При разработке электронных схем часто появляется потребность в маломощном стабилизаторе напряжения или в источнике образцового напряжения. Ряд фиксированных напряжений закрывается нерегулируемыми интегральными стабилизаторами. Регулируемые строят на микросхеме LM317, но у нее имеются определенные врожденные недостатки и зачастую излишний функционал. Во многих случаях проблему решит микросхема TL431, позволяющая получить маломощный источник стабильного напряжения, которое можно регулировать в пределах от 2,5 до 36 В.
Описание
TL431 – datasheet на русском. TL431 представляет собой регулируемый стабилизатор напряжения параллельного типа (интегральный аналог стабилитрона) и предназначен для использования в качестве ИОН и регулируемого стабилитрона с гарантированной термостабильностью по сравнению с применяемым коммерческим температурным диапазоном.
Выходное напряжение может быть установлено на любом уровне от 2,495 V (VREF) до 36 V, для этого применяются два внешних резистора, которые являются делителем напряжения.
Этот стабилизатор имеет широкий диапазон рабочих токов от 1,0 мА до 100 мА с динамическим сопротивлением 0,22 Ом. Активные выходные элементы TL431 обеспечивают резкие характеристики включения, благодаря чему эта микросхема работает лучше обычных стабилитронов во многих схемах.
Погрешность опорного напряжения ± 0,4% (TL431B) позволяет отказаться от использования переменного резистора, что экономит затраты и уменьшает проблемы дрейфа и надежности.
Основные характеристики TL431
Основные характеристики, знание которых достаточно для выполнения 90+ процентов задач, возникающих при разработке электронных схем:
- пределы выходного напряжения – 2,5…36 В (это можно отнести к минусам, так как современные регуляторы имеют нижний лимит от 1,5 В);
- наибольший ток – 100 мА (он невелик, сравним со стабилитроном средней мощности, поэтому перегружать микросхему не стоит, защиты у неё нет);
- внутреннее сопротивление (импеданс эквивалентного двухполюсника) – около 0,22 Ом;
- динамическое сопротивление – 0,2…0,5 Ом;
- паспортное значение Uref=2,495 В, точность – в зависимости от серии, от ±0,5% до ±2%;
- рабочий диапазон температур для TL431С – 0…+70 °С, для TL431A – минус 40…+85 °С.
Прочие характеристики, включая графики зависимости параметров от температуры, можно посмотреть в даташите. Но в большинстве случаев они не понадобятся.
Схемы включения TL431
Напряжение на выходе этой схемы будет равно напряжению внутреннего ИОН TL431, то есть 2.5 V.
Схема ниже заменяет обычные стабилитроны с напряжением стабилизации от 2.5 до 36 вольт. Изменяя номиналы резисторов в делителе напряжения (R1, R2) можно менять выходное напряжение.
Рекомендованный максимальный ток для TL431 – 100 мА. Если нужен более мощный стабилитрон, можно использовать следующую схему. Максимальный ток будет зависеть от применяемого транзистора.
На рисунке ниже представлена схема компенсационного стабилизатора напряжения последовательного типа. По сравнению с предыдущей схемой, такой стабилизатор отличается меньшим входным сопротивлением, большим коэффициентом стабилизации, большим выходным током.
Одной из типовых схем включения TL431 является стабилизатор тока.
С помощью TL431 можно увеличить выходное напряжение стабилизатора 7805 и ему подобных.
На следующем рисунке изображена схема индикатора напряжения. Светодиод будет светиться, когда контролируемое напряжение находится между верхним (устанавливается R3,R4) и нижним уровнем (R1,R2).
Компаратор с температурно-компенсированным порогом.
Как работает TL431
Если управляющее напряжение превышает 2.5 вольта (внутренний источник опорного напряжения), выходной транзистор TL431 открывается, в результате чего между катодом и анодом TL431 протекает ток. Если управляющее напряжение меньше 2.5 вольт, то ток между катодом и анодом не протекает (вернее он очень маленький).
TL431 одна из самых массово выпускаемых интегральных микросхем, с начала своего выпуска в 1978 году TL431 устанавливалась в большинство блоков питания компьютеров, ноутбуков, телевизоров, видео-аудио техники и другой бытовой электроники. TL431 является прецизионным программируемым источником опорного напряжения. Такая популярность обусловлена низкой стоимостью, высокой точностью и универсальностью.
Принцип работы TL431 легко понять по структурной схеме: если напряжение на входе источника ниже опорного напряжения Vref, то и на выходе операционного усилителя низкое напряжение соответственно транзистор закрыт и ток от катода к аноду не протекает (точнее он не превышает 1 мА). Если входное напряжение станет превышать Vref, то операционный усилитель откроет транзистор и от катода к аноду начнет протекать ток.
Самый простейший тип стабилизатора – параметрический, можно легко построить на TL431: для задания напряжения стабилизации понадобятся два резистора R1 и R2, напряжение на которое будет ‘запрограммирована’ TL431 можно определить по формуле: Uвых=Vref( 1 + R1/R2 ). Получается чем больше соотношение R1 к R2, тем больше выходное напряжение. Микросхема фактически стабилизирует напряжение на своем входе на уровне 2,5 В. Задавшись значением сопротивления R2 и требуемое выходное напряжение, рассчитать R1 можно по формуле: R1=R2( Uвых/Vref – 1 ). В данной схеме R3 рассчитывается точно также, как если бы использовался обычный стабилитрон, т.е. зависит от выходного напряжения, диапазона входного напряжения и диапазона токов нагрузки. Но есть и существенное отличие: в этой схеме на выход не стоит устанавливать конденсатор, так как этот конденсатор может вызвать генерацию паразитных колебаний. В схеме с обычным стабилитроном таких проблем не возникает.
Читать также: Сколько весит дюбель гвоздь 6х40
Примеры схем включения
Один из вариантов схемы включения TL431 – обычный компаратор. На нём можно построить какие-нибудь пороговые реле – например, реле уровня, реле освещения и т.д. Только источник опорного напряжения у неё встроенный и регулировке не подлежит, поэтому регулируют ток и падение напряжения через датчик.
Как только на датчике упадет 2,5 В, выходной транзистор микросхемы откроется, через светодиод пойдет ток и он загорится. Вместо LED можно использовать маломощное реле или транзисторный ключ, коммутирующий нагрузку. Резистором R1 можно подстроить уровень срабатывания компаратора. R2 служит балластом и ограничивает ток через светодиод.
Но подобное включение не дает возможности использовать все возможности TL431 – компаратор можно построить на любой другой микросхеме, более подходящей для таких реле. Эта же сборка разработана для других целей.
Самая простая схема включения TL431 в режиме параллельного стабилизатора – источника опорного напряжения 2,5 В. Для этого нужен лишь балластный резистор, который ограничит ток через выходной транзистор.
Важно! В отличие от классической схемы включения стабилитрона, не стоит параллельно выходу устанавливать конденсатор. Это может привести к возникновению паразитных колебаний. В целом он и не нужен, так как разработчики приняли меры по снижению шумов на выходе. Но из-за этого микросхему нельзя использовать в качестве основы для генератора шума, как обычный стабилитрон.
Более полно возможности микросхемы используются в схеме с обратной связью, образованной резисторами R1 и R2.
Основные технические характеристики TL431:
- напряжение анод-катод: 2,5…36 вольт;
- ток анод-катод: 1…100 мА (если нужна стабильная работа, то не стоит допускать ток менее 5мА);
Точность опорного источника напряжения TL431 зависит от 6-той буквы в обозначении:
Видно, что TL431 может работать в широком диапазоне напряжений, но вот токовые способности не так велики всего 100 мА, да и мощность рассеиваемая такими корпусами не превышает сотен мили Ватт. Для получения более серьезных токов интегральный стабилитрон стоит использовать как источник опорного напряжения, регулирующую функцию доверив мощным транзисторам.
Аналоги TL431
ИМС tl431 аналог, которой нужно подобрать, относится к управляющим стабилитронам. Поэтому подбирать аналогичную ИС необходимо по электрическим параметрам: опорному напряжению, входному напряжению, рабочему току и конструктивным особенностям.
Осторожно. Аналоги могут быть: полными, ближайшими и функциональными. В зависимости от новой детали, возможны дополнения и изменения к электронной схеме, куда она будет устанавливаться (замещаться). При подборе аналога следует учесть, что первые две буквы перед цифрами – это название производителя.
К примеру, транзистор az431 характеристики которого при проверке совпадают с tl431, это он же и есть, просто производитель другой.
Некоторые аналоги для TL431
компенсационный стабилизатор напряжения
Принцип компенсационного стабилизатора на TL431 такой же как и на обычном стабилитроне: разность напряжений между входом и выходом компенсирует мощный биполярный транзистор. Но точность стабилизации получается выше, за счет того что обратная связь берется с выхода стабилизатора. Резистор R1 нужно рассчитывать на минимальный ток 5 мА, R2 и R3 рассчитываются, также как для параметрического стабилизатора.
Чтобы стабилизировать токи на уровне единиц и десятков Ампер одним транзистором в компенсационном стабилизаторе не обойтись, нужен промежуточный усилительный каскад. Оба транзистора работают по схеме с эмиттерного повторителя, т.е. происходит усиление тока, а напряжение не усиливается. На рисунке представлена реальная схема компенсационного стабилизатора на TL431, в ней появились новые компоненты: резистор R2 ограничивающий ток базы VT1 (например 330 Ом), резистор R3 – компенсирующий обратный ток коллектора VT2 (что особенно актуально при нагреве VT2) (например 4,7 кОм) и конденсатор C1 – повышающий устойчивость работы стабилизатора на высоких частотах (например 0,01 мкФ).
Реле времени
TL431 нашел свое применение не только как источник опорного напряжения, а и во многих других применениях. Например благодаря тому что входной ток TL431 составляет 2-4мкА, то на основе этой микросхемы можно построить реле времени: при размыкании контакта S1 C1 начинает медленно заряжаться через R1, а когда напряжение на входе TL431 достигнет 2,5 В выходной транзистор DA1 откроется и через светодиод оптопары PC817 начнет протекать ток, соответственно откроется и фототранзистор и замкнет внешнюю цепь. В этой схеме резистор R2 ограничивает ток через оптрон и стабилизатор (например 680 Ом), R3 нужен чтобы предупредить зажигание светодиода от тока собственных нужд TL431 (например 2 кОм).
Простое зарядное устройство для литиевого аккумулятора.
Главное отличие зарядного устройства от блока питания – четкое ограничение зарядного тока. Следующая схема имеет два режима ограничения:
Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается. На следующей схеме ограничение тока осуществляют транзисторы VT1, VT2 и резисторы R1-R3. Резистор R1 выполняет функцию шунта, когда напряжение на нем превышает 0,6 В (порог открывания VT1), транзистор VT1 открывается и закрывает транзистор VT2. Из-за этого падает напряжение на базе VT3 он начинает закрываться и следовательно снижается выходное напряжение, а это ведет к снижению выходного тока. Таким образом работает обратная связь по току и его стабилизация. Когда напряжение подбирается к уровню 4,2 В в работу начинает вступать DA1 и ограничивать напряжение на выходе зарядного устройства.
Читать также: Индукция и индуктивность в чем разница
А теперь список номиналов компонентов схемы:
- DA1 – TL431C;
- R1 – 2,2 Ом;
- R2 – 470 Ом;
- R3 – 100 кОм;
- R4 – 15 кОм;
- R5 – 22 кОм;
- R6 – 680 Ом (нужен для подстройки выходного напряжения);
- VT1, VT2 – BC857B;
- VT3 – BCP68-25;
- VT4 – BSS138.
21 thoughts on “ TL431 схема включения, TL431 цоколевка ”
К1242ЕР1АП производства «Интеграл» Минск
Я бы не называл малоточность TL431 ее недостатком, это ведь не стабилизатор, как таковой, а источник опорного напряжения для него. Применяя различную периферию можно решать различные задачи по мощности, точности, надежности и т.д. Вот, внешние цепи могут быть любыми, а управляются одним и тем же устройством — TL431. Что и делает ее такой распространенной и востребованной. Понравилась схема зарядки, где необходима регулировка и по току и по напряжению, применены и биполярный и униполярный транзисторы — каждый в своем режиме.
Да, конденсатор между анодом и катодом этого «стабилитрона» ставить не следует ни в коем случае. Я так столкнулся с самовозбуждением схемы стабилизатора напряжения, когда по неопытности решил, что с конденсатором на выходе источника опорного напряжения на TL431 схема будет работать стабильнее. Поставил конденсатор на 10 нФ, и схема «завелась», выдавая на выходе «кашу» из импульсов вместо постоянного напряжения. Что неудивительно, для операционного усилителя входящего в состав TL431 такой параметр как максимальная емкость нагрузки нужно учитывать как и для всякого другого ОУ.
Уже писал выше, что использовать источник прецизионного опорного напряжения в виде стабилизатора странно. Еще более странно, какой стабильности можно добиться емкостью в десяток нан. Стабильности задаваемого напряжения, шунтируя и устраивая паразитную ОС? Или выходного? Конечно возбудится.
А что там было о источнике опорного в виде стабилизатора? Опорное в стабилизаторе применялось в своем прямом назначении, в качестве опорного, с которым сравнивалось выходное