Каждый радиолюбитель не раз встречался с микросхемой NE555. Этот маленький восьминогий таймер завоевал колоссальную популярность за функциональность, практичность и простоту использования. На 555 таймере можно собрать схемы самого различного уровня сложности: от простого триггера Шмитта, с обвеской всего в пару элементов, до многоступенчатого кодового замка с применением большого количества дополнительных компонентов.
В данной статье детально ознакомимся с микросхемой NE555, которая, несмотря на свой солидный возраст, по-прежнему остается востребована. Стоит отметить, что в первую очередь данная востребованность обусловлена применением ИМС в схемотехнике с использованием светодиодов.
Описание и область применения
Расшивка NE555 или обозначение клемм не меняется 50 лет. Классика схем в пластиковом корпусе DIP-8 оформлена монтажом SOP-8 и SOIC-8. Низкая цена и доступность схемы, простота реализации и функциональные возможности позволяют создавать сложные электронные схемы. Без глубоких знаний NE555 делается игрушкой или металлоискателем пират. Всё зависит от желания радиолюбителя, что он хочет получить от продукта.
Структурная интегральная схема внутри чипа
Итак, процесс создания интегральной схемы начинается от монокристалла кремния, напоминающего по форме длинную сплошную трубу, «нарезанную» тонкими дисками — пластинами. Такие пластины размечаются на множество одинаковых квадратных или прямоугольных областей, каждая из которых представляет один кремниевый чип (микрочип). Пример внутренней структуры интегральной схемы, демонстрирующий возможности такой уникальной технологии интеграции полноценных электронных схемотехнических решений.
Затем на каждом таком чипе создаются тысячи, миллионы или даже миллиарды компонентов путём легирования различных участков поверхности — превращения в кремний N-типа или P-типа. Легирование осуществляется различными способами. Один из вариантов — распыление, когда ионами легирующего материала «бомбардируют» кремниевую пластину.
Другой вариант — осаждение из паровой фазы, включающий введение легирующего материала газовой фазой с последующей конденсацией. В результате такого ввода примесные атомы образуют тонкую пленку на поверхности кремниевой пластины. Самым точным вариантом осаждения считается молекулярно-лучевая эпитаксия.
Конечно, создание интегральных микросхем, когда упаковываются сотни, миллионы или миллиарды компонентов в кремниевый чип размером с ноготь, видится сложнейшим процессом. Можно представить, какой хаос принесёт даже небольшая крупинка в условиях работы в микроскопическом (наноскопическом) масштабе. Вот почему полупроводники производятся в лабораторных условиях безупречно чистых. Воздух лабораторных помещений тщательно фильтруется, а рабочие обязательно проходят защитные шлюзы и облачаются в защитную одежду.
Кто создал интегральную схему?
Разработка интегральной схемы приписывается двум физикам — Джеку Килби и Роберту Нойсу, как совместное изобретение. Однако фактически Килби и Нойс вынашивали идею интегральной схемы независимо друг от друга. Между учёными даже существовала своего рода конкуренция за права на изобретение.
Джек Килби трудился в «Texas Instruments», когда учёному удалось реализовать идею монолитного принципа размещения различных частей электронной схемы на кремниевом чипе. Учёный вручную создал первую в мире интегральную микросхему (1958 год), использовав чип на основе германия. спустя год подала заявку на патент.
Тем временем представитель другой — Роберт Нойс, проводил эксперименты с миниатюрными цепями своего устройства. Благодаря серии фотографических и химических методов (планарный процесс), учёный всего лишь на год позже Килби создал практичную интегральную схему. Методика получения также была оформлена заявкой на патент.
Микросхемы на плате
Основные параметры ИМС серии 555
Изделие работает исправно, когда выдерживаются электрические характеристики по входу и выходу сигнала. Примеры параметров сведены в стандартный ряд, где крайние значения показывают диапазон и допуски:
- Уровень напряжения на выводе (В) THRES (VCC15) – 8.8–11.2.
- Тоже при VCC (5В) – 2.4–4.2.
- Ток на выводе THRES (А) – 30 х 10-9и 250х10-9.
- Потенциал на выводе TRIG (В) при VCC15В – 4.5-5.6; VCC 5В 1.1–2.2.
- Остальные параметры работы на картинке 2.
Перейдем от теории к практике
Биполярные транзисторы: схемы включения. схема включения биполярного транзистора с общим эмиттером
Собирал генератор Тесла в корпус от АТХ. Конденсатор по питанию 1000 мкф 400в. Диодный мост из того же АТХ на 8А 600В. Перед мостом поставил резистор 10 Вт 4,7 Ом. Это обеспечивает плавный заряд конденсатора. Для питания драйвера поставил трансформатор 220-12В и еще стабилизатор с конденсатором 1800 мкФ.
Диодные мосты прикрутил на радиатор для удобства и для отвода тепла, хотя они почти не греются.
Прерыватель собрал почти навесом, взял кусок текстолита и канцелярским ножом вырезал дорожки.
Силовая была собрана на небольшом радиаторе с вентилятором, позже выяснилось, что этого радиатора вполне достаточно для охлаждения. Драйвер смонтировал над силовой через толстый кусок картона. Ниже фото почти собранной конструкции генератора Тесла, но находящейся на проверке, измерял температуру силовой при различных режимах (видно обычный комнатный термометр, прилепленный к силовой на термопласту).
Тороид катушки собран из гофрированной пластиковой трубы диаметром 50 мм и обклеенным алюминиевым скотчем. Сама вторичная обмотка намотана на 110 мм трубе высотой 20 см проводом 0,22 мм около 1000 витков. Первичная обмотка содержит аж 12 витков, сделал с запасом, дабы уменьшить ток через силовую часть. Делал с 6 витками в начале, результат почти одинаков, но думаю не стОит рисковать транзисторами ради пары лишних сантиметров разряда. Каркасом первички служит обычный цветочный горшок. С начала думал что не будет пробивать если вторичку обмотать скотчем, а первичку поверх скотча. Но увы, пробивало. В горшке конечно тоже пробивало, но здесь скотч помог решить проблему. В общем готовая конструкция выглядит так:
Ну и несколько фоток с разрядом
Теперь вроде бы все.
Расположение и назначение выводов
Расположение выводов обозначает по клеммам:
- GND – (земля, минус).
- Trigger – (открытие).
- Output – (выходной сигнал).
- Reset – (сброс параметров).
- Control Voltage – (контроль).
- Threshold – (остановка).
- Dischage – (разряд).
- Vcc – (плюс, источника питания).
Первая метка маркируется круглым углублением или выпуклостью на корпусе.
Схема импульсного источника питания двухполярного напряжения
Он собран на одной микросхеме NE555 (рис.1), которая служит задающим генератором прямоугольных импульсов. Генератор собран по классической схеме. Частота следования выходных импульсов генератора 6,474…6,37 кГц. Она изменяется в зависимости от напряжения питания, которое может быть 3,6 В (3 аккумулятора в кассете питания) и 4,8 В (при 4 аккумуляторах в кассете). В схеме импульсного источника питания были использованы аккумуляторы ENERGIZER типоразмера АА емкостью 2500 мА-ч. Прямоугольные импульсы с выхода 3 МС 555 через ограничивающий резистор R5 подаются на базу транзисторного ключа VT1, нагрузкой которого является дроссель L1 индуктивностью 3 мГн. При резком запирании этого транзистора в дросселе L1 наводится большая ЭДС самоиндукции. Полученные таким образом высоковольтные импульсы поступают на два параллельных выпрямителя с удвоением напряжения, на выходах которых будут два разнополярных напряжения ±4,5…15 В.
Эти напряжения можно регулировать, изменяя скважность выходных импульсов с помощью потенциометра R1. Постоянное напряжение с движка R1 попадает на вывод 5 МС555 и меняет скважность, а следовательно, и выходные напряжение обоих выпрямителей. Выходные напряжения этого источника будут идеально равны только в том случае, когда скважность импульсов генератора будет равна 2 (длительность импульсов равна паузе между ними)
При другой скважности импульсов выходные напряжения источника в точках А и Б будут несколько разниться (до 1…2 В). Столь небольшая разница обеспечивается применением в схеме импульсного источника питания выпрямителей удвоения, конденсаторы которых заряжаются как положительными, так и отрицательными импульсами. Этот недостаток компенсируется простотой и дешевизной схемы.
В этой схеме импульсного источника питания можно использовать дроссели от электронных балластов негодных экономичных ламп дневного света. Разбирая эти лампы, старайтесь не повредить спиральные или U-образные стеклянные трубки, так как они содержат ртуть. Делать это лучше на открытом воздухе. На некоторых дросселях, особенно импортных, нанесена величина индуктивности в мГн (2.8, 2.2, 3.0, 3,6 и т.д.). Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.1 приведены в табл.1.
Режимы работы
Вход (2) получает и обрабатывает одиночного цикла импульсы. При переключении микросхемы на выходе (3) появляется высокий уровень сигнала. Продолжительность импульсов (сек) доходит до: t=1,1*R*C. При прохождении временно́го отрезка (t) на выходе формируются сигналы низкого уровня. Выводы 4 и 8 целесообразно объединять.
Одновибратор
МК NE555 показан на картинке, он выдаёт на выходе OUT напряжение, равное потенциалу ИП минус 1.7 Вольта. Например, 5-1.7=3.3В минимум. 15-1.7=13.3 максимум. Это происходит в отрезок времени, до поры пока вход IN находится замкнутым на «0» (землю).
Важно! Радиолюбители учитывают, R1 подбирают на 10 кОм – 15 МОм (реже 300 кОм), второй аспект С1 — 95 пФ. В этом случае схема задержки 1,1 сек.
Мультивибратор
В режиме мультивибратора наша микросхема выдаёт прямоугольные сигналы с заданной частотой. Периодичность каждому импульсу определяет значение времязадающей RC-цепочки. С добавлением 1 сопротивления, контакт 7 (разряда) соединить между резисторами Ra и Rb, логически отключает внутри универсальный таймер.
Важно! Частоту нельзя держать выше 360 кГц это сразу же приведёт к повреждению устройства.
Прецизионный триггер Шмидта с rs триггером
Высокой точности уровень срабатывания достигают, когда выполняют триггер ШМИТТА на базе КОМПАРАТОРА с аналоговым коммутатором. Выходное напряжение «Ue» держат таким, чтобы оно не превышало наименьших значений:
\[ Ue вкл. = (R1/R2) * Ua min \]
Правило обязательно для запуска и позволяет эффективно и надёжно функционировать сборке по варианту прецизионного триггера ШМИТТА.
Триггер представляет собой радиоэлектронный элемент, он находится в 2 состояниях. Переход от 1 до 2 состояние выполняется при изменении входных сигналов. Триггеры используют для счётчиков импульсов, делителей частоты, прочих сборок. Начальное положение происходит посредством 3 выводов, управление. Вход Е (вывод таймера 4) важен, имеет первостепенное значение. Используют для приостановки работы, сброса значений RS-триггера.
Таблица истинности RS триггера.
R | S | Q(t) | Q(t+1) | Пояснения |
0 | 0 | 0 | 0 | Режим хранения информации R=S=0 |
0 | 0 | 1 | 1 | |
0 | 1 | 0 | 1 | Режим установки единицы S=1 |
0 | 1 | 1 | 1 | |
1 | 0 | 0 | 0 | Режим записи нуля R=1 |
1 | 0 | 1 | 0 | |
1 | 1 | 0 | * | R=S=1 запрещенная комбинация |
1 | 1 | 1 | * |
Реле времени на 555 таймере своими руками
31.08.2012 Электронная техника
В видеоуроке канала «самоделки и Обзоры посылок от jakson» будем собирать схему реле времени на базе микросхемы таймера на NE555. Весьма несложная — мало подробностей, что будет очень просто спаять все собственными руками. Наряду с этим многим она будет нужна.
Радиодетали для реле времени
Пригодится сама микросхема , два несложных резистора ( один переменный, один полярный), конденсатор на 3 микрофарада, неполярный конденсатор на 0,01 мкф, транзистор КТ315, диод практически любой, одно реле. Напряжение питания устройства будет от 9 до 14 вольт. Приобрести радиодетали либо готовое собранное реле времени возможно в этом китайском магазине.
Плагин на Google Хром для экономии в нём: 7 процентов с приобретений возвращается вам.
Схема весьма несложная.
Схема реле времени на 555 таймере
Любой ее сможет осилить, при наличии нужных подробностей. Сборка на печатной макетной плате, что окажется все компактно. В итоге часть платы нужно будет отломать. Пригодится несложная кнопка без фиксатора, она будет активировать реле.
Кроме этого два переменных резистора, вместо одного, что требуется в схеме, потому, что у мастера нет нужного номинала.
2 мегаома. Последовательно два резистора по 1 мегаому. Кроме этого реле, напряжение питания 12 вольт постоянного тока, пропустить через себя может 250 вольт, 10 ампер переменного.
По окончании сборки в итоге так выглядит реле времени на базе 555 таймера.
Все оказалось компактно. Единственное, что визуально портит вид, диод, потому, что имеет такую форму, что его нереально впаять в противном случае, потому, что у него ножки намного шире, чем отверстия в плате. Все равно оказалось достаточно хорошо.
Проверка устройства на 555 таймере
Удостоверимся в надежности отечественное реле. Индикатором работы будет светодиодная лента. Так же подсоединим мультиметр. Удостоверимся в надежности — нажимаем на кнопку, загорелась светодиодная лента. Напряжение, которое подается на реле — 12,5 вольт. Напряжение на данный момент по нулям, но из-за чего то горят светодиоды — наверняка неисправность реле.
Оно старое, выпаяно из ненужной платы.
При трансформации положения подстроечных резисторов мы можем регулировать время работы реле. Измерим большое и минимальное время. Оно практически сразу же выключается. И большое время.
Прошло около 2-3 мин. — вы сами видите.
Но такие показатели лишь в представленном случае. У вас они смогут быть другие, потому, что зависит от переменного резистора, что вы станете применять и от емкости электроконденсатора. Чем больше емкость — тем продолжительнее будет трудиться ваше реле времени.
Аналоги
С 1975 аналогом создавался продукт серии КР1006ВИ1. Выпуск конструкции продолжают Рижский (Латвийская Республика). Сохранено также с постсоветского периода (СССР) производство Беларусью. Их производство «Интеграл» продолжает выпускать изделия, только маркировку делает отличительной, серией IN555.
Обратите внимание! Изделие КР1006ВИ1 на русском языке целиком повторяет англоязычные варианты исполнения (datasheet 555).
Производители
Рассмотренный универсальный таймер, созданный американской компанией Signeticsв далеком 1971 г., до сих пор продолжают выпускать почти все известными мировые брэнды полупроводниковой промышленности. При этом маркировка её полных аналогов у различных компании может отличатся от оригинала, несмотря на полную функциональную и физическую идентичность. Например судя по datasheet NE555 P (она же LM555P) и NE555N являются одним и тем же устройством двух конкурентов: Texas Instruments и STMicroelectronics соответственно. NE555L является продуктом китайской Unisonic Technologies Co (UTC). Японская Motorolа когда то делала CMOS-версии с обозначением MC1455. В настоящее время продолжается процесс её совершенствования и модернизации под современные требования.
Наиболее популярные схемы на основе ne555
Габариты разнотипных оформлений корпусов, и числом клемм 8 всего 4 варианта (размеры показаны в мм):
- PDIP (9.81 – 6.35).
- SOP (6.20 – 5.30).
- TSSOP (3.00 – 4.40).
- SOIC (4.90 – 3.91).
Интересная конструкция получится при сборке металлического детектора на 1 МК IN 555. Понадобится малое число радиодеталей. Диаметр катушки не больше 70–90 мм по 250–290 витков провода. Делают лаковую изоляцию обмотки (ПЭЛ, ПЭВ), диаметром меди 0,4 мм. Взамен динамика подходят наушники, пьезо-элемент излучатель. Схема на картинке.
Мигание светодиодом на мультивибраторе
Схем мультивибраторов не один десяток, потому на скриншоте представлен 1 простой вариант. Этот показывает сборку нестабильного симметричного мультивибратора. Обычно это делают радиолюбители так. МИГАЛКА – её распаивают из самых, что ни есть подручных радиодеталей. Что находят в наличии, то и используют в сборке.
Реле времени
Схема реле времени простая. Классический вариант доступен повторению домашним специалистом.
Запускают устройство тумблером SB1. За длительность сигнала отвечает резистор R2. Среднее время срабатывания достигает 6 сек. Чтобы увеличить время, на R2 повышают ёмкость. Делают это конденсатором C1, подбором параметра. Что надо. Обычный электролитический конденсатор применяют 1600 мкФ.
Расчёт такой: T=C1*R2, где C1 ёмкость 1600 и R2 среднее сопротивление мегом.
Музыкальная клавиатура
Самое простое решение собрать детский орга́н. Игрушка понравится детям и взрослым. Причём для этого делается несложная сборка и пайка.
Таймер
Схема несложная, на эскизе. Правильная сборка не требует никакой настройки.
Важно! Присоединение выводом 2 с 4, не включает устройство, по указанной схеме меняют клемму 2 с контактом 6.
Имитатор сигнализации автомобиля
Устройство сигнализатора работает как обманка (просто мигает лампочка с частотой схожей с настоящей сигнализацией). На питание понадобится 12 В. На схеме указан переключатель режимов, в первом светодиод просто светит, в другом — мигает. Очень простая схема, идеально подходит для начинающих радиолюбителей.
Простой имитатор полицейской сирены
Тональность сирены меняет потенциометр на резисторе 100 кОМ между выводами 6 и 7. Номиналы остальных деталей показаны на эскизе. Управление устройством изменяют напряжением на выводе 2 (от 2.5 до 5В). Проверяют работоспособность подключением к вольтметру или осциллографу. Осциллограммы плавно стремятся и вверх, и вниз. На транзисторе кт361 собран аналог буферного каскада между 2 таймерами.
Звуковой генератор уровня жидкости
Более понятно увидеть изобретение уровня жидкости на ролике. Слабое место плюсовой электрод, он начинает быстро растворяться (эффект электролиза). Графитовые или из нержавейки продлевает жизнь конструкции.
Сигнализатор темноты
Реализация сборки выполнена на скриншоте. Схема сигнализатора темноты издаёт звуковой сигнал с наступлением темноты. Начало фоторезистора задаёт темнота. Фотореле не освещено, когда на выводе №4 стоит низкий уровень напряжения. Таймер выведен в режим сброса. Освещения нет – сопротивление на фоторезисторе растёт, на выводе №4 возникает высокий уровень, что таймер запускает. На запуске таймер издаёт сигнал.
пятница, 3 января 2014 г.
Реле времени своими руками 2 (на 555).
Для расчёта задержки можно воспользоваться программой:
Усовершенствованная помехоустойчивая схема без транзистора:
Подробнее про усовершенствованную схему можно прочитать на странице https://electe.blogspot.ru/2016/03/555.html».
Пределы допустимых значений
Есть ряд типовых максимальных эксплуатационных характеристик NE555. Они встречаются в самых распространенных модификациях этой микросхемы. Их различия зависят лишь от компании-производителя, но, как правило, одинаковы в большинстве технических описаний:
Напряжение источника энергии — от 4,5 до 18 Вольт.
Рассеиваемая мощность — 600 микроВатт.
Ток на выходе — 200 миллиАмпер.
Рабочая частота — 500 килоГерц.
Температура для работы — от 0 до 70 градусов, для хранения — от -65 до 150 градусов.
Если превышать указанные параметры, устройство может выйти из строя.