Быстрый старт с Ардуино — отладочная плата Arduino UNO R3

Данный раздел имеет довольно таки большую значимость, если делать что то не так, как написано здесь, можно получить сгоревшую плату или глюки, причины которых не так очевидны и отследить их очень трудно. Если вы ожидали увидеть здесь советы по энергосбережению и режимам сна – они находятся в отдельном уроке про энергосбережение. Перейдем к питанию платы: есть три способа питать Ардуино и вообще Ардуино-проект в целом, у каждого есть свои плюсы/минусы и особенности:
  • Бортовой USB порт
  • “Сырой” вход на микроконтроллер 5V
  • Стабилизированный вход Vin

Что касается земли (пины GND) то они все связаны между собой и просто продублированы на плате, это нужно запомнить. Пины 3.3V, 5V и GND являются источником питания для датчиков и модулей, но давайте рассмотрим особенности.

Питание от USB

Питание от USB – самый плохой способ питания ардуино-проекта. Почему? По линии питания +5V от USB стоит диод, выполняющий защитную функцию: он защищает порт USB компьютера от высокого потребления тока компонентами ардуино-проекта или от короткого замыкания (КЗ), которое может произойти по случайности/криворукости любителей ковырять макетные платы. КЗ продолжительностью менее секунды не успеет сильно навредить диоду и всё может обойтись, но продолжительное замыкание превращает диод в плавкий предохранитель, выпускающий облако синего дыма и спасающий порт компьютера от такой же участи.

К слову, ардуинки от производителя Robotdyn имеют самовосстанавливающийся предохранитель вместо такого костыля с диодом-смертником.

Слаботочный диод имеет ещё одну неприятную особенность: на нём падает напряжение, причем чем больше ток потребления схемы, тем сильнее падает напряжение питания. Пример: голая ардуина без всего потребляет около 20 мА, и от 5 Вольт на юсб после диода нам остаётся примерно 4.7 Вольт. Чем это плохо: опорное напряжение при использовании АЦП крайне нестабильно, не знаешь, что измеряешь (да, есть способ измерения опорного напряжения, но делать это нужно вручную). Некоторые железки чувствительны к напряжению питания, например LCD дисплеи: при питании от 5V они яркие и чёткие, при 4.7 вольтах (питание от юсб) они уже заметно теряют яркость. Если подвигать сервоприводом или включить реле – на диоде упадет ещё больше и дисплей практически погаснет. При коротких мощных нагрузках (выше 500-600ма) микроконтроллер перезапустится, так как напряжение упадет ниже плинтуса.

Вы наверное предложите заменить диод перемычкой, чтобы питать схему от USB большим током, например от powerbank’а. Так делать тоже нельзя, потому что дорожки на плате не рассчитаны на большие токи (дорожка 5V очень тонкая и идёт через всю плату). Я думаю, что можно будет снять 1-2 Ампера с пина 5V, но, скорее всего, напряжение просядет. Также при КЗ вы скорее всего попрощаетесь с дорожкой вообще. Питайте силовую часть схемы либо отдельно, либо от того же источника питайте Arduino.

Физические характеристики

Arduino Uno имеет следующие размеры: длина 69 мм и ширина 53 мм. Однако разъем питания и разъем USB немного выпирают за пределы печатной платы. Arduino Uno весит около 25 грамм. Плата имеет 4 отверстия для возможности ее закрепления на поверхности. Расстояние между выводами равняется 2,5 мм, кроме выводов 7 и 8. Между ними 4 мм.

Принципиальная схема


Принципиальная схема Ардуино Уно

Питание в Vin

Питание в пин VinGND) – более универсальный способ питания ардуино-проекта, этот пин заводит питание на бортовой стабилизатор напряжения ардуино, на китайских платах обычно стоит AMS1117-5.0. Это линейный стабилизатор, что имеет свои плюсы и минусы. Он позволяет питать ардуино и ардуино-проект от напряжения 7-12 Вольт (это рекомендуемый диапазон, так то питать можно от 5 до 20 Вольт). Стабилизатор устроен так, что он выдает хорошее ровное напряжение с минимальными пульсациями, но всё лишнее напряжение превращает в тепло. Если питать плату и один миниатюрный сервопривод от 12 Вольт, то при активной работе привода стабилизатор нагреется до 70 градусов, что уже ощутимо горячо. По некоторым расчетам из даташита можем запомнить некоторые цифры:

  • При напряжении 7 Вольт (таких блоков питания я не встречал) в Vin можно снять с пина 5V до 2A, больше – перегрев. Отлично сработают два литиевых аккумулятора
  • При 12 Вольтах на Vin можно снять с пина 5V не более 500мА без риска перегрева стабилизатора.

Питание в пин Vin возможно только в том случае, если в Ардуино проекте (имеется в виду плата Ардуино и железки, подключенные к 5V и GND) не используются мощные потребители тока, такие как сервоприводы, адресные светодиодные ленты, моторчики и прочее. Что можно: датчики, сенсоры, дисплеи, модули реле (не более 3 одновременно в активном состоянии), одиночные светодиоды, органы управления. Для проектов с мощной 5 Вольтовой нагрузкой для нас есть только третий способ.

Питание в 5V

Питание в пин 5VGND) – самый лучший вариант питать плату и ардуино-проект в целом, но нужно быть аккуратным: пин идёт напрямую на микроконтроллер, и на него действуют некоторые ограничения:

  • Максимальное напряжение питания согласно даташиту на микроконтроллер – 5.5V. Всё что выше – с большой вероятностью выведет МК из строя;
  • Минимальное напряжение зависит от частоты, на которой работает МК. Вот строчка из даташита: 0 – 4 MHz @ 1.8 – 5.5V, 0 – 10 MHz @ 2.7 – 5.5V, 0 – 20 MHz @ 4.5 – 5.5V. Что это значит: большинство Arduino-плат имеют источник тактирования на 16 MHz, то есть Arduino будет стабильно работать от напряжения ~4 Вольта (20 МГц – 4.5V, 16 МГц – около 4V). Есть версии Arduino на 8 МГц, они будут спокойно работать от напряжения 2.5V.

Важно: напряжение питания в пин 5V не должно превышать 5.5V. Минимальное напряжение: 4V для плат на 16 МГц (на моей практике работало стабильно от 3.5V), 2.5V для плат на 8 МГц.

Самый популярный вариант – USB зардяник от смартфона, их легко достать, диапазон токов от 500ма до 3А – справится практически с любым проектом. Отрезаем штекер и паяем провода на 5V и GND, предварительно определив, где плюс/минус при помощи мультиметра или по цвету: красный всегда плюс, чёрный – земля, при красном плюсе земля может быть белого цвета. При чёрной земле плюс может быть белым, вот так вот. Точно туда же паяем все датчики/модули/потребители 5 Вольт. Да, не очень удобно это паять, но при известной схеме можно аккуратно собрать всё питание в отдельные скрутки и припаять уже их. Пример на фото ниже. Источником питания там является отдельное гнездо micro-usb, зелёная плата сразу над дисплеем.

Выключение компонентов микроконтроллера

Этот метод подойдет в случаях, когда микроконтроллер длительное время должен выполнять ряд определенных действий с одной и той же периферией.

Любой микроконтроллер представляет из себя набор различных модулей, и для всех модулей предусмотрена возможность включения и отключения питания.

Для того чтобы воспользоваться данным методом необходимо подключить библиотеку power.h:

#include

После этого нам будет доступен ряд функций для включения и отключения отдельных модулей периферии микроконтроллера:

Функция выключенияФункция включенияОписание модуля
power_aca_disable()power_aca_enable()Аналоговый компаратор порта А.
power_adc_disable()power_adc_enable()АЦП.
power_adca_disable()power_adca_enable()АЦП порта А.
power_evsys_disable()power_evsys_enable()Модуль EVSYS
power_hiresc_disable()power_hiresc_enable()Модуль HIRES порта C.
power_lcd_disable()power_lcd_enable()Модуль LCD.
power_pga_disable()power_pga_enable()Усилитель с программируемым коэффициентом усиления.
power_pscr_disable()power_pscr_enable()Контроллер пониженной мощности.
power_psc0_disable()power_psc0_enable()0 Контроллер уровня мощности.
power_psc1_disable()power_psc1_enable()1 Контроллер уровня мощности.
power_psc2_disable()power_psc2_enable()2 Контроллер уровня мощности.
power_ram0_disable()power_ram0_enable()SRAM блок 0.
power_ram1_disable()power_ram1_enable()SRAM блок 1.
power_ram2_disable()power_ram2_enable()SRAM блок 2.
power_ram3_disable()power_ram3_enable()SRAM блок 3.
power_rtc_disable()power_rtc_enable()Модуль часов реального времени.
power_spi_disable()power_spi_enable()Интерфейс SPI
power_spic_disable()power_spic_enable()Интерфейс SPI порта C
power_spid_disable()power_spid_enable()Интерфейс SPI порта D
power_tc0c_disable()power_tc0c_enable()Таймер/счетчик 0 порта C
power_tc0d_disable()power_tc0d_enable()Таймер/счетчик 0 порта D
power_tc0e_disable()power_tc0e_enable()Таймер/счетчик 0 порта E
power_tc0f_disable()power_tc0f_enable()Таймер/счетчик 0 порта F
power_tc1c_disable()power_tc1c_enable()Таймер/счетчик 1 порта C
power_twic_disable()power_twic_enable()Интерфейс I2C порта C
power_twie_disable()power_twie_enable()Интерфейс I2C порта E
power_timer0_disable()power_timer0_enable()Таймер 0
power_timer1_disable()power_timer1_enable()Таймер 1
power_timer2_disable()power_timer2_enable()Таймер 2
power_timer3_disable()power_timer3_enable()Таймер 3
power_timer4_disable()power_timer4_enable()Таймер 4
power_timer5_disable()power_timer5_enable()Таймер 5
power_twi_disable()power_twi_enable()Интерфейс I2C
power_usart_disable()power_usart_enable()Интерфейс USART
power_usart0_disable()power_usart0_enable()Интерфейс USART 0
power_usart1_disable()power_usart1_enable()Интерфейс USART 1
power_usart2_disable()power_usart2_enable()Интерфейс USART 2
power_usart3_disable()power_usart3_enable()Интерфейс USART 3
power_usartc0_disable()power_usartc0_enable()Интерфейс USART 0 порта C
power_usartd0_disable()power_usartd0_enable()Интерфейс USART 0 порта D
power_usarte0_disable()power_usarte0_enable()Интерфейс USART 0 порта E
power_usartf0_disable()power_usartf0_enable()Интерфейс USART 0 порта F
power_usb_disable()power_usb_enable()Интерфейс USB
power_usi_disable()power_usi_enable()Интерфейс USI
power_vadc_disable()power_vadc_enable()Модуль напряжения АЦП
power_all_disable()power_all_enable()Все модули

Доступность данных функций будет определяться типом используемого микроконтроллера, и тем какая периферия в нем присутствует. Для того чтобы не изучать документацию на каждый конкретный контроллер, можно отключать при запуске всю периферию контроллера с помощью функции power_all_disable(), а затем отдельно включать необходимые модули.

Для примера давайте добавим в нашу первую программу отправку данных через Serial порт, а всю остальную периферию микроконтроллера отключим:

#include #include #include long int i = 0; void setup() { power_all_disable(); //отключаем всю периферию power_usart0_enable(); //включаем USART0 для Arduino Mega power_timer0_enable(); //включаем таймер 0 (он необходим для нормальной работы USART) Serial.begin(9600); //устанавливаем скорость Serial в 9600 бод pinMode(LED_BUILTIN, OUTPUT); set_sleep_mode(SLEEP_MODE_PWR_DOWN); } void loop() { i++; Serial.println(i); //Отправляем данные в Serial порт delay(10); //Ждем пока завершится отправка данных через USART, иначе контроллер перейдет в режим сна до того как данные успеют отправиться полностью digitalWrite(LED_BUILTIN, LOW); wdt_enable(WDTO_1S); WDTCSR |= (1 << WDIE); sleep_mode(); digitalWrite(LED_BUILTIN, HIGH); wdt_enable(WDTO_120MS); WDTCSR |= (1 << WDIE); sleep_mode(); } ISR (WDT_vect) { wdt_disable(); }

Питание “мощных” схем

Резюмируя и повторяя всё сказанное выше, рассмотрим варианты питания проектов с большим потреблением тока. Питать мощный проект (светодиоды, двигатели, нагреватели) от 5V можно так: Arduino и потребитель питаются вместе от 5V источника питания:

Питать мощный потребитель от USB через плату нельзя, там стоит диод, да и дорожки питания тонкие:

Что делать, если всё-таки хочется питать проект от USB, например от powerbank’а? Это ведь удобно! Всё очень просто:

Если есть только блок питания на 12V, то у меня плохие новости: встроенный стабилизатор на плате не вытянет больше 500 мА:

Но если мы хотим питать именно 12V нагрузку, то проблем никаких нет: сама плата Arduino потребляет около 20 мА, и спокойно будет работать от бортового стабилизатора:

Платы расширения

В магазинах, специализирующихся на робототехнике и микроконтроллерах, можно встретить слово «шилд». Это специальная плата, которая напоминает Arduino Uno. Совпадает она с ней не только по форме, но и по количеству выводов.

Шилд устанавливается в клеммные колодки, при этом часть их них задействуется под функции шилда, а другая часть остаётся свободной для использования в проекте. В результате вы можете получить такой себе многоэтажный «бутерброд» из плат, которые реализуют множество функций.

Одним из самых популярных является Arduino Ethernet Shield. Он нужен для связи с Ардуино по обычному сетевому кабелю, витой паре. На нём расположен разъём rj45.

С подобным шилдом можно управлять вашим микроконтроллером по сети через веб-интерфейс, а также считывать параметры с датчиков, не отрываясь от компьютера. Существуют проекты с использованием такого комплекта в домашнем облачном хранилище, с ограничением по скорости, всё-таки Атмега328 слабовата для таких задач, и для этого лучше подойдут одноплатные компьютеры типа Raspberry pi.

Автономное питание

Бывает, что нужно обеспечить автономное питание проекта, т.е. вдали от розетки, давайте рассмотрим варианты. Также для этих целей пригодится урок по энергосбережению и режимам сна микроконтроллера.

  • Питание в порт USB Самый обыкновенный Powerbank, максимальный ток – 500 мА (помним про защитный диод). Напряжение на пине 5V и высокий уровень GPIO в этом случае будет равен ~4.7V (опять же помним про диод). Внимание! У большинства Powerbank’ов питание отключается при нагрузке меньше 200мА, т.е. об энергосбережении можно забыть;
  • Максимальный выходной ток с пина 5V – 500 мА!
  • Питание в пин Vin (или штекер 5.5×2.1 на плате UNO/MEGA)
      Любой блок питания/зарядник от ноута с напряжением 7-18 Вольт
  • 9V батарейка “Крона” – плохой, но рабочий вариант. Ёмкость кроны очень небольшая;
  • Сборка из трёх литиевых аккумуляторов: напряжение 12.6-9V в процессе разряда. Хороший вариант, также имеется 12V с хорошим запасом по току (3А для обычных, 20А для высокотоковых аккумуляторов) для двигателей или светодиодных лент;
  • “Модельные” аккумуляторы, в основном Li-Po. В целом то же самое, что предыдущий пункт, но запаса по току в разы больше;
  • Энергосбережение – не очень выгодный вариант, т.к. стабилизатор потребляет небольшой, но всё же ток;
  • Максимальный выходной ток с пина 5V при питании в Vin: 2А при 7V на Vin, 500ma при 12V на Vin
  • Питание в пин 5V
      Для стабильных 5V на выходе – литиевый аккумулятор и повышающий до 5V модуль. У таких модулей обычно запас по току 2А, также модуль потребляет “в холостом режиме” – плохое энергосбережение;
  • Литиевый аккумулятор – напряжение на пине 5V и GPIO будет 4.2-3.5V, некоторые модули будут работать, некоторые – нет. Работа МК от напряжения ниже 4V не гарантируется, у меня работало в целом стабильно до 3.5V, ниже уже может повиснуть. Энергосбережение – отличное;
  • Пальчиковые батарейки (ААА или АА) – хороший вариант, 3 штуки дадут 4.5-3V, что граничит с риском зависнуть. 4 штуки – очень хорошо. Новые батарейки дадут 6V, что является максимальным напряжением для МК AVR и при желании можно так работать;
  • Пальчиковые Ni-Mh аккумуляторы – отличный вариант, смело можно ставить 4 штуки, они обеспечат нужное напряжение на всём цикле разряда (до 4V). Также имеют хороший запас по току, можно даже адресную ленту питать.
  • Платы с кварцем (тактовым генератором) на 8 МГц позволяют питать схему от низкого напряжения (2.5V, как мы обсуждали выше), отлично подойдут те же батарейки/аккумуляторы, также маломощные проекты можно питать от литиевой таблетки (3.2-2.5V в процессе разряда).
  • Максимальный выходной ток с пина 5V ограничен током источника питания
  • Использование библиотеки Narcoleptic

    Данную библиотеку создал Питер Кнайт, скачать ее можно по адресу https://code.google.com/p/narcoleptic/.

    Эта библиотека позволяет вводить микроконтроллер в режим сна на определенное время с помощью одной функции – Narcoleptic.delay();. Аргументом данной функции является время в миллисекундах – используется точно так же как и стандартная функция delay();.

    Рассмотрим ту же программу что и ранее, но с использованием данной библиотеки:

    #include void setup() { pinMode(LED_BUILTIN, OUTPUT); } void loop() { digitalWrite(LED_BUILTIN, LOW); Narcoleptic.delay(1000); digitalWrite(LED_BUILTIN, HIGH); Narcoleptic.delay(120); }

    Как видно, код стал значительно проще, и в случае, когда нужны простые паузы между полезными действиями – эта библиотека является самым простым и удобным решением.

    Arduino как источник питания

    Важный момент, который вытекает из предыдущих: использование платы Arduino как источник питания для модулей/датчиков. Варианта тут два:

    • Питание датчиков и модулей от 5V При питании платы от USB – максимальный ток 500 мА
    • При питании платы в Vin – максимальный ток 2 А при Vin 7V, 500 мА при Vin 12V
    • При питании платы в 5V – максимальный ток зависит от блока питания
  • Питание датчиков от GPIO (пинов D и A) – максимальный ток с одного пина: 40 мА, но рекомендуется снимать не более 20 мА. Максимальный суммарный ток с пинов (макс. ток через МК) не должен превышать 200 мА. Допускается объединение нескольких ног для питания нагрузки, но состояние выходов должно быть изменено одновременно (желательно через PORTn), иначе есть риск спалить ногу при её закорачивании на другую во время переключения. Либо делать ногу входом (INPUT), вместо подачи на неё низкого (LOW) сигнала. В этом случае опасность спалить ноги отсутствует.
  • Описание пинов платы

    Микроконтроллер имеет 14 цифровых пинов, они могут быть использованы, как вход или выход. Из них 6 могут выдавать ШИМ-сигнал. Они нужны для регулировки мощности в нагрузке и других функций.

    Пин ардуиноАдресация в скетчеСпециальное назначениеШИМ
    Цифровой пин 00RX
    Цифровой пин 11TX
    Цифровой пин 22Вход для прерываний
    Цифровой пин 33Вход для прерыванийШИМ
    Цифровой пин 44
    Цифровой пин 55ШИМ
    Цифровой пин 66ШИМ
    Цифровой пин 77
    Цифровой пин 88
    Цифровой пин 99ШИМ
    Цифровой пин 1010SPI (SS)ШИМ
    Цифровой пин 1111SPI (MOSI)ШИМ
    Цифровой пин 1212SPI (MISO)
    Цифровой пин 1313SPI (SCK) К выходу дополнительно подсоединен встроенный светодиод

    Вызов ШИМ-сигнала осуществляется через команду AnalogWrite (номер ножки, значение от 0 до 255). Для работы с аналоговыми датчиками присутствует 6 аналоговых входов/выходов.

    ПинАдресация в скетчеСпециальное назначение
    Аналоговый пин A0A0 или 14
    Аналоговый пин A1A1 или 15
    Аналоговый пин A2A2 или 16
    Аналоговый пин A3A3 или 17
    Аналоговый пин A4A4 или 18I2C (SCA)
    Аналоговый пин A5A5 или 19I2C (SCL)

    Их тоже можно использовать, как цифровые.

    Аналоговый сигнал обрабатывается 10 битным аналогово-цифровым преобразователем (АЦП), а при чтении микроконтроллер выдаёт численное значение от 0 до 1024. Это равно максимальному значению, которое можно записать в 10 битах. Каждый из выводов способен выдать постоянный ток до 40 мА.

    Принципиальная схема платы выглядит так (нажмите для увеличения):

    Помехи и защита от них

    Если в одной цепи питания с Ардуино стоят мощные потребители, такие как сервоприводы, адресные светодиодные ленты, модули реле и прочее, на линии питания могут возникать помехи, приводящие к сильным шумам измерений с АЦП, а более мощные помехи могут дергать прерывания и даже менять состояния пинов, нарушая связь по различным интерфейсам связи и внося ошибки в показания датчиков, выводя чушь на дисплеи, а иногда дело может доходить до перезагрузки контроллера или его зависания. Некоторые модули также могут зависать, перезагружаться и сбоить при плохом питании, например bluetooth модуль спокойно может зависнуть и висеть до полной перезагрузки системы, а радио модули rf24 вообще не будут работать при “шумном” питании.

    Более того, помеха может прийти откуда не ждали – по воздуху, например от электродвигателя, индуктивный выброс ловится проводами и делает с системой всякое. Что же делать? “Большие дяди” в реальных промышленных устройствах делают очень много для защиты от помех, этому посвящены целые книги и диссертации. Мы с вами рассмотрим самое простое, что можно сделать дома на коленке.

    • Питать логическую часть (Ардуино, слаботочные датчики и модули) от отдельного малошумящего блока питания 5V, то есть разделить питание логической и силовой частей, а ещё лучше питаться в пин Vin от блока питания на 7-12V, так как линейный стабилизатор даёт очень хорошее ровное напряжение. Для корректной работы устройств, питающихся отдельно (драйверы моторов, приводы) нужно соединить земли Ардуино и всех внешних устройств;
    • Поставить конденсаторы по питанию платы, максимально близко к пинам 5V и GND: электролит 6.3V 100-470 uF (мкФ, ёмкость зависит от качества питания: при сильных просадках напряжения ставить ёмкость больше, при небольших помехах хватит и 10-47 мкФ) и керамический на 0.1-1 uF. Это сгладит помехи даже от сервоприводов;
    • У “выносных” на проводах элементах системы (кнопки, крутилки, датчики) скручивать провода в косичку, преимущественно с землёй. А ещё лучше использовать экранированные провода, экран естественно будет GND. Таким образом защищаемся от электромагнитных наводок;
    • Соединять все земли одним толстым проводом и по возможности заземлять на центральное заземление;
    • Металлический и заземленный корпус устройства (или просто обернутый фольгой ? ), на который заземлены все компоненты схемы – залог полного отсутствия помех и наводок по воздуху.

    Ещё лучше с фильтрацией помех справится LC фильтр, состоящий из индуктивности и конденсатора. Индуктивность нужно брать с номиналом в районе 100-300 мкГн и с током насыщения больше, чем ток нагрузки после фильтра. Конденсатор – электролит с ёмкостью 100-1000 uF в зависимости опять же от тока потребления нагрузки после фильтра. Подключается вот так, чем ближе к нагрузке – тем лучше:

    Подробнее о расчёте фильтров можно почитать здесь.

    Индуктивные выбросы

    На практике самая подлая помеха обычно приходит при коммутации индуктивной нагрузки при помощи электромагнитного реле: от такой помехи очень сложно защититься, потому что приходит она по земле, то есть вас не спасёт даже раздельное питание проекта. Что делать?

    • Для цепей постоянного тока обязательно ставить мощный диод обратно-параллельно нагрузке, максимально близко к клеммам реле. Диод примет (замкнёт) на себя индуктивный выброс от мотора/катушки;

    • Туда же, на клеммы реле, можно поставить RC цепочку, называемую в этом случае искрогасящей: резистор 39 Ом 0.5 Вт, конденсатор 0.1 мкФ 400V (для цепи 220В);

    • Для сетей переменного тока использовать твердотельное (SSR) реле с детектором нуля (Zero-cross detector), они же называются “бесшумные” реле. Если в цепи переменного тока вместо реле стоит симистор с оптопарой, то оптопару нужно использовать опять же с детектором нуля, такая оптопара, как и SSR zero-cross будут отключать нагрузку в тот момент, когда напряжение в сети переходит через ноль, это максимально уменьшает все выбросы.

    Подробнее об искрогасящих цепях можно почитать вот в этой методичке.

    Главный Глупый Вопрос

    У новичков в электронике, которые не знают закон Ома, очень часто возникают вопросы вида: “а каким током можно питать Ардуино“, “какой ток можно подать на Ардуино“, “не сгорит ли моя Ардуина от от блока питания 12V 10A“, “сколько Ампер можно подавать на Arduino” и прочую чушь. Запомните: вы не можете подать Амперы, вы можете подать только Вольты, а устройство возьмёт столько Ампер, сколько ему нужно. В случае с Arduino – голая плата возьмёт 20-22 мА, хоть от пина 5V, хоть от Vin. Ток, который указан на блоке питания, это максимальный ток, который БП может отдать без повреждения/перегрева/просадки напряжения. Беспокоиться стоит не об Arduino, а об остальном железе, которое стоит в схеме и питается от блока питания, а также о самом блоке питания, который может не вывезти вашу нагрузку (мотор, светодиоды, обогреватель). Общий ток потребления компонентов не должен превышать возможностей источника питания, вот в чём дело. А будь блок питания хоть на 200 Ампер – компоненты возьмут ровно столько, сколько им нужно, и у вас останется “запас по току” для подключения других. Если устройство питается напряжением, то запомните про максимальный ток источника питания очень простую мысль: кашу маслом не испортишь.

    Вольты, амперы, ёмкость

    Начнем с базовых понятий мира электричества: Вольты и Амперы (более подробно про это читай в этом уроке). Вольты – напряжение, оно же разность потенциалов. Напряжение задаёт источник питания, например батарейка или блок питания. Амперы – сила тока в цепи, показывает с какой силой “расходуется” электрическая энергия. Ток в цепи задаёт потребитель. (Примечание: описанное выше справедливо для источника напряжения, коим является любая батарейка/аккумулятор или обычный блок питания. Источником тока может быть специальное зарядное устройство или светодиодный драйвер, от них питать предназначенную для источника напряжения схему нельзя – сразу сгорит). Потребляемую и запасаемую энергию принято считать в Ампер*часах, работает это следующим образом: допустим, ёмкость аккумулятора составляет 1 А*ч (Ампер*час). Это означает, что такой аккумулятор сможет отдавать ток с силой 1 Ампер в течение одного часа, полностью при этом разрядившись. Если ток в цепи будет 0.5 А – аккумулятора хватит на 1 А*ч / 0.5 А == 2 часа. Плата Ардуино потребляет в районе 24 мА, то есть тот же условный аккумулятор сможет питать её в течение 1000 мА*ч /24 мА ~ 42 часов. При параллельном подключении потребителей, как это обычно бывает в схеме, ток потребления суммируется. Если добавить в “схему” из предыдущего расчёта дисплей с подсветкой, который будет потреблять условно ещё 30 мА, то такая схема проработает от того же аккумулятора 1000 мА*ч / (24+30 мА) ~ 18.5 часов.

    Важные страницы

    • Набор GyverKIT – большой стартовый набор Arduino моей разработки, продаётся в России
    • Каталог ссылок на дешёвые Ардуины, датчики, модули и прочие железки с AliExpress у проверенных продавцов
    • Подборка библиотек для Arduino, самых интересных и полезных, официальных и не очень
    • Полная документация по языку Ардуино, все встроенные функции и макросы, все доступные типы данных
    • Сборник полезных алгоритмов для написания скетчей: структура кода, таймеры, фильтры, парсинг данных
    • Видео уроки по программированию Arduino с канала “Заметки Ардуинщика” – одни из самых подробных в рунете
    • Поддержать автора за работу над уроками
    • Обратная связь – сообщить об ошибке в уроке или предложить дополнение по тексту ([email protected])

    5 / 5 ( 29 голосов )

    Размеры Уно

    Arduino Uno R3 – самая популярная плата, построенная на базе процессора ATmega328. В зависимости от конкретной модели платы этой линейки используются различные микроконтроллеры, на момент написания статьи самой распространённой является версия именно R3.

    Плату используют для обучения, разработки, создания рабочих макетов устройств. Ардуино, по своей сути, – это AVR микроконтроллер с возможностью упрощенного программирования и разработки. Это достигнуто с помощью специально подготовленного загрузчика, прошитого в память МК, и фирменной среды разработки.


    Плата Ардуино Уно

    Размеры платы представлены на схеме ниже. Общие размеры Уно составляют 53,4 мм на 68,6 мм.

    Рейтинг
    ( 2 оценки, среднее 5 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]