люмена

Аналогичным образом поступают при работе с малыми величинами:

  • милли – 10-3;
  • микро – 10-6;
  • нано – 10-9.

В чем измеряется яркость света

Действующая единица измерения света (яркости) – кандела на м кв. Прежняя единица яркости – «нит». Этот параметр определяет отношение силы светового потока к проекции луча на площадку, расположенной под углом 90 градусов к настоящей оси наблюдения.

Единица яркости светящейся поверхности определяется отношением уровня освещенности к телесному углу (элементарному). Подразумевается, что именно в этих пределах заключен поток, создающий свечение на поверхности. Она установлена перпендикулярно по отношению к источнику.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]