Ardublock для Arduino – графический язык программирования


Ardublock – это графический язык программирования для Ардуино, предназначенный для начинающих. Эта среда достаточно проста в использовании, ее легко установить, она практически полностью переведена на русский язык. Визуально сконструированную программу,напоминающую блоки Scratch, легко конвертировать в код Arduino IDE. Да и писать можно, не отрываясь от Arduino IDE – эта программа встраивается в среду программирования в виде плагина. В этой статьей мы рассмотрим такие вопросы как установка Ardublock, настройка и примеры программирования

Установка Ardublock

Для начала работы с программой необходимо ее установить. Для этого выполним несколько простых действий, алгоритм таков:

  1. Скачать архив с сайта ArduBlock
  2. Открыть Arduino IDE/Menu /Arduino/ Preferences, там вы найдете строку Sketchbook location
  3. Создайте папку “tools/ArduBlockTool/tool” внутри папки “Arduino” в строке “Sketch location” и скопируйте архив “ardublock-all.jar” в папку “tool”. Например, если имя пользователя “user”, то путь в среде Windows будет таким: “C:\Users\user\Documents\Arduino”
  4. Перезапустите Arduino IDE и у Вас должен появиться пункт “ArduBlock” в меню “Tool”

При установки на Mac для пользователя user путь будет следующим: “/Users/user/Documents/Arduino/tools/ArduBlockTool/tool/ardublock-all.jar” При установке на Linux: “/home/user/sketchbook/tools/ArduBlockTool/tool/ardublock-all.jar”

Лабораторный блок питания на Arduino

Этот блок предназначен для домашней лаборатории радиолюбителя. Его выходное напряжение можно регулировать от 0,5 до 15,5 В. Имеется защита от замыкания выхода или превышения допустимого тока нагрузки. Порог её срабатывания можно изменять от 0,2 до 2 А. Информация об установленных напряжении, токе нагрузки и заданном пороге срабатывания токовой защиты выводится на экран ЖКИ от сотового телефона Nokia 5110.

Блок включают и выключают нажатиями на соответствующие кнопки. Третья кнопка даёт возможность временно отключить и вновь включить напряжение на выходе блока. С её же помощью восстанавливают работоспособность блока после срабатывания токовой защиты. При простое без нагрузки более 5 мин блок отключается от сети автоматически.

Схема блока питания изображена на рис. 1. Нажатие на кнопку SB3 подключает обмотку I трансформатора T1 к сети ~230 В. Блок начинает работать, и прежде всего, программа микроконтроллера устанавливает высокий логический уровень напряжения на выходе D1 модуля Arduino Nano, обозначенного на схеме A1. Этим открывается транзистор VT1, реле K1 срабатывает и замкнувшимися контактами K1.1 шунтирует кнопку SB3, которую теперь можно отпустить.

Рис. 1. Схема блока питания

На экране ЖКИ начало работы блока отмечается заставкой в виде двух вращающихся зубчатых колёс (рис. 2), которая сменяется информацией о версии программы (рис. 3). Затем появляется основное изображение (рис. 4) со значениями выходного напряжения, тока нагрузки, отдаваемой в нагрузку мощности (программа вычисляет её как произведение первых двух параметров) и установленного тока срабатывания защиты.

Рис. 2. Заставка на экране ЖКИ

Рис. 3. Информация на экране ЖКИ

Рис. 4. Информация на экране ЖКИ

При нажатии на кнопку SB1 низкий уровень на входе D0 модуля A1 приводит к тому, что программа выводит на экран прощальное сообщение (рис. 5) и устанавливает низкий уровень на выходе D1 модуля A1. Транзистор VT1 закрывается, реле K1 размыкает контакты и этим отключает блок от сети.

Рис. 5. Сообщение на экране ЖКИ

Стабилизатор выходного напряжения собран на ОУ DA1.2 и транзисторе VT2. Коэффициент пропорциональности между установленным переменным резистором R15 задающим напряжением на неинвертирующем входе ОУ DA1.2 и выходным напряжением стабилизатора равен R19/R18+1 (3,2 при указанных на схеме номиналах резисторов R18 и R19). Эти резисторы образуют делитель выходного напряжения, часть которого поступает для измерения на аналоговый вход A6 модуля A1. Задающее напряжение получено из выведенного на вывод D6 модуля A1 образцового напряжения встроенного в этот модуль АЦП, которое можно включить или выключить программно.

Вывод D2 модуля A1 сконфигурирован программой как вход запросов её внешнего прерывания. Если ток нагрузки превысит заданный порог, напряжение на инвертирующем входе компаратора DA2 станет больше, чем на неинвертирующем. Выходной транзистор компаратора откроется и зашунтирует резисторы R9 и R15 цепи регулировки выходного напряжения блока, которое станет нулевым. Одновременно низкий уровень поступит на вход запроса прерывания программы D2. Процедура обработки прерывания выдержит паузу приблизительно 50 мс, а затем, если перегрузка не прекратилась, выключит образцовое напряжение на выходе D6. В результате выходное напряжение блока останется равным нулю и после прекращения перегрузки. Пауза необходима для предотвращения аварийных срабатываний защиты при подключении к блоку нагрузки с конденсаторами большой ёмкости. Сигналом срабатывания защиты служит изображение ладони (рис. 6) на экране ЖКИ. Чтобы вернуть блок в рабочий режим, нужно нажать на кнопку SB2.

Рис. 6. Сигнал срабатывания защиты

Во время нормальной работы блока питания нажатие на кнопку SB2 выключает образцовое напряжение на выходе D6 модуля A2, в результате чего напряжение на выходе блока падает практически до нуля. Сигнализируя об этом, изображение на экране ЖКИ HG1 станет негативным. Повторное нажатие на кнопку SB2 вернёт блок в прежнее состояние.

К аналоговому входу A7 модуля A1 подключён движок переменного резистора R2, которым регулируют порог срабатывания токовой защиты блока. Подбирая резистор R1, устанавливают минимальное значение этого порога.

Вывод D9 сконфигурирован программой микроконтроллера как выход импульсов с ШИМ. В модуле Arduino Nano частота повторения этих импульсов по умолчанию — около 490 Гц. Для удовлетворительного сглаживания импульсов, следующих с такой низкой частотой, и выделения их постоянной составляющей потребовался бы слишком сложный фильтр. Поскольку в среде разработки программ Arduino IDE стандартная функция для изменения этой частоты отсутствует, она была повышена до 3900 Гц прямым изменением константы в соответствующем регистре микроконтроллера:

TCCR1B = TCCR1B & 0b11111000 I 0x02;

Вращение ручки переменного резистора R2 изменяет коэффициент заполнения импульсов на выходе D9. Фильтр R3C1 выделяет из импульсной последовательности постоянную составляющую, которая поступает на неинвертирующий вход компаратора напряжения DA2 и задаёт порог его срабатывания. На инвертирующий вход компаратора поступает с датчика тока (резистора R20) через усилитель на ОУ DA1.1 с коэффициентом усиления 25 пропорциональное току нагрузки блоканапряжение.

Печатная плата для этого блока питания не разрабатывалась. Всё собрано на двух макетных платах размерами 50×75 мм. На одной из них установлен ЖКИ HG1 с резисторами R10-R14, на другой — всё остальное, за исключением транзистора VT2 с теплоотводом и трансформатора T1.

Трансформатор должен быть мощностью не менее 36 В·А и с напряжением на вторичной обмотке около 18 В. Контакты реле K1 должны быть рассчитаны на коммутацию переменного напряжения не менее 250 В. Если номинальное рабочее напряжение обмотки реле меньше выпрямленного диодным мостом VD1, излишек нужно погасить, включив последовательно с обмоткой реле резистор Rдоб, показанный на схеме рис. 1 штриховой линией.

К статье приложены две компьютерные программы, облегчающие подготовку изображений для вывода на графический ЖКИ. Исходные данные для них — цветные или монохроматические изображения в форматах *.BMP, *.JPG, *.webp, *.TGA или *.TIFF. Программа GLCD84X48 Converter укладывает это изображение в размеры 84×48 пкс и преобразует его в битовый формат. Она выдаёт результат в виде текстового файла на языке C, пригодного для включения в программу микроконтроллера, и помещает его под именем grap-hics.c на рабочий стол компьютера. Программа OLED_LCD 128X64 I2C con-vertimage работает аналогично, но формирует файл для загрузки в графический дисплей с размерами экрана 128×64 пкс и интерфейсом I2C.

Программа для модуля Arduino, библиотеки к ней и программы для компьютера имеются здесь.

Автор: О. Кольчурин, г. Нижняя Тура Свердловской обл.

Как запустить ArduBlock

Для начала запускаем сам Arduino, заходим в меню Инструменты и там находим ArduBlock, его и выбираем.


Для начала запускаем сам Arduino, заходим в меню Инструменты и там находим ArduBlock, его и выбираем.

Открывается окно ArduBlock дополнительно к окну Arduino.


Открывается окно ArduBlock дополнительно к окну Arduino.

Можем начинать программировать.

Язык Arduino

Если опытный программист посмотрит на код для Arduino, он скажет, что это код на C++. Это недалеко от истины: основная логика Ардуино реализована на C++, а сверху на неё надет фреймворк Wiring, который отвечает за общение с железом.

Чем отличается C от C++

На это есть несколько причин:

  1. У С++ слава «слишком сложного языка». Arduino позиционируется как микроконтроллеры и робототехника для начинающих, а начинающим иногда трудно объяснить, что С++ не такой уж сложный для старта. Проще сделать фреймворк и назвать его отдельным языком.
  2. В чистом С++ нет удобных команд для AVR-контроллеров, поэтому нужен был инструмент, который возьмёт на себя все сложные функции, а на выходе даст программисту часто используемые команды.
  3. Разработчики дали программистам просто писать нужные им программы, а все служебные команды, необходимые для правильного оформления кода на С++, взяла на себя специальная среда разработки.


Среда разработки (IDE) Arduino.

Интерфейс программы

Настроек в ArduBlock нет, а вот значков для программирования предостаточно и каждый из них несет за собой команду в текстовом формате Arduino IDE. В новых версиях значков еще больше, поэтому разобраться с ArduBlok последней версии сложно и некоторые из значков не переведены на русский.

Блоки ArduBlock разделены на 6 категорий.

Control


Control
В разделе «Управление» мы найдем разнообразные циклы.

Порты (Pin)


Pin
В разделе «Порты» мы можем с вами управлять значениями портов, а также подключенными к ним звукоизлучателя, сервомашинки или ультразвукового датчика приближения.

Цифры, константы и Переменные


Цифры, константы и Переменные
Блоки категорий “Numbers/Constants” это переменные

Operators


Operators
Эта категория включает в себя логические и математические операторы.

Utilities


Utilities
Эти блоки являются функциями, которые обычно используются в скетчах для управления режимом работы с программой.

Модули


Bricks
Каждый блок данной категории изображает тип реального устройства, который вы можете напрямую подключить к вашему скетчу.

Scratch


Эта графическая среда программирования была создана в 2003 году, когда группа сотрудников MIT Media Lab решила разработать язык программирования, доступный абсолютно для всех. В итоге через некоторое время публике был представлен Scratch.

Больше всего, пожалуй, он похож на Lego. По крайней мере, принцип тот же: это объектно ориентированная среда, в которой программы собираются из деталей, разноцветных и ярких. Эти детали можно перемещать, видоизменять, заставлять взаимодействовать различным образом. Основа Scratch — блоки команд, таких как сенсоры, переменные, движение, звук, операторы, внешность, перо, контроль и пр. Встроенный графический редактор дает возможность нарисовать любой объект. Не прошло и пяти лет с момента создания Scratch, как возник проект Scratch для Arduino (сокращённо — S4A), позволяющая программировать ПЛК Arduino.

К плюсам системы относится то, что она русифицирована и полностью локализована — любой желающий найдем множество данных по ней. Кроме того, работа в данной графической среде доступна даже для школьников младших классов, которые даже еще не слишком уверенно читают.

Совет. Для новичков в Scratch существует специальный ресурс: https://scratch-ru.info.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]