скрытая дверь в интерьере фото Please enable it for a better experience of Jumi. Мы в социальных сетях: JavaScript is currently disabled.

Как рассчитать пусковой ток двигателя – советы электрика


Пусковой ток и его кратность

Чтобы тронуть с места (пустить) двигатель, нужен громадный пусковой ток (Iп). Громадный – по сравнению с номинальным (рабочим) током Iн на установившейся скорости. В статьях обычно указывают, что пусковой ток превышает рабочий в 5-8 раз. Это число называется “Кратность пускового тока” и обозначается как коэффициент Кп = Iп / Iн.

Пусковой ток – это ток, который потребляет электродвигатель во время пуска. Узнать пусковой ток можно, зная номинальный ток и коэффициент Кп:

Iп = Кп · Iн

Номинальный ток всегда указан на шильдике двигателя:

Номинальный ток двигателя для разных напряжений и схем включения

Кп – рабочий параметр, который указан в характеристиках двигателя, но на корпусе двигателя он никогда не указывается.

Замечу, что не надо путать номинальный и рабочий токи. Номинальный ток – это ток, на котором двигатель может работать продолжительное время, он ограничен только нагревом обмотки статора. Рабочий ток – это реальный ток в данном агрегате, он всегда меньше либо равен номинальному. На практике рабочий ток измеряется токоизмерительными клещами, амперметром или трансформатором тока.

Если рабочий ток больше номинального – жди беды. Читайте мою статью про то, как защитить электродвигатель от перегрузки и перегрева.

Кратность пускового тока . На шильдике его обычно нет, а в документации и на сайтах производителей он присутствует:

Параметры двигателей. Кратность пускового тока

Пример из первой строчки на картинке: конкретный двигатель мощностью 1,5 кВт имеет номинальный ток 3,4 А. Значит, пусковой ток в какой-то момент (сколько длится этот “момент” – рассмотрим ниже) может достигать значения 3,4 х 6,5 = 22,1 А!

Судя по каталогам (их можно будет скачать в конце статьи, как обычно у меня), пусковой ток превышает номинальный в пределах от 3,5 до 8,5 раз.
Кратность пускового тока зависит прежде всего от мощности двигателя и от количества пар полюсов. Чем меньше мощность, тем меньше пусковой ток. А чем меньше пар полюсов (больше номинальные обороты) – тем больше пусковой ток.

То есть, самым большим током при пуске (7 – 8,5 от номинала) обладают высокооборотистые двигатели (3000 об/мин, 1 пара полюсов) сравнительно большой мощности (более 10 кВт).

Так происходит потому, что потребляемый ток и момент инерции при пуске зависит от конструкции двигателя и способа намотки. Мало полюсов – низкое сопротивление обмоток. Низкое сопротивление – большой ток. Кроме того, высокооборотистым движкам для полной раскрутки требуется больше времени, а это опять же тяжелый пуск.

Если объяснить более научным языком, то дело происходит так. Когда двигатель стоит, его степень скольжения S = 1. При раскручивании (или, как любят говорить спецы, разворачивании) S стремится к нулю, но никогда его не достигает – на то двигатель и называют асинхронным, ведь вращение ротора никогда не догонит вращение поля статора из-за потерь. Одновременно сердечник ротора насыщается магнитным полем, увеличивается ЭДС самоиндукции и индукционное сопротивление. А значит, уменьшается ток.

Кому хочется узнать подробнее – в конце статьи я выложил несколько хороших книг по теме.

На самом деле не так всё просто, начинаем копать глубже.

Конструкционные особенности

Знание особенностей конструкции любого оборудования значительно облегчает покупку и последующую работу с ним, в том числе эксплуатацию и ремонт асинхронного двигателя с фазным ротором. Прежде всего, следует запомнить, что все электромоторы устроены по схожему принципу – они обязательно имеют неподвижный статор и подвижный ротор, осуществляющий вращательные движения внутри силового агрегата. Статор асинхронного двигателя с фазным ротором имеет подключаемые к электросети переменного тока обмотки, напряжение на которых взаимодействует с обмотками ротора. Данная связь объясняется принципами действия магнитного потока.

Обычная конструкция статора асинхронного двигателя представляет собой корпус электромотора с запрессованным внутрь сердечником. Обмотка сердечника разделена не несколько заключенных в катушки секторов. От этих обмоток отводятся кабеля с защитной изоляцией, предотвращающей их взаимное замыкание. Ротор устроен из вала и набранного пластинчатого сердечника. Обычно здесь применяются пластины с симметричными пазами стандартного размера, выполненные из высокотехнологичной стали. Во время работы роторного вала происходит передача крутящего момента приводу электроустановки.

Чертеж асинхронного двигателя с его основными составными частями выглядит так:

Наиболее распространенными считаются роторы двух типов:

  1. Короткозамкнутый.
  2. Фазный.

Первый вариант в составе своей конструкции имеет стержни из алюминия, проходящие сквозь сердечник и замкнутые торцевыми кольцами. Это так называемое «беличье колесо». Для повышения прочности пазов их также часто обрабатывают алюминиевым составом. Устройство фазного ротора несколько отличается от короткозамкнутого. Здесь количество установленных под определенным углом катушек напрямую зависит от числа парных полюсов, во многих случаях сопоставимых с парными полюсами, какие есть на статоре.

Как узнать пусковой ток?

Кратность пускового тока (отношение пускового тока к номинальному) найти в документации на двигатель бывает не так-то просто. Но его можно измерить (оценить, узнать) самому. Вот навскидку несколько способов:

  1. Первый способ (лучший для теоретического изучения) – использовать осциллограф. Взять шунт (например, резистор 0,1…0,5 Ом, чем меньше по сравнению с обмотками, тем лучше), и посмотреть на нём осциллограмму в момент пуска. Далее из максимального амплитудного значения определяем действующее напряжение (поделить на корень из 2), далее по закону Ома считаем пусковой ток. Можно ничего не умножать и не делить – просто измерить клещами ток в рабочем режиме, и умножить его на разницу токов на экране осциллографа. Способ хорош тем, что видно переходные процессы, вызванные ЭДС самоиндукции, мгновенные значения тока, длительность разгона. Кроме того, учитываются параметры питающей сети. Ещё плюс – пусковой ток измеряется реальный, на реальном двигателе и механизме.
  2. Второй способ измерения пускового тока – подать на двигатель пониженное (в 5-10 раз) напряжение рабочей частоты и измерить ток. Почему пониженное? Это необходимо для того, чтобы ротор можно было легко зафиксировать, не допуская перегрева. Измеренный ток пересчитать, получим пусковой. Достаточно измерить ток на одной фазе. По другим токи будут (обязаны быть) такими же. Этот способ используют при производстве и испытаниях двигателей. Именно этим способом производители получают табличные данные. Способ опирается на номинальный ток, в реальности (на реальном механизме) пусковой ток может быть другим!
  3. Измерить пусковой ток токоизмерительными клещами. Плюс этого способа – простота и оперативность. Клещи используют в большинстве случаев для проверки режимов работы двигателей. Минус – такие клещи достаточно инерционны, а нам нужно увидеть, что происходит за доли секунды. Но этот минус нивелируется, когда мы измеряем ток при пуске нагрузки с высоким моментом инерции (вентиляторы, насосы с массивными крыльчатками). Пуск длится более 10 сек, и на экране клещей всё видно. Добавлю, что есть клещи с функцией Inrush, которые могут измерять пусковой ток от 0 до максимума в течение времени интегрирования порядка 100 мс.
  4. Трансформатор тока. Такой используется, например, в узлах учета электроэнергии – благодаря трансформатору тока нет необходимости измерять реальной ток, а можно измерить ток, уменьшенный в точно известное количество раз. Так же измеряют ток в электронных пусковых устройствах (преобразователях частоты, софтстартерах). Минус способа – трансформатор тока рассчитан на частоту 50/60 Гц, а переходные процессы во время пуска имеют широкий спектр и много гармоник. Поэтому можно сказать, что такой способ тоже обладает высокой инерционностью.

Конечно, реальность отличается от эксперимента. Прежде всего тем, что ток короткого замыкания реальной сети питания не бесконечен. То есть, провода, питающие двигатель, имеют сопротивление, на котором в момент пуска падает напряжение (иногда – до 50%). Из-за этого ограничения реальный пусковой ток будет меньше, а разгон – длительнее. Поэтому нужно понимать, что значение кратности пускового тока, указанное производителем, в реальности всегда будет меньше.

Для чего нужны двигатели – приводить в действие механизмы и получать прибыль!

Теперь разберём другой вопрос –

Применение

На сегодняшний день, большая часть двигателей, выпускаемых в промышленных масштабах, относится к асинхронной разновидности.

Благодаря ряду преимуществ, которыми обладают машины с фазными роторами, они широко используются в разных сферах человеческой деятельности, в том числе для поддержания работы:

  1. Устройств автоматики и приборов из телемеханической области.
  2. Бытовых приборов.
  3. Медицинского оборудования.
  4. Оборудования, предназначенного для осуществления аудиозаписи.

Какой вред от пускового тока?

Пусковой ток – это проблема. Это –

  • перегрузка питающей сети, приводящая к нагреву (вплоть до отгорания контактов) и проседанию напряжения;
  • чрезмерный износ, перегрузка и перегрев двигателя, у некоторых производителей среди параметров двигателя указывается максимальное количество пусков в час или в сутки – именно из-за перегрева;
  • износ и перегрузка механического привода (подшипники, редукторы, ремни), особенно обладающего большим моментом инерции,
  • помехи, вызванные включением контакторов, которые передаются не только по проводам, но и через электромагнитное поле,
  • проблемы с технологией – многие процессы нельзя начинать резко.

От пускового тока перегружается всё, и момент пуска становится в тягость вcем участникам процесса. Именно в этот критический момент может проявиться “слабое звено”. Кроме того, многие участники электропитания, работающие в этой сети, испытывают проблемы – например, лампочки снижают яркость из-за снижения напряжения, а контроллеры могут зависнуть из-за мощной помехи.

И в то же время пусковой ток – это проблема, от которой никуда не деться, если сразу подавать на двигатель номинальное питание и не использовать специальные методы.

Поэтому разберём,

В чем отличие этого параметра от тока заряда аккумулятора автомобиля?

Пусковой ток – величина, влияющая исключительно на старт силового агрегата, а ток заряда аккумулятора автомобиля, в свою очередь, определяет уровень потенциала, необходимого для зарядки самого АКБ.

Стоит отметить, что существует три основных способа зарядки аккумулятора в машине:

  • зарядка током с постоянным амперажом;
  • зарядка током с постоянным напряжением;
  • смешанный способ со стабильным током и колеблющимся вольтажом вначале зарядки и ровным напряжением и регрессирующим током в конце процесса.

Нужно отметить, что смешанный способ является наиболее эффективным и продлевающим жизнь вашему энергоносителю.

Как уменьшить пусковой ток асинхронного двигателя

Решить проблему большого пускового тока электрически можно двумя путями:

  1. Вначале подавать на двигатель пониженное напряжение, а затем, по мере разгона, напряжение и скорость вращения поднять до номинального значения. Такой способ применяется в электронных устройствах запуска двигателей – софтстартерах (УПП) и преобразователях частоты (частотниках).
  2. Использовать ограничители пускового тока, когда при пуске двигатель питается через мощные резисторы, а потом по таймеру переключается на номинал. Сопротивление резисторов соизмеримо с сопротивлением обмотки стартера (единицы Ом, в зависимости от мощности). Это устройство легко сделать самому (контактор + реле времени).
  3. Сразу подавать полное напряжение, но сначала подключать обмотки так хитро, чтобы двигатель не раскручивался на полную мощность. И только когда в этом режиме двигатель раскрутится насколько это возможно, включать его на полную. Эта схема называется “Звезда – Треугольник”, читайте в следующей статье.

Можно сконструировать какую-то муфту, коробку передач, вариатор – для того чтобы раскрутить двигатель вхолостую, а потом подключить потребителя механического момента.

В современном оборудовании двигатели мощнее 2,2 кВт практически никогда напрямую не включают, поэтому для них пусковые токи рояли не играют. Для уменьшения пускового тока (и не только) в основном применяют преобразователи частоты, о которых будут отдельные статьи.

Расчет мощности электродвигателя для насоса

Выбор электродвигателя для насосной установки зависит от конкретных условий, прежде всего – от схемы водоснабжения. В большинстве случаев подача воды производится с помощью водонапорного бака или водонапорного котла. Для приведения в действие всей системы используются центробежные насосы с асинхронными двигателями.

Выбор оптимальной мощности насоса осуществляется в зависимости от потребности в подаче и напоре жидкости. Подача насоса QH измеряется в литрах, подаваемых в 1 час, и обозначается как л/ч. Данный параметр определяется по следующей формуле: Qн = Qmaxч = (kч х kсут х Qср.сут) / (24 η), где Qmaxч — возможный максимальный часовой расход воды, л/ч, kч – коэффициент неравномерности часового расхода, kсут — коэффициент неравномерности суточного расхода (1,1 – 1,3), η — КПД насосной установки, с учетом потерь воды), Qср.сут — значение среднесуточного расхода воды (л/сут).

Как снизить вред от пускового тока?

Если изменить схему питания двигателя невозможно (например, сосед по даче каждые пол часа запускает токарный станок, а никакие “методы воздействия” не воздействуют), то можно применить различные методы минимизации вреда от пусковых токов. Например:

  1. На важные потребители или на весь дом установить инверторный ИБП (UPS), который будет держать напряжение в норме при любом раскладе. Самый дорогой, но действенный способ.
  2. Поставить стабилизатор напряжения. Но учтите, что не все стабилизаторы одинаково полезны. Иногда они могут не справляться, а иногда – даже усугублять ситуацию. Подробнее – по приведенной ссылке.
  3. Если питание – однофазное, то можно попробовать переключиться с “плохой” фазы на “хорошую”. Иногда этот способ так же эффективен, как использование телепорта вместо автобуса “Таганрог-Москва”.

Но напоминаю, что мы тут занимаемся не устранением последствий, а предотвращением проблем, поэтому погнали дальше.

Выводы:

  • При подсчёте суммарной мощности электротехники мощность приборов с пусковыми токами нужно рассчитывать не по номиналу, а с учётом пусковых токов (в Вт либо в А).
  • Пусковые токи даёт техника, в конструкции которой есть электродвигатель, насос, компрессор, нить накаливания или катушка индуктивности.
  • Чем хуже напряжение в магистральном проводе (ниже 150 В или выше 250 В), тем более высокий номинал должен быть у стабилизатора или ИБП (примерно на 30 % больше суммарной мощности работающей техники).

Пусковые токи можно ассоциировать с началом движения велосипеда: в момент начала движения нужно большое усилие, чтобы раскрутить колёса, но когда велосипед приходит в движение, требуется меньше сил для поддержания скорости.

Время действия и величина пускового тока

Длительностью пускового тока будем считать время, в течение которого ток понижается от максимума (Iп) до номинала (Iн). Эта длительность фактически равна времени разгона от нуля до номинальной скорости вращения.

Весь вопрос в том, какова длительность этого тока – 10 миллисекунд (пол периода), когда двигатель на холостом ходу, или 10 секунд, когда на валу массивная крыльчатка. Теоретически рассчитать это время невозможно. Однако, поделюсь некоторыми соображениями.

Как я говорил выше, ток двигателя при пуске может превышать норму в несколько раз (Кп). И некоторые начинающие электрики, которые не читают мой блог, считают, что защитный автомат нужно выбирать так же – на повышенный ток. В статьях и даже инструкциях пишут, что “При выборе автомата необходимо учитывать, что пусковой ток асинхронного электродвигателя в 5 – 7 раз превышает номинальный”. Как это учитывать? Неужели ток автомата выбирать в 5-7 раз выше номинального тока двигателя?

Пример:

Шильдик китайского электродвигателя 30 кВт

Написано – 56 А. Что это значит? Неужели то, что ток защитного автомата должен быть более 300 А? Конечно, нет. И выбор автомата в данном случае зависит не только от номинального тока двигателя (56 А), но и от времени действия пускового тока.

Кстати, давайте проведём расследование и узнаем пусковой ток этого двигателя. Ведь на сайт этого китайского производителя нам попасть не суждено. Исходные номинальные данные: мощность – 30 кВт, момент – 190,9 N·m, ток – 56 А. Смотрим по каталогам отечественных производителей, ищем подобный двигатель, ведь законы физики одинаковы и в России, и в Китае. Находим (каталог в конце статьи): это двигатель на 1500 оборотов, 4 полюса, с кратностью пускового тока Кп = 7. В итоге получаем: Iп = Iн · Кп = 56 · 7 = 392 А. Это теоретический пусковой ток, но это не ток уставки автомата!

Пусковой ток является максимально возможным током. Максимальным ток будет при пуске, то есть тогда, когда двигатель стоит. То есть, пусковой ток есть ВСЕГДА, и всегда его начальное значение имеет запредельную величину. В случае с нашим китайским движком – 392 А, если принять ток КЗ питающей сети равным бесконечности (источник напряжения с нулевым внутренним сопротивлением).

Автомат защиты электродвигателя – как правильно подобрать?

При подборе автоматических выключателей, способных защитить электрические моторы от повреждения в результате КЗ или чрезмерно высоких нагрузок, необходимо учитывать большую величину пускового тока, нередко превышающую номинал в 5-7 раз.

Наиболее мощным стартовым перегрузкам подвержены асинхронные силовые агрегаты, обладающие короткозамкнутым ротором. Поскольку это оборудование широко применяется для работы в производственных и бытовых условиях, то вопрос защиты как самого устройства, так и питающего кабеля очень актуален.

В этой статье речь пойдет о том, как правильно рассчитать и выбрать автомат защиты электродвигателя.

Задачи устройств для защиты электродвигателей

Бытовую электротехнику от пусковых токов большой величины в сетях обычно защищают с помощью трехфазных автоматических выключателей, срабатывающих через некоторое время после того, как величина тока превысит номинальную.

Таким образом, вал мотора успевает раскрутиться до нужной скорости вращения, после чего сила потока электронов снижается. Но защитные устройства, используемые в быту, не имеют точной настройки.

Важно

Поэтому выбор автоматического выключателя, позволяющего защитить асинхронный двигатель от перегрузок и сверхтоков короткого замыкания, более сложен.

Современные автоматы для защиты двигателя нередко устанавливаются в общем корпусе с пускателями (так называются коммутационные устройства запуска мотора). Они предназначены для выполнения следующих задач:

  • Защита устройства от сверхтока, возникшего внутри мотора или в цепи подачи электропитания.
  • Предохранение силового агрегата от обрыва фазного проводника, а также дисбаланса фаз.
  • Обеспечение временной выдержки, которая необходима для того, чтобы мотор, вынужденно остановившийся в результате перегрева, успел охладиться.

Управляющая и защитная автоматика для двигателя на видео:

  • Отключение установки, если нагрузка перестала подаваться на вал.
  • Защита силового агрегата от долгих перегрузок.
  • Защита электромотора от перегрева (для выполнения этой функции внутри установки или на ее корпусе монтируются дополнительные температурные датчики).
  • Индикация рабочих режимов, а также оповещение об аварийных состояниях.

Необходимо также учитывать, что автомат для защиты электродвигателя должен быть совместим с контрольными и управляющими механизмами.

Расчет автомата для электродвигателя

Еще недавно для защиты электрических моторов использовалась следующая схема: внутри пускателя устанавливался тепловой регулятор, подключенный последовательно с контактором. Этот механизм работал таким образом.

Когда через реле в течение длительного времени проходил ток большой величины, происходил нагрев установленной в нем биметаллической пластины, которая, изгибаясь, прерывала контакторную цепь.

Если превышение установленной нагрузки было кратковременным (как бывает при запуске двигателя), пластинка не успевала нагреться и вызвать срабатывание автомата.

Внутреннее устройство автомата защиты двигателя на видео:

Главным минусом такой схемы было то, что она не спасала агрегат от скачков напряжения, а также дисбаланса фаз. Сейчас защита электрических силовых установок обеспечивается более точными и современными устройствами, о которых мы поговорим чуть позже. А теперь перейдем к вопросу о том, как производится расчет автомата, который нужно установить в цепь электромотора.

Чтобы подобрать защитный автоматический выключатель для электроустановки, необходимо знать его времятоковую характеристику, а также категорию. Времятоковая характеристика от номинального тока, на который рассчитан АВ, не зависит.

Чтобы автоматический выключатель не срабатывал каждый раз при запуске мотора, величина пускового тока не должна быть больше той, которая вызывает моментальное срабатывание аппарата (отсечка). Соотношение тока запуска и номинала прописывается в паспорте оборудования, максимально допустимое – 7/1.

Совет

Производя расчет автомата практически, следует использовать коэффициент надежности, обозначаемый символом Kн. Если номинальный ток устройства не превышает 100А, то величина Kн составляет 1,4; для больших значений она равна 1,25. Исходя из этого, значение тока отсечки определяется по формуле Iотс ≥ Kн х Iпуск. Автоматический выключатель выбираем в соответствии с рассчитанными параметрами.

Еще одна величина, которую необходимо учитывать при подборе, когда автомат монтируется в электрощитке или специальном шкафу – температурный коэффициент (Кт). Это значение составляет 0,85, и номинальный ток защитного устройства при подборе следует умножать на него (In/Кт).

Современные устройства электрозащиты силовых агрегатов

Большой популярностью пользуются модульные мотор-автоматы, представляющие собой универсальные устройства, которые успешно справляются со всеми функциями, описанными выше.

Кроме этого, с их помощью можно производить регулировку параметров отключения с высокой точностью.

Современные мотор-автоматы представлены множеством разновидностей, отличающихся друг от друга по внешнему виду, характеристикам и способу управления.

Как и при подборе обычного аппарата, нужно знать величину пускового, а также номинального тока. Кроме этого, надо определиться, какие функции должно выполнять защитное устройство. Произведя нужные расчеты, можно покупать мотор-автомат.

Цена этих устройств напрямую зависит от их возможностей и мощности электрического мотора.

Особенности защиты электрических двигателей в производственных условиях

Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального.

При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты.

При этом его работа происходит в режиме перегрузки. Это называется самозапуском.

Самозапуск иногда становится причиной ложного срабатывания АВ.

Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться.

Обратите внимание

В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:

Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.

Тепловое действие пускового тока

Если перейти к формулам, пусковой ток оказывает тепловое действие на электродвигатель, которое описывается так называемым интегралом Джоуля. Если по простому, то тепловая энергия, производимая электрическим током, пропорциональна квадрату тока, умноженному на время. Обозначается эта величина через I2t.

Хорошая новость в том, что защитный автомат имеет примерно такую же тепловую (время-токовую) характеристику, что и время-токовая характеристика разгона двигателя.

Сравните:

Время-токовые характеристики защитного автомата

Что видим? Для защиты двигателя используются в основном автоматы с характеристикой D, как раз для того, чтобы меньше реагировать на кратковременные перегрузки. Подробнее здесь.

А для пускового тока двигателя график будет примерно такой:

График пускового тока (теоретический) при Кп = 6

Линейность графика – условная. Всё зависит от изменения момента нагрузки в процессе разгона. Теоретический график показан пунктиром. На этом графике Кп = Iп / Iн = 6, но это теоретическое (табличное) значение. Время разгона до номинала = tп.

Реальный график начерчен сплошной линией. На нём Iп` – это реальное значение пускового тока, которое всегда меньше теоретического. Это обусловлено тем, что питающая сеть имеет не нулевое сопротивление, и при повышении тока на проводах возникают потери напряжения.

Про потери на низком напряжении я писал тут, про потери в сетях 0,4 кВ – здесь.

Понятно, что из-за потерь время разгона будет больше, оно обозначено на графике через tп`.

Теперь повернём последний график, чтобы привести оси к одной системе координат:

Время от тока, если можно так выразиться

Не правда ли, весьма похоже на время-токовую характеристику защитного мотор-автомата?

Получается, что обе характеристики компенсируют друг друга, и при выборе автомата достаточно настроить его уставку на номинальный ток двигателя. При особо тяжелых пусках, когда площадь под кривой пуска двигателя больше площади под кривой защитного автомата, стоит подумать о плавном пуске – УПП либо ПЧ.

Определение возможности пуска электродвигателя

При проектировании иногда необходимо выполнять проверку на возможность запуска короткозамкнутого двигателя при заданных параметрах электрической сети. Лучше предусматривать устройство плавного пуска или частотный преобразователь, но электромагнитный пускатель дешевле.

Методика проверки сводится к оценке снижения напряжения от трансформатора до электродвигателя.

Проблема заключается в том, что при пуске у двигателя возникает пусковой ток, который в 4-8 раз больше номинального тока.

Пусковой ток создает дополнительную потерю напряжения в сети, а это может привести к тому, что двигатель будет не в состоянии провернуть вал с нагрузкой, поскольку развиваемый двигателем вращающий момент изменяется пропорционально квадрату напряжения. Кроме этого, в результате резкого падения напряжения могут остановиться другие электродвигатели, питающиеся от этой сети.

Нормальный пуск двигателя, возможен в том случае, если начальный момент электродвигателя будет больше на 10% пускового момента сопротивления приводимого механизма.

Чтобы выполнить проверку запуска двигателя, достаточным условием является сравнение пусковых (начальных) моментов электродвигателя и приводимого механизма.

Условие пуска двигателя

где – напряжение на клеммах электродвигателя в начальный момент пуска в долях от номинального напряжения;

mп=Мпуск/Мном – кратность пускового момента электродвигателя при номинальном напряжении на его клеммах (по каталогу);

mмех=Ммех/Мном –требуемая кратность пускового момента приводимого механизма;

Кз – коэффициент загрузки электродвигателя;

1,1 – коэффициент запаса;

dUдоп% — дополнительные потери напряжения (%) в сети от питающего трансформатора и в трансформаторе до клемм электродвигателя механизма;

Кi – кратность пускового тока при номинальном напряжении на клеммах электродвигателя (по каталогу);

Iномд – номинальный ток электродвигателя (по каталогу), А;

Uном – номинальное напряжение трансформатора;

rтр, xтр – активное и индуктивное сопротивление трансформатора, отнесенное к обмотке низшего напряжения;

r, x – активное и индуктивное сопротивление кабельной линии;

cosfном – номинальное значение коэффициента мощности;

mп=Мпуск/Мном – кратность пускового (начального) момента электродвигателя (по каталогу);

sном – номинальное скольжение;

dUс% — суммарная потеря напряжения в линии от шин питающего трансформатора до двигателя механизма и в трансформаторе без учета пуска двигателя (%);

dUс=0,08Uном – при отсутствии данных мощности трансформаторов и их загрузке;

При определении mмех можно руководствоваться следующими данными:

Вентиляторы – 04-0,5.

Компрессоры центробежные и поршневые – 0,4.

Насосы центробежные и грузовые – 0,4.

Станки металлообрабатывающие – 0,3.

Лифты – 1,7-1,8.

Другие электродвигатели будут устойчиво работать, при снижении напряжения от пуска другого электродвигателя, если максимальные моменты останутся больше моментов приводимых механизмов.

Работа другого двигателя

mmax=Мmax/Мном – кратность максимального момента электродвигателя (по каталогу).

Подставляя значения в эти формулы, мы узнаем, выдержит ли питающая сеть с трансформатором пуск двигателя, а также можно проверить, не отключится ли в этот момент другой работающий двигатель.

В ближайшее время планирую на основе этих формул создать программу для быстрой проверки пуска электродвигателя. Двигатели малой мощности нет смысла проверять. Где-то упоминалось отношение мощности трансформатора к мощности двигателя, при котором должна выполняться данная проверка (найду напишу).

Важно

На форуме я выкладывал программу по проверке возможности пуска двигателя, но там какие-то проблемы со шрифтами. Возможно у вас получится ее запустить, поскольку она сделана под DOS.

Источник: https://220blog.ru/pro-raschet/opredelenie-vozmozhnosti-puska-elektrodvigatelya.html

Реальные измерения тока

Как я говорил выше, по моему мнению лучший способ “увидеть” пусковой ток – использовать активный (резистивный) шунт, и смотреть на нём напряжение осциллографом.

Я использовать вот такой шунт:

Шунт для измерения пускового тока при помощи осциллографа

Подопытный – мотор-редуктор, который через цепную передачу крутит вертикальный шнек:

Мотор-редуктор, на котором измеряем пусковой ток

Шнек на момент пуска был полным, поэтому его рабочий ток (7,7 А, измерено клещами) был почти равен номинальному (8,9 А, видно на шильдике).

Шильдик двигателя вертикального шнека

Ситуация по пусковому току видна на осциллографе:

Осциллограмма пускового тока 500 мс/дел

Приблизим интересующий момент, ускорив развертку до 100 мс/дел:

Осциллограмма пускового тока 100 мс/дел

Тут уже легко увидеть синус питающего тока и оценить коэффициент кратности пускового тока Кп, который примерно равен 4.

Ещё приблизим момент истины (до 50 мс/дел):

Момент пуска двигателя – ток пуска

Тут уже видны хорошо и переходные процессы, обусловленные индуктивностью и ЭДС самоиндукции обмоток двигателя. Этот импульс, длительность которого гораздо меньше периода сети 20 мс, даёт хорошую помеху с широким спектром в питающую сеть и радиоэфир.

Ещё один повод для использования ПЧ? Не совсем, там с помехами ситуация гораздо хуже!

Для тех, кто не хочет заморачиваться, повторю – есть клещи с функцией Inrush, которые могут измерять пусковой ток.

Примеры номинальной мощности и мощности при запуске бытовой техники

Продолжительность пусковых токов, сКоэффициент во время начала работыПример модели стабилизатора, ВАПример модели ИБП
Холодильник43«Штиль» R1200 / Progress 1500TN-Power Pro-Vision Black M 3000 LT
Стиральная машина2500Progress 3000T
Микроволновая печь16002«Штиль» R2000
КондиционерProgress 5000L
Пылесос15002Progress 3000T
Кухонный комбайн7Progress 2000T
Посудомоечная машина22003Progress 3000L
Погружные скважинные насосы, глубинные насосы2Progress 3000LДПК-1/1-3-220-М
Циркуляционные насосы«Штиль» R 600 STInelt Intelligent 500LT2
Лампа накаливания1000,15высокоточная серия L

В таблице не отражены точные значения электрических приборов, предоставлены лишь ориентировочные цифры для понимания алгоритма выбора стабилизатора напряжения и ИБП.

Источник: stabmart.ru

Скачать

Надеюсь, читатели простят мне вольное объяснение процессов – я постарался всё объяснить “на пальцах”. Кому нужны академические знания, пожалуйста:

• В.Л.Лихачев. Асинхронные электродвигатели. 2002 г. / Книга представляет собой справочник, в котором подробно описано устройство, принцип работы и характеристики асинхронных электродвигателей. Приводятся справочные данные на двигатели прошлых лет выпуска и современные. Описываются электронные пусковые устройства (инверторы), электроприводы., djvu, 3.73 MB, скачан: 7136 раз./

• Беспалов, Котеленец — Электрические машины / Рассмотрены трансформаторы и электрические машины, используемые в современной технике. Показана их решающая роль в генерации, распределении, преобразовании и утилизации электрической энергии. Даны основы теории, характеристики, режимы работы, примеры конструкций и применения электрических генераторов, трансформаторов и двигателей., pdf, 16.82 MB, скачан: 2317 раз./

• М.М. Кацман — Электрические машины / Некоторые говорят, что это лучший учебник по электротехнике. В книге рассматриваются теория, принцип действия, устройство и анализ режимов работы электрических машин и трансформаторов как общего, так и специального назначения, получивших распространение в различных отраслях техники., pdf, 22.12 MB, скачан: 2061 раз./

• Каталог двигателей Электромаш / Асинхронные электродвигатели с короткозамкнутым ротором — каталог производителя, pdf, 3.13 MB, скачан: 1376 раз./

• Каталог двигателей ВЭМЗ / Параметры и каталог двигателей, pdf, 3.53 MB, скачан: 1181 раз./

• Дьяков В.И. Типовые расчеты по электрооборудованию / Практические расчеты по электрооборудованию, теоретические сведения, методики расчета, примеры и справочные данные., zip, 1.53 MB, скачан: 2515 раз./

• Карпов Ф.Ф. Как проверить возможность подключения нескольких двигателей к электрической сети / В брошюре приведен расчет электрической сети на колебание напряжения при пуске и самозапуске асинхронных двигателей с короткозамкнутым ротором и синхронных двигателей с асинхронным пуском. Рассмотрены условия, при которых допустим пуск и самозапуск двигателей. Изложение методов расчета иллюстрируется числовыми примерами. Брошюра предназначена для квалифицированных электромонтеров в качестве пособия при выборе типа электродвигателей, присоединяемых к коммунальной или промышленной электросети., zip, 1.9 MB, скачан: 1640 раз./

• Руководство по эксплуатации асинхронных двигателей / Настоящее руководство содержит наиболее важные указания по транспортировке, приемке, хранению, монтажу, пусконаладке, эксплуатации, техническому обслуживанию, поиску неисправностей и их устранению для электродвигателей производства «Электромашина». Руководство по эксплуатации предназначено для трехфазных асинхронных электродвигателей низкого и высокого напряжений серий А, АИР, МТН, МТКН, 4МТМ, 4МТКМ, ДА304, А4., pdf, 7.54 MB, скачан: 2540 раз./

• Каталог двигателей АИР / Каталог двигателей АИР — мощность от 0,12 до 315 кВт; частота вращения 3000, 1500, 1000, 750 об/мин; напряжение сети 220/380 В, 380/660 В;, pdf, 1.07 MB, скачан: 1044 раз./

• Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. / Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. Одна из лучших книг, посвящённых основам электротехники. Изложение начинается с самых основ: объясняется, что такое напряжение, сила тока и сопротивление, приводятся указания по расчёту простейших электрических цепей, рассказывается о взаимосвязи и взаимозависимости электрических и магнитных явлений. Объясняется, что такое переменный ток, как устроен генератор переменного тока. Описывается, что такое конденсатор и что собой представляет катушка индуктивности, какова их роль в цепях переменного тока. Объясняется, что такое трёхфазный ток, как устроены генераторы трёхфазного тока и как организуется его передача. Отдельная глава посвящена полупроводниковым приборам: в ней речь идёт о полупроводниковых диодах, о транзисторах и о тиристорах; об использовании полупроводниковых приборов для выпрямления переменного тока и в качестве полупроводниковых ключей. Коротко описываются достижения микроэлектроники. Последняя треть книги целиком посвящена электрическим машинам, агрегатам и оборудованию: в 10 главе речь идёт о машинах постоянного тока (генераторах и двигателях); 11 глава посвящена трансформаторам; о машинах переменного тока (однофазных и трёхфазных, синхронных и асинхронных) подробно рассказывается в 12 главе; выключатели, электромагниты и реле описываются в главе 13; в главе 14 речь идёт о составлении электрических схем. Последняя, 15 глава, посвящена измерениям в электротехнике. Эта книга — отличный способ изучить основы электротехники, понять основополагающие принципы работы электрических машин и агрегатов., zip, 13.87 MB, скачан: 2653 раз./

Ещё пособие по двигателям: • Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 2042 раз./

Расчет мощности электродвигателя

Преобразование электрической энергии в кинетическую осуществляется при помощи различных типов электродвигателей. Данные устройства нашли широкое применение в современном производстве и в быту. Чаще всего электродвигатели выполняют функцию электроприводов машин и механизмов, применяются для обеспечения работы насосного оборудования, вентиляционных систем и многих других агрегатов и устройств. В связи с таким широким применением, особую актуальность приобретает расчет мощности электродвигателя. Для этих целей разработано много различных методов, позволяющих выполнить расчеты, применительно к конкретным условиям эксплуатации.

Как правильно заряжать АКБ?

Зарядное устройство должно иметь возможность выдавать напряжение до 17 В, если рабочее напряжение батареи 12 вольт. В противном случае зарядить аккумулятор на 100% не получится.

Помимо этого, нужно учитывать емкость АКБ при выборе уровня подаваемого пускового тока аккумулятора автомобиля, таблица которого представлена ниже. К примеру, если батарея имеет емкость 70 Ач, то для зарядки в течение 10 часов необходимо выставить ток 7 А. Постепенно ток следует понижать с параллельным повышением напряжения. Такой метод позволит более эффективно заполнить ресурс аккумулятора, поскольку при росте уровня заряда растет и сопротивление, но работа батареи направлена все-таки на напряжение, потому его и следует поднимать.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]