Транзисторные ключи: схема, принцип работы и особенности

Ключевой режим

работы транзистора, наверное, один из самых простых (с точки зрения поддержания параметров) и в тоже время очень часто встречающихся из режимов работы транзистора. По своей сути транзистор большую часть времени находится лишь в двух состояниях: отсечки и насыщения.Ниже показана схема включения транзистора

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.


Использование транзистора в ключевом режиме

но прежде чем начинать описывать работу этой схемы, необходимо задекларировать несколько простых правил, при которых транзистор работает

. Правила приведены для
транзистора p-n-p-типа
, но и для транзистора n-p-n-типа они сохраняются, но с учётом того, что
полярность
напряжения должна быть
изменена
на противоположную:

Что такое электронный ключ?

Ключ – это, если упростить, обыкновенный выключатель. С его помощью замыкается и размыкается электрическая цепь. У биполярного транзистора имеется три вывода:

  1. Коллектор.
  2. Эмиттер.
  3. База.

На биполярных полупроводниках строятся электронные ключи – конструкция простая, не требует наличия большого количества элементов. При помощи переключателя осуществляется замыкание и размыкание участка цепи. Происходит это с помощью сигнала управления (который вырабатывает микроконтроллер), подаваемого на базу транзистора.

Коммутация нагрузки

Простыми схемами на транзисторных ключах можно производить коммутацию токов в интервале 0,15… 14 А, напряжений 50… 500 В. Все зависит от конкретного типа транзистора. Ключ может производить коммутацию нагрузки 5-7 кВт при помощи управляющего сигнала, мощность которого не превышает сотни милливатт.

Можно применять вместо транзисторных ключей простые электромагнитные реле. У них имеется достоинство – при работе не происходит нагрев. Но вот частота циклов включения и отключения ограничена, поэтому использовать в инверторах или импульсных блоках питания для создания синусоиды их нельзя. Но в общем принцип действия ключа на полупроводниковом транзисторе и электромагнитного реле одинаков.

Электромагнитное реле

Реле – это электромагнит, которым производится управление группой контактов. Можно провести аналогию с обычным кнопочным выключателем. Только в случае с реле усилие берется не от руки, а от магнитного поля, которое находится вокруг катушки возбуждения. Контактами можно коммутировать очень большую нагрузку – все зависит от типа электромагнитного реле. Очень большое распространение эти устройства получили в автомобильной технике – с их помощью производится включение всех мощных потребителей электроэнергии.

Это позволяет разделить все электрооборудование автомобиля на силовую часть и управляющую. Ток потребления у обмотки возбуждения реле очень маленький. А силовые контакты имеют напыление из драгоценных или полудрагоценных металлов, что исключает вероятность появления дуги. Схемы транзисторных ключей на 12 вольт можно применять вместо реле. При этом улучшается функциональность устройства – включение бесшумное, контакты не щелкают.

Пример работы

Давайте рассмотрим более детально, как функционирует простой транзисторный ключ. Коммутируемый сигнал передаётся с одного входа и снимается с другого выхода. Чтобы запереть ключ, на затвор транзистора используют подачу напряжения, которое превышает значения истока и стока на величину, большую в 2-3 В. Но при этом следует соблюдать осторожность и не выходить за пределы допустимого диапазона. Когда ключ закрыт, то его сопротивление относительно большое – превышает 10 Ом. Такое значение получается благодаря тому, что дополнительно влияет ещё и ток обратного смещения p-n перехода. В этом же состоянии емкость между цепью переключаемого сигнала и управляющим электродом колеблется в диапазоне 3-30 пФ. А теперь откроем транзисторный ключ. Схема и практика покажут, что тогда напряжение управляющего электрода будет близиться к нулю, и сильно зависит от сопротивления нагрузки и коммутируемой характеристики напряжения. Это обусловлено целой системой взаимодействий затвора, стока и истока транзистора. Это создаёт определённые проблемы для работы в режиме прерывателя.

В качестве решения данной проблемы были разработаны различные схемы, которые обеспечивают стабилизацию напряжения, что протекает между каналом и затвором. Причем благодаря физическим свойствам в таком качестве может использоваться даже диод. Для этого его следует включить в прямое направление запирающего напряжения. Если будет создаваться необходимая ситуация, то диод закроется, а р-n-переход откроется. Чтобы при изменении коммутируемого напряжения он оставался открытым, и сопротивление его канала не менялось, между истоком и входом ключа можно включить высокоомный резистор. А наличие конденсатора значительно ускорит процесс перезарядки емкостей.

Выводы электромагнитного реле

Обычно в электромагнитных реле имеется 5 выводов:

  1. Два контакта, предназначенных для управления. К ним подключается обмотка возбуждения.
  2. Три контакта, предназначенных для коммутации. Один общий контакт, который нормально замкнут и нормально разомкнут с остальными.

В зависимости от того, какая схема коммутации применяется, используются группы контактов. Полевой транзисторный ключ имеет 3-4 контакта, но функционирование происходит таким же примерно образом.

Как работает электромагнитное реле

Принцип работы электромагнитного реле довольно простой:

  1. Обмотка через кнопку соединяется с питанием.
  2. В разрыв цепи питания потребителя включаются силовые контакты реле.
  3. При нажатии на кнопку подается питание на обмотку, происходит притягивание пластины и замыкание группы контактов.
  4. Подается ток на потребителя.

Примерно по такой же схеме транзисторные ключи работают – нет только группы контактов. Их функции выполняет кристалл полупроводника.

Проводимость транзисторов

Один из режимов работы транзистора – ключевой. По сути, он выполняет функции выключателя. Затрагивать схемы усилительных каскадов нет смысла, они не относятся к этому режиму работы. Полупроводниковые триоды применяются во всех типах устройств – в автомобильной технике, в быту, в промышленности. Все биполярные транзисторы могут иметь такой тип проводимости:

  1. P-N-P.
  2. N-P-N.

К первому типу относятся полупроводники, изготовленные на основе германия. Эти элементы получили широкое распространение более полувека назад. Чуть позже в качестве активного элемента начали использовать кремний, у которого проводимость обратная – n-p-n.

Принцип работы у приборов одинаков, отличаются они только лишь полярностью питающего напряжения, а также отдельными параметрами. Популярность у кремниевых полупроводников на данный момент выше, они почти полностью вытеснили германиевые. И большая часть устройств, включая транзисторные ключи, изготавливаются на биполярных кремниевых элементах с проводимостью n-p-n.

Расчет ключа на транзистор

Добавим в схему полезную нагрузку в виде светодиода. Резистор R_к при этом остается на месте, он будет ограничивать ток через нагрузку и обеспечивать необходимый режим работы:

Пусть для включения светодиода нужно подать на него напряжение 3В (U_д). При этом диод будет потреблять ток равный 50 мА (I_д). Зададим параметры транзистора (в реальных схемах эти значения берутся из документации на используемый транзистор):

  • Коэффициент усиления по току h_{21э} = 100…500 (всегда задан именно диапазон, а не конкретное значение)
  • Падение напряжения на переходе база-эмиттер, необходимое для открытия этого перехода: U_{бэ} = 0.6 medspace В.
  • Напряжение насыщения: U_{кэ medspace нас} = 0.1 medspace В.

Мы берем конкретные значения для расчетов, но на практике все бывает несколько иначе. Как вы помните, параметры транзисторов зависят от многих факторов, в частности, от режима работы, а также от температуры. А температура окружающей среды, естественно, может меняться. Определить четкие значения из характеристик при этом бывает не так просто, поэтому нужно стараться обеспечить небольшой запас. К примеру, коэффициент усиления по току при расчете лучше принять равным минимальному из значений, приведенных в даташите. Ведь если коэффициент в реальности будет больше, то это не нарушит работоспособности схемы, конечно, при этом КПД будет ниже, но тем не менее схема будет работать. А если взять максимальное значение h_{21э}, то при определенных условиях может оказаться, что реальное значение оказалось меньше, и его уже недостаточно для обеспечения требуемого режима работы транзистора.

Итак, возвращаемся к примеру Входными данными для расчета кроме прочего являются напряжения источников. В данном случае:

  • E_{вх} = 3.3medspace В. Я выбрал типичное значение, которое встречается на практике при разработке схем на микроконтроллерах. В этом примере подача и отключение этого напряжения осуществляется переключателем S_1.
  • E_{вых} = 9medspace В.

Первым делом нам необходимо рассчитать сопротивление резистора в цепи коллектора. Напряжения и ток выходной цепи во включенном состоянии связаны следующим образом:

U_{кэ medspace нас} + U_{R_к} + U_д = E_{вых}

При этом по закону Ома:

U_{R_к} = I_к R_к

А ток у нас задан, поскольку мы знаем, какой ток потребляет нагрузка (в данном случае диод) во включенном состоянии. Тогда:

U_{R_к} = I_д R_кU_{кэ medspace нас} + I_д R_к + U_д = E_{вых}

Итак, в этой формуле нам известно все, кроме сопротивления, которое и требуется определить:

R_к = frac{E_{вых} medspace — medspace U_д medspace — medspace U_{кэ medspace нас}}{I_д} enspace= frac{9 medspace В medspace — medspace 3 medspace В medspace — medspace 0.1 medspace В}{0.05 medspace А} medspaceapprox 118 medspace Ом.

Будет интересно➡ PNP-транзистор

Выбираем доступное значение сопротивления из стандартного ряда номиналов и получаем R_{к} = 120medspace Ом. Причем важно выбирать именно бОльшее значение. Связано это с тем, что если мы берем значение чуть больше рассчитанного, то ток через нагрузку будет немного меньше. Это не приведет ни к каким сбоям в работе. Если же взять мЕньшее значение сопротивления, то это приведет к тому, что ток и напряжение на нагрузке будут превышать заданные, что уже хуже

Пересчитаем величину коллекторного тока для выбранного значения сопротивления:

I_к = frac{U_{R_к}}{R_к} medspace = frac{9 medspace В medspace — medspace 3 medspace В medspace — medspace 0.1 medspace В}{120 medspace Ом} medspaceapproxmedspace 49.17 medspace мА

Пришло время определить ток базы, для этого используем минимальное значение коэффициента усиления:

I_б = frac{I_к}{h_{21э}} = frac{49.17 medspace мА}{100} = 491.7 medspace мкА

А падение напряжения на резисторе R_б:

U_{R_б} = E_{вх} medspace — medspace 0.6 medspace В = 3.3 medspace В medspace — medspace 0.6 medspace В = 2.7 medspace В

Теперь мы можем легко определить величину сопротивления:

R_б = frac{U_{R_б}}{I_б}medspace = frac{2.7 medspace В}{491.7 medspace мкА} approx 5.49 medspace КОм

Опять обращаемся к ряду допустимых номиналов. Но теперь нам нужно выбрать значение, мЕньшее рассчитанного. Если сопротивление резистора будет больше расчетного, то ток базы будет, напротив, меньше. А это может привести к тому, что транзистор откроется не до конца, и во включенном состоянии бОльшая часть напряжения упадет на транзисторе (U_{кэ}), что, конечно, нежелательно.

Поэтому выбираем для резистора базы значение 5.1 КОм. И этот этап расчета был последним! Давайте резюмируем, наши рассчитанные номиналы составили:

  • R_{б} = 5.1medspace КОм
  • R_{к} = 120medspace Ом

Кстати в схеме ключа на транзисторе обычно добавляют резистор между базой и эмиттером, номиналом, например, 10 КОм. Он нужен для подтяжки базы при отсутствии сигнала на входе. В нашем примере, когда S1 разомкнут, то вход просто висит в воздухе. И под воздействием наводок транзистор будет хаотично открываться и закрываться. Поэтому и добавляется резистор подтяжки, чтобы при отсутствии входного сигнала потенциал базы был равен потенциалу эмиттеру. В этом случае транзистор будет гарантированно закрыт.

Сегодня мы прошлись по классической схеме, которой я стараюсь придерживаться, то есть — от теории к практике Надеюсь, что материал будет полезен, а если возникнут какие-либо вопросы, пишите в комментарии, я буду рад помочь!

Транзистор в режиме ключа

Транзистор в режиме ключа выполняет те же функции, что и электромагнитное реле или выключатель. Ток управления протекает следующим образом:

  1. От микроконтроллера через переход «база — эмиттер».
  2. При этом канал «коллектор — эмиттер» открывается.
  3. Через канал «коллектор — эмиттер» можно пропустить ток, величина которого в сотни раз больше, нежели базового.

Особенность транзисторных переключателей в том, что частота коммутации намного выше, нежели у реле. Кристалл полупроводника способен за одну секунду совершить тысячи переходов из открытого состояния в закрытое и обратно. Так, скорость переключения у самых простых биполярных транзисторов — около 1 млн раз в секунду. По этой причине транзисторы используют в инверторах для создания синусоиды.

Подведем итоги:

  • Посмотрите на рисунок ниже.
  • Выберите схему смещения.
  • Выберите RК и IЭ для вашего приложения. Значения RК и IЭ обычно должны устанавливать напряжение коллектора VК на 1/2 от Vпит.
  • Рассчитайте резистор базы RБ, чтобы получить необходимый ток эмиттера.
  • Если необходимо, пересчитайте ток эмиттер IЭ для стандартных номиналов резисторов.
  • Для схемы смещения с делителем напряжения выполните сначала расчет смещения эмиттера, а затем определите R1 и R2.
  • Для усилителей переменного тока: конденсатор обхода, параллельный RЭ, улучшает усиление по переменному напряжению. Выберите XC≤0,10RЭ для самой низкой частоты.


Формулы расчета смещения (вкратце)
Оригинал статьи:

  • Biasing Calculations

Принцип работы транзистора

Элемент работает точно так же, как и в режиме усилителя мощности. По сути, к входу подается небольшой ток управления, который усиливается в несколько сотен раз за счет того, что изменяется сопротивление между эмиттером и коллектором. Причем это сопротивление зависит от величины тока, протекающего между эмиттером и базой.

В зависимости от типа транзистора меняется цоколевка. Поэтому, если вам нужно определить выводы элемента, нужно обратиться к справочнику или даташиту. Если нет возможности обратиться к литературе, можно воспользоваться справочниками для определения выводов. Еще есть особенность у транзисторов – они могут не полностью открываться. Реле, например, могут находиться в двух состояниях – замкнутом и разомкнутом. А вот у транзистора сопротивление канала «эмиттер — коллектор» может меняться в больших пределах.

Биполярные транзисторы. For dummies

Предисловие

Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах. Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.
Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Транзистор
— электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом.
(tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.
Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и

электроны,
и
дырки («бис» — дважды). А в полевом (он же униполярный) —
или
электроны,
или
дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

И, напоследок: основная область применения любых транзисторов

— усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики

Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.
Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.


Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора

), а между эмиттером и базой — слабый управляющий ток (
ток базы
). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему? Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо

льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом,
произойдет усиление слабого сигнала, поступившего на базу
. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току

и является одним из основных параметров транзистора. Обозначается оно
h21
. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст
статический коэффициент усиления по току
. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора

. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора — коэффициент усиления по напряжению

. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику

, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется
граничной
.

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.

  1. Инверсный активный режим
    . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения
    . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки
    . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим
    В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.
Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.
В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.
Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов. Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада. Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.
Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

Маркировка

Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): https://kazus.ru/guide/transistors/mark_all.html и файл .xls (35 кб) .
Список источников:

https://ru.wikipedia.org https://www.physics.ru https://radiocon-net.narod.ru https://radio.cybernet.name https://dvo.sut.ru

Полезные комментарии:

https://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

Пример работы транзистора в режиме ключа

Коэффициент усиления – это одна из основных характеристик транзистора. Именно этот параметр показывает, во сколько раз ток, протекающий по каналу «эмиттер — коллектор», выше базового. Допустим, коэффициент равен 100 (обозначается этот параметр h21Э). Значит, если в цепь управления подается ток 1 мА (ток базы), то на переходе «коллектор — эмиттер» он будет 100 мА. Следовательно, произошло усиление входящего тока (сигнала).

При работе транзистор нагревается, поэтому он нуждается в пассивном или активном охлаждении – радиаторах и кулерах. Но нагрев происходит только в том случае, когда проход «коллектор — эмиттер» открывается не полностью. В этом случае большая мощность рассеивается – ее нужно куда-то девать, приходится «жертвовать» КПД и выпускать ее в виде тепла. Нагрев будет минимальным только в тех случаях, когда транзистор закрыт или открыт полностью.

Схема смещения с фиксированным током базы

В простейшей схеме смещения применяется резистор смещения базы между базой и батареей базы Vсмещ. Использовать существующий источник Vпит, вместо нового источника смещения, – очень удобно. Пример данной схемы смещения показан в каскаде аудиоусилителя в детекторном приемнике в разделе «Радиочастотные схемы» главы 9. Обратите внимание на резистор между базой и клеммой батареи. Подобная схема показана на рисунке ниже.

Напишите уравнение закона напряжений Кирхгофа для контура, включающего в себя батарею, RБ и падение напряжения VБЭ на переходе транзистора, на рисунке ниже. Обратите внимание, что мы используем обозначение Vсмещ, хотя на самом деле это Vпит. Если коэффициент β велик, мы можем сделать приближение, что IК = IЭ. Для кремниевых транзисторов VБЭ ≅ 0.7 В.

Схема смещения с фиксированным током базы

\[V_{смещ} — I_Б R_Б — V_{БЭ} = 0\]

\[V_{смещ} — V_{БЭ} = I_Б R_Б\]

\[I_Б = { V_{смещ} — V_{БЭ} \over R_Б }\]

\[I_Э = (\beta + 1)I_Б \approx \beta I_Б\]

\[I_Э = { V_{смещ} — V_{БЭ} \over R_Б / \beta }\]

Коэффициент β малосигнальных транзисторов, как правило, лежит в диапазоне 100–300. Предположим у нас есть транзистор β=100, какое номинал резистора смещения базы потребуется, чтобы достичь тока эмиттера 1 мА?

Решение уравнения IЭ для определения RБ и подстановка значений β, Vсмещ, VБЭ и IЭ дадут результат 930 кОм. Ближайший стандартный номинал равен 910 кОм.

\(\beta = 100 \qquad V_{смещ} = 10 В \qquad I_К \approx I_Э = 1 мА \)

\[R_Б = { V_{смещ} — V_{БЭ} \over I_Э / \beta } = { 10 — 0,7 \over 1 мА / 100 } = 930 кОм \]

Чему будет равен ток эмиттера при резисторе 910 кОм? Что случится с током эмиттера, если мы заменим транзистор на случайный с β=300?

\(\beta = 100 \qquad V_{смещ} = 10 В \qquad R_Б = 910 кОм \qquad V_{БЭ} = 0,7 В\)

\[I_Э = { V_{смещ} — V_{БЭ} \over R_Б / \beta } = { 10 — 0,7 \over 910 кОм / 100 } = 1,02 мА \]

\(\beta = 300 \)

\[I_Э = { 10 — 0,7 \over 910 кОм / 300 } = 3,07 мА \]

При использовании резистора стандартного номинала 910 кОм ток эмиттера изменится незначительно. Однако при изменении β со 100 до 300 ток эмиттера утроится. Это неприемлемо для усилителя мощности, если мы ожидаем, что напряжение на коллекторе будет изменяться от почти Vпит до почти земли. Тем не менее, для сигналов низкого уровня от микровольт до примерно вольта точка смещения может быть отцентрирована для β, равного квадратному корню из (100·300), что равно 173. Точка смещения будет по-прежнему дрейфовать в значительном диапазоне. Однако сигналы низкого уровня не будут обрезаны.

Схема смещения с фиксированным током базы по своей природе не походит для больших токов эмиттера, которые используются в усилителях мощности. Ток эмиттера в схеме смещения с фиксированным током базы не стабилен по температуре. Температурный уход – это результат большого тока эмиттера, который вызывает повышение температуры, которое вызывает увеличение тока эмиттера, что еще больше повысит температуру.

Режим насыщения

У всех транзисторов имеется определенный порог входного значения тока. Как только произойдет достижение этого значения, коэффициент усиления перестает играть большую роль. При этом выходной ток не изменяется вообще. Напряжение на контактах «база — эмиттер» может быть выше, нежели между коллектором и эмиттером. Это состояние насыщения, транзистор открывается полностью. Режим ключа говорит о том, что транзистор работает в двух режимах – либо он полностью открыт, либо же закрыт. Когда полностью перекрывается подача тока управления, транзистор закрывается и перестает пропускать ток.

Схема автоматического смещения (с обратной связью с коллектором)

Изменения смещения из-за температуры и коэффициента бета могут быть уменьшены путем перемещения вывода резистора смещения с источника напряжения Vсмещ на коллектор транзистора, как показано на рисунке ниже. Если ток эмиттера будет увеличиваться, увеличится падение напряжения на RК, что уменьшит напряжение VК, что уменьшит IБ, подаваемый обратно на базу. Это в свою очередь уменьшит ток эмиттера, корректируя первоначальное увеличение.

Напишем уравнение закона напряжений Кирхгофа для контура, включающего в себя батарею, RК, RБ и падение напряжения VБЭ. Заменим IК≅IЭ и IБ≅IЭ/β. Решение для IЭ дает формулу IЭ для схемы автоматического смещения при обратной связи с коллектором. Решение для RБ дает формулу RБ для схемы автоматического смещения при обратной связи с коллектором.

Схема автоматического смещения при обратной связи с коллектором

\[I_К = \beta I_Б \qquad I_К \approx I_Э \qquad I_Э \approx \beta I_Б \]

\[V_{пит} — I_К R_К — I_Б R_Б -V_{БЭ} = 0\]

\[V_{пит} — I_Э R_К — (I_Э/ \beta) R_Б -V_{БЭ} = 0\]

\[V_{пит} -V_{БЭ} = I_Э R_К + (I_Э/ \beta) R_Б\]

\[V_{пит} -V_{БЭ} = I_Э (( R_Б / \beta) + R_К)\]

\[I_Э = {V_{пит} -V_{БЭ} \over R_Б / \beta + R_К }\]

\[R_Б = \beta \left[ {V_{пит} -V_{БЭ} \over I_Э } — R_К \right] \]

Найдем необходимый резистор смещения при обратной связи с коллектором для тока эмиттера 1 мА, резистора нагрузки коллектора 4,7 кОм и транзистора с β=100. Найдем напряжение коллектора VК. Оно должно быть примерно посередине между Vпит и корпусом.

\(\beta = 100 \qquad V_{пит} = 10 В \qquad I_К \approx I_Э = 1 мА \qquad R_К = 4,7 кОм \)

\[R_Б = \beta \left[ {V_{пит} — V_{БЭ} \over I_Э } — R_К \right] = 100 \left[ {10 — 0,7 \over 1 мА } — 4,7 кОм \right] = 460 кОм \]

\[ V_К = V_{пит} — I_К R_К = 10 — (1 мА) (4,7 кОм) = 5,3 В \]

Ближайший стандартный номинал к резистору 460 кОм для автоматического смещения при обратной связи с коллектором равен 470 кОм. Найдем ток эмиттера IЭ для резистора 470 кОм. Пересчитаем ток эмиттера для транзисторов с β=100 и β=300.

\(\beta = 100 \qquad V_{пит} = 10 В \qquad R_К = 4,7 кОм \qquad R_Б = 470 кОм \)

\[I_Э = {V_{пит} -V_{БЭ} \over R_Б / \beta + R_К } = {10 -0,7 \over 470 кОм / 100 + 4,7 кОм } = 0,989 мА \]

\(\beta = 300 \)

\[I_Э = {V_{пит} -V_{БЭ} \over R_Б / \beta + R_К } = {10 -0,7 \over 470 кОм / 300 + 4,7 кОм } = 1,48 мА \]

Мы видим, что по мере того как коэффициент бета изменяется от 100 до 300, ток эмиттера увеличивается с 0,989 мА до 1,48 мА. Это лучше, чем в предыдущей схеме смещения с фиксированным током базы, где ток эмиттера увеличился с 1,02 мА до 3,07 мА. При изменении коэффициента бета смещение с обратной связью с коллектором в два раза стабильнее, чем смещение с фиксированным током базы.

Практические конструкции

Практических схем использования транзисторов в режиме ключа очень много. Нередко их используют для включения и отключения светодиодов с целью создания спецэффектов. Принцип работы транзисторных ключей позволяет не только делать «игрушки», но и реализовывать сложные схемы управления. Но обязательно в конструкциях необходимо использовать резисторы для ограничения тока (они устанавливаются между источником управляющего сигнала и базой транзистора). А вот источником сигнала может быть что угодно – датчик, кнопочный выключатель, микроконтроллер и т. д.

Работа с микроконтроллерами

При расчете транзисторного ключа нужно учитывать все особенности работы элемента. Для того чтобы работала система управления на микроконтроллере, используются усилительные каскады на транзисторах. Проблема в том, что выходной сигнал у контроллера очень слабый, его не хватит для того, чтобы включить питание на обмотку электромагнитного реле (или же открыть переход очень мощного силового ключа). Лучше применить биполярный транзисторный ключ, которым произвести управление MOSFET-элементом.

Применяются несложные конструкции, состоящие из таких элементов:

  1. Биполярный транзистор.
  2. Резистор для ограничения входного тока.
  3. Полупроводниковый диод.
  4. Электромагнитное реле.
  5. Источник питания 12 вольт.

Диод устанавливается параллельно обмотке реле, он необходим для того, чтобы предотвратить пробой транзистора импульсом с высоким ЭДС, который появляется в момент отключения обмотки.

Сигнал управления вырабатывается микроконтроллером, поступает на базу транзистора и усиливается. При этом происходит подача питания на обмотку электромагнитного реле – канал «коллектор — эмиттер» открывается. При замыкании силовых контактов происходит включение нагрузки. Управление транзисторным ключом происходит в полностью автоматическом режиме – участие человека практически не требуется. Главное – правильно запрограммировать микроконтроллер и подключить к нему датчики, кнопки, исполнительные устройства.

4.1. ???

Если нагрузкой ключа ОЭ являются достаточно большая емкость , то ключ имеет невысокое быстродействие.

Предположим, что транзистор в схеме ключа запирается мгновенно.

Рис. 3.1.а: Схема ключа после переключения(ранее был насыщен)

Выходным напряжением является напряжение на емкости .

Ранее разряженная емкость начинает заряжаться током .

Длительность фронта определяется временем заряда емкость , то есть . Поскольку составляет несколько кОм, длительность заднего фронта оказывается недопустимо большой.

Например:

;

.

Тогда .

Для улучшения параметров ключа его строят по структурной схеме:

Рис. 3.1.б: Структурная схема ключа

В этой схеме для заряда имеется низкоомная цепь.

Принцип действия составного ключа состоит в следующем.

При поступлении положительного импульса на вход ключ ОЭ замыкается, а ключ ОК размыкается. Емкость нагрузки быстро разряжается через насыщенный ключ ОЭ. Напряжение на выходе близко к нулю.

По окончании положительного импульса ключ ОЭ размыкается, а ключ ОК замыкается. Теперь емкость нагрузки заряжается через насыщенный ключ ОК. Так как ток насыщения транзистора велик, то заряд емкости происходит быстро.

Рис. 3.1.в: Принципиальная схема составного ключа

На транзисторе VT1 собран ключ-звезда, который представляет комбинацию ключей ОЭ и ОК. Сигнал на коллекторе имеет полярность, противоположную полярности входного сигнала, то есть коллекторная цепь VT1 выполняет функции инвертора. Эмиттерная цепь VT1 не инвертирует сигнал.

VT2 — ключ ОК;

VT3 — ключ ОЭ.

1) Если транзистор VT1 заперт, то

.

Так как , то транзистор VT3 тоже заперт.

Напряжение на коллекторе VT1 равно:

и близко к напряжению питания .

Поэтому транзистор VT2 открыт и емкость нагрузки в установившемся режиме заряжена до напряжения

,

где , — падения напряжения на эмиттерном переходе открытого транзистора VT2 и на открытом диоде VD1.

2) Если транзистор насыщен, то

и транзистор VT3 тоже в режиме насыщения. При этом VT2 должен быть заперт. Для этого необходимо, чтобы напряжение на его базе было меньше или равно напряжению на эмиттере или

Из последнего соотношения видно, что при отсутствии диода в схеме условие запирания транзистора VT2 не выполняется.

В данном состоянии ключа емкость разряжается через насыщенный транзистор VT3 и напряжение на ней (низкий уровень).

Во время переходного процесса из-за задержки запирания транзисторов некоторые некоторое время оказываются открытыми оба транзистора (и VT2 и VT3). Это приводит к броску тока, потребляемого ключом от источника питания . Для ограничения этого тока в цепь коллектора транзистора VT2 введено небольшое сопротивление

Часто транзистор VT2 с диодом VD заменяют составным транзистором VT2′, VT2».

Рис. 3.1.г: Составной транзистор VT2′, VT2»

Принцип действия схемы при этом не изменяется. Функцию диода смещения VD здесь выполняет эмиттерный переход транзистора VT2».

Использование транзисторов в конструкциях

Нужно изучать все требования к полупроводникам, которые собираетесь использовать в конструкции. Если планируете проводить управление обмоткой электромагнитного реле, то нужно обращать внимание на его мощность. Если она высокая, то использовать миниатюрные транзисторы типа КТ315 вряд ли получится: они не смогут обеспечить ток, необходимый для питания обмотки. Поэтому рекомендуется в силовой технике применять мощные полевые транзисторы или сборки. Ток на входе у них очень маленький, зато коэффициент усиления большой.

Не стоит применять для коммутации слабых нагрузок мощные реле: это неразумно. Обязательно используйте качественные источники питания, старайтесь напряжение выбирать таким, чтобы реле работало в нормальном режиме. Если напряжение окажется слишком низким, то контакты не притянутся и не произойдет включение: величина магнитного поля окажется маленькой. Но если применить источник с большим напряжением, обмотка начнет греться, а может и вовсе выйти из строя.

Обязательно используйте в качестве буферов транзисторы малой и средней мощности при работе с микроконтроллерами, если необходимо включать мощные нагрузки. В качестве силовых устройств лучше применять MOSFET-элементы. Схема подключения к микроконтроллеру такая же, как и у биполярного элемента, но имеются небольшие отличия. Работа транзисторного ключа с использованием MOSFET-транзисторов происходит так же, как и на биполярных: сопротивление перехода может изменяться плавно, переводя элемент из открытого состояния в закрытое и обратно.

3.1. Остаточные параметры закрытого транзистора

а) При изменении величины запирающего напряжения на эмиттерном переходе, то есть при изменении глубины отсечки () ток базы не изменяется и остается равным . Это равенство называется токовым критерием отсечки.

б) Как в режиме глубокой отсечки, так и на границе отсечки , ток эмиттера .

Эквивалентную схему ключа в режиме отсечки можно представить в виде:

Рис. 2.1.а: Эквивалентная схема ключа в режиме отсечки

Выходное напряжение ключа

в) Из схемы видно, что напряжение, приложенное к эмиттерному, управляющему переходу, зависит от остаточного тока базы ;

.

В свою очередь .

Для сохранения режима отсечки при изменениях от и сопротивлений инеобходимо выполнить условие:

.

В противном случае, несмотря на отрицательную полярность управляющего сигнала, транзистор перейдет в активный режим.

г) В транзисторных ключах необходимо использовать транзисторы с малыми обратными токами переходов.

Примечание:

В интегральных схемах не используется отрицательная полярность управляющих сигналов для запирания транзисторов, поскольку цифровые микросхемы имеют однополярное питание. Разомкнутое состояние ключа соответствует не режиму отсечки, а активному режиму при малом токе коллектора. Это благоприятно сказывается на уменьшении длительности переходных процессов.


Рис. 2.1.б: Физическое строение биполярного транзистора???

Порог запирания транзистора — величина условная. Чем больше в открытом состоянии, тем больше может быть выбран. Обычно принимают.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]