Как работают импульсные преобразователи напряжения (27 схем)

Для преобразования напряжения одного уровня в напряжение другого уровня часто применяют импульсные преобразователи напряжения с использованием индуктивных накопителей энергии. Такие преобразователи отличаются высоким КПД, иногда достигающим 95%, и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.

В соответствии с этим известно три типа схем преобразователей: понижающие (рис. 1), повышающие (рис. 2) и инвертирующие (рис. 3).

Общими для всех этих видов преобразователей являются пять элементов:

  1. источник питания,
  2. ключевой коммутирующий элемент,
  3. индуктивный накопитель энергии (катушка индуктивности, дроссель),
  4. блокировочный диод,
  5. конденсатор фильтра, включенный параллельно сопротивлению нагрузки.

Включение этих пяти элементов в различных сочетаниях позволяет реализовать любой из трех типов импульсных преобразователей.

Регулирование уровня выходного напряжения преобразователя осуществляется изменением ширины импульсов, управляющих работой ключевого коммутирующего элемента и, соответственно, запасаемой в индуктивном накопителе энергии.

Стабилизация выходного напряжения реализуется путем использования обратной связи: при изменении выходного напряжения происходит автоматическое изменение ширины импульсов.

Понижающий импульсный преобразователь

Понижающий преобразователь (рис. 1) содержит последовательно включенную цепочку из коммутирующего элемента S1, индуктивного накопителя энергии L1, сопротивления нагрузки RH и включенного параллельно ему конденсатора фильтра С1. Блокировочный диод VD1 подключен между точкой соединения ключа S1 с накопителем энергии L1 и общим проводом.

Рис. 1. Принцип действия понижающего преобразователя напряжения.

При открытом ключе диод закрыт, энергия от источника питания накапливается в индуктивном накопителе энергии. После того, как ключ S1 будет закрыт (разомкнут), запасенная индуктивным накопителем L1 энергия через диод VD1 передастся в сопротивление нагрузки RH, Конденсатор С1 сглаживает пульсации напряжения.

Как работает универсальный DC DC преобразователь

Принцип его работы имеет значительное сходство со схемой DC DC инвертора повышающего типа, но дополнительно используются конденсатор C1 и катушка L2. Благодаря им устройство используется в режиме уменьшения напряжения. Такие конверторы используются в ситуациях, когда Uвх имеет большой диапазон значений. Например, есть модели, преобразовывающие Uвх= 4–35 В в Uвых=1,23–32 В. Внешне универсальный преобразователь легко узнать по наличию 2-х катушек – L1 и L2.

В предыдущей статье нашего блога представлен обзор и сравнительная таблица вторичных аккумуляторов.

Повышающий импульсный преобразователь

Повышающий импульсный преобразователь напряжения (рис. 2) выполнен на тех же основных элементах, но имеет иное их сочетание: к источнику питания подключена последовательная цепочка из индуктивного накопителя энергии L1, диода VD1 и сопротивления нагрузки RH с параллельно подключенным конденсатором фильтра С1. Коммутирующий элемент S1 включен между точкой соединения накопителя энергии L1 с диодом VD1 и общей шиной.

Рис. 2. Принцип действия повышающего преобразователя напряжения.

При открытом ключе ток от источника питания протекает через катушку индуктивности, в которой запасается энергия. Диод VD1 при этом закрыт, цепь нагрузки отключена от источника питания, ключа и накопителя энергии.

Напряжение на сопротивлении нагрузки поддерживается благодаря запасенной на конденсаторе фильтра энергии. При размыкании ключа ЭДС самоиндукции суммируется с напряжением питания, запасенная энергия передается в нагрузку через открытый диод VD1. Полученное таким способом выходное напряжение превышает напряжение питания.

Как появились стабилизаторы линейного типа

Сначала нужно разобраться, в чем главный минус стандартных линейных преобразователей наподобие LM78XX. Основной элемент такого устройства — сильный двухполярный транзистор, который изначально был управляемым резистором.

Устройство включено в пару Дарлингтона. Основной ток задает операционный усилитель. Он увеличивает разницу между напряжением выхода и тем, которое задается ИОН, — источником опорного напряжения. Он подключается по стандартной схеме усилителя ошибки.

Схема подключения первых преобразователей

Итак, резистор включается с помощью преобразователя по последовательной схеме, при наличии нагрузки. Он контролирует сопротивление для гашения на нагрузке определенного количества Вольт. При подсчете можно установить, что, если напряжение снижается, например, с 12 до 5 В, происходит распределение входных 12 В на нагрузку и стабилизатор с отношением 7:5.

Происходит гашение “избыточных” 7 В и их превращение в тепло. Это приводит к проблемам с охлаждением, и на это тратится большое количество энергии ИП. Если питание поступает от розетки, в этом нет ничего опасного, но если от батареи или аккумулятора, данный фактор нужно учитывать.

Описанным способом вряд ли получилось бы изготовить преобразователь, увеличивающий напряжение. Лет 30 назад рассчитать такие схемы было крайне сложно. Простейшая схема этого типа — 2-тактный преобразователь с 5 до 15 В.

Такое устройство дает гальваническую развязку, но эффективность использования им трансформатора — крайне мала. Активно используется только 1⁄2 первичной обмотки.

Но это, скажем так, прототип. А теперь поговорим о современных устройствах.

Схема современного преобразователя

Микросхему удобно использовать как конвертерный step–down. сильный двухполярный ключ размещен внутри, нужно только дополнить регулятор еще несколькими компонентами — быстрым диодом, выходным и входным конденсаторами и т.д.

В вариации LM2596ADJ необходима схема обеспечения напряжения выхода: 2 резистора, либо 1 плазморезистор.

LM2596 изнутри выглядит примерно так:

ШИМ-сигнал управляется мощным ключом изнутри прибора. Точка А х% времени обладает полным напряжением, при (1–x)% — нулевое напряжение. Колебания сглаживаются LC-фильтром. Он выделяет неизменный компонент напряжения питания.

Инвертирующий преобразователь импульсного типа

Инвертирующий преобразователь импульсного типа содержит все то же сочетание основных элементов, но снова в ином их соединении (рис. 3): к источнику питания подключена последовательная цепочка из коммутирующего элемента S1, диода VD1 и сопротивления нагрузки RH с конденсатором фильтра С1.

Индуктивный накопитель энергии L1 включен между точкой соединения коммутирующего элемента S1 с диодом VD1 и общей шиной.

Рис. 3. Импульсное преобразование напряжения с инвертированием.

Работает преобразователь так: при замыкании ключа энергия запасается в индуктивном накопителе. Диод VD1 закрыт и не пропускает ток от источника питания в нагрузку. При отключении ключа ЭДС самоиндукции накопителя энергии оказывается приложенной к выпрямителю, содержащему диод VD1, сопротивление нагрузки Rн и конденсатор фильтра С1.

Поскольку диод выпрямителя пропускает в нагрузку только импульсы отрицательного напряжения, на выходе устройства формируется напряжение отрицательного знака (инверсное, противоположное по знаку напряжению питания).

Способ управления

Частотные преобразователи управляются разными способами. К основным командам относятся: пуск, остановка, регулировка скорости, аварийное торможение. Эти действия допустимо выполнять как с панели ПЧ, так и с пульта. Это касается подачи команд от оператора к оборудованию. Осуществлять управление работой электропривода моторов ЧМ может следующими способами:

Скалярная регулировка опирается на постоянное соотношение выходных напряжения и частоты (Uвых/Fвых). Данный метод не требует применения датчика, указывающего на текущее положение ротора. Применяется там, где нагрузки не изменяющиеся, и нет повышенных динамических нагрузок.

Важно! При такой регулировке нагрузка на двигатель влияет на скорость: при большой нагрузке скорость уменьшается, при малой – увеличивается. Векторный метод опирается не только на контроль над U/F, но и угол, и величину вектора пространства (фазу)

При данном методе отсутствует инерционность регулировки, она осуществляется в большом интервале скоростей

Векторный метод опирается не только на контроль над U/F, но и угол, и величину вектора пространства (фазу). При данном методе отсутствует инерционность регулировки, она осуществляется в большом интервале скоростей.

Внимание! При векторном способе нагрузка не влияет на скорость вращения, постоянство скорости достигается при помощи автоматической корректировки напряжения на выходе

Импульсные преобразователи и стабилизаторы

Для стабилизации выходного напряжения импульсных стабилизаторов любого типа могут быть использованы обычные «линейные» стабилизаторы, но они имеют низкий КПД, В этой связи гораздо логичнее для стабилизации выходного напряжения импульсных преобразователей использовать импульсные же стабилизаторы напряжения, тем более, что осуществить такую стабилизацию совсем несложно.

Импульсные стабилизаторы напряжения, в свою очередь, подразделяются на стабилизаторы с широтно-импульсной модуляцией и на стабилизаторы с частотно-импульсной модуляцией. В первых из них изменяется длительность управляющих импульсов при неизменной частоте их следования. Во вторых, напротив, изменяется частота управляющих импульсов при их неизменной длительности. Встречаются импульсные стабилизаторы и со смешанным регулированием.

Ниже будут рассмотрены радиолюбительские примеры эволюционного развития импульсных преобразователей и стабилизаторов напряжения.

Узлы и схемы импульсных преобразователей

Задающий генератор (рис. 4) импульсных преобразователей с нестабилизированным выходным напряжением (рис. 5, 6) на микросхеме КР1006ВИ1 работает на частоте 65 кГц. Выходные прямоугольные импульсы генератора через RC-цепоч-ки подаются на транзисторные ключевые элементы, включенные параллельно.

Катушка индуктивности L1 выполнена на ферритовом кольце с внешним диаметром 10 мм и магнитной проницаемостью 2000. Ее индуктивность равна 0,6 мГн. Коэффициент полезного действия преобразователя достигает 82%.

Рис. 4. Схема задающего генератора для импульсных преобразователей напряжения.

Рис. 5. Схема силовой части повышающего импульсного преобразователя напряжения +5/12 В.

Рис. 6. Схема инвертирующего импульсного преобразователя напряжения +5/-12 В.

Амплитуда пульсаций на выходе не превышает 42 мВ и зависит от величины емкости конденсаторов на выходе устройства. Максимальный ток нагрузки устройств (рис. 5, 6) составляет 140 мА.

В выпрямителе преобразователя (рис. 5, 6) использовано параллельное соединение слаботочных высокочастотных диодов, включенных последовательно с выравнивающими резисторами R1 — R3.

Вся эта сборка может быть заменена одним современным диодом, рассчитанным на ток более 200 мА при частоте до 100 кГц и обратном напряжении не менее 30 В (например, КД204, КД226).

В качестве VT1 и VT2 возможно использование транзисторов типа КТ81х структуры п-р-п — КТ815, КТ817 (рис. 4.5) и р-п-р — КТ814, КТ816 (рис. 6) и другие.

Для повышения надежности работы преобразователя рекомендуется включить параллельно переходу эмиттер — коллектор транзистора диод типа КД204, КД226 таким образом, чтобы для постоянного тока он был закрыт.

Принцип действия

Классические преобразователи с регулировкой выходного напряжения, как правило, управляют сопротивлением элемента, выполняющего регулировочную роль (транзистор или тиристор), через него постоянно протекает электрический ток, который и заставляет данный элемент нагреваться, при этом теряется значительная часть мощности. Главное преимущество такого устройства это минимум запчастей, простота, и отсутствие помех. Все остальные характеристики больше относятся к недостаткам.

Импульсный преобразователь напряжения использует регулировочный элемент лишь в виде ключа. То есть он работает в двух режимах:

  • Закрыт, и не пропускает электрический ток;
  • Открыт, и имеет минимальное проходное сопротивление.

При этом каждый из режимов обладает низким выделением тепла, что даёт возможность показывать высокий коэффициент полезного действия (КПД). Нагрузка же получает непрерывно электроэнергию за счёт накопления и хранения её в таких электрических резервуарах, как:

  1. Индуктивность (катушках);
  2. Конденсаторах.

Регулировка происходит за счёт изменения времени замкнутого состояния ключевого элемента. Снижение габаритов, а также массы устройств, возможно только за счёт повышения частоты, от 20 кГц до 1 МГц. Импульсные устройства могут формировать на выходе как пониженное напряжение, так и с изменением полярности. За счёт применения в них трансформаторов, работающих на высоких частотах позволяет:

  1. Качественно изолировать вход от выхода;
  2. Получить на выходе устройства несколько выходных напряжений.

Как и любое устройство импульсный преобразователь обладает и недостатками, которыми являются:

  1. Сложность схемы и наличие большего количества запчастей, а значит потенциально существует больше причин поломки;
  2. Являются источниками помех.

Однако постоянное развитие технологий в этом направлении снижают эти недостатки к минимальным значениям.

Преобразователь с задающим генератором-мультивибратором

Для получения выходного напряжения величиной 30…80 В П. Беляцкий использовал преобразователь с задающим генератором на основе несимметричного мультивибратора с выходным каскадом, нагруженным на индуктивный накопитель энергии — катушку индуктивности (дроссель) L1 (рис. 7).

Рис. 7. Схема преобразователя напряжения с задающим генератором на основе несимметричного мультивибратора.

Устройство работоспособно в диапазоне питающих напряжений 1,0. ..1,5 В и имеет КПД до 75%. В схеме можно применить стандартный дроссель ДМ-0,4-125 или иной с индуктивностью 120.. .200 мкГн.

Вариант выполнения выходного каскада преобразователя напряжения показан на рис. 8. При подаче на вход каскада управляющих сигналов прямоугольной формы 7777-уровня (5 В) на выходе преобразователя при его питании от источника напряжением 12 В получено напряжение 250 В при токе нагрузки 3…5 мА (сопротивление нагрузки около 100 кОм). Индуктивность дросселя L1 — 1 мГн.

В качестве VT1 можно использовать отечественный транзистор, например, КТ604, КТ605, КТ704Б, КТ940А(Б), КТ969А и др.

Рис. 8. Вариант выполнения выходного каскада преобразователя напряжения.

Рис. 9. Схема выходного каскада преобразователя напряжения.

Аналогичная схема выходного каскада (рис. 9) позволила при питании от источника напряжением 28В и потребляемом токе 60 мА получить выходное напряжение 250 В при токе нагрузки 5 мА, Индуктивность дросселя — 600 мкГч. Частота управляющих импульсов — 1 кГц.

В зависимости от качества изготовления дросселя на выходе может быть получено напряжение 150…450 В при мощности около 1 Вт и КПД до 75%.

Особенности преобразователей LM2596

Самый популярный вариант применения устройства — источник напряжения на основе стабилитрона. Из него получается качественный импульсный БП, который выдерживает воздействие короткого замыкания. LM2596 — полностью соответствует даташит и всем описанным параметрам.

Еще один вариант использования преобразователей — стабилизатор силы тока. Модуль данной микросхемы подключает светодиодную автомобильную матрицу LM2596 с мощностью 10 Вт, в дополнение обеспечивая предотвращение КЗ.

Эти устройства имеют свою уникальность. Они обеспечивают снижение выходного напряжения до 40 В, необходимо всего 5 внешних элементов. Напряжение шины питания “умного дома” таким образом поднимается до 36 В, а сечение кабелей — уменьшается. В районе точек потребления нужно поставить такой модуль и настроить его на необходимый вольтаж (5,9,12).

Параметры устройства

Микросхема обладает следующими характеристиками:

  1. Напряжение входа — от 2,4 до 40 В.
  2. Напряжение выхода — от 1,2 до 37 В, его можно регулировать и фиксировать.
  3. Ток выхода — максимум 3 А.
  4. Преобразовательная частота — 150 кГц.
  5. КПД при низком давлении — 75%, при большом — до 95%.

Корпуса

Есть 2 вида корпусов. Для одного из них применяется установка внутрь отверстия (ТО-220). Мне больше нравится планарный вариант, так как там радиатор — это и есть плата, и отпадает потребность в приобретении еще одного внешнего радиатора. Механически он гораздо устойчивее, чем TO-220, которая в обязательном порядке должна быть к чему-то привинчена, например, к плате. В этом случае установка планарной версии — гораздо проще.


Размеры LM2596

Советую устанавливать схему LM2596T-ADJ в блок питания, так как с ее корпуса проще отводится энергия.

Преобразователь напряжения на основе КР1006ВИ1

Преобразователь напряжения, выполненный на основе генератора импульсов на микросхеме DA1 КР1006ВИ1, усилителя на основе полевого транзистора VT1 и индуктивного накопителя энергии с выпрямителем и фильтром, показан на рис. 10.

На выходе преобразователя при напряжении питания и потребляемом токе 80…90 мА образуется напряжение 400…425 В. Следует отметить, что величина выходного напряжение не гарантирована — она существенно зависит от способа выполнения катушки индуктивности (дросселя) L1.

Рис. 10. Схема преобразователя напряжения с генератором импульсов на микросхеме КР1006ВИ1.

Для получения нужного напряжения проще всего экспериментально подобрать катушку индуктивности для достижения требуемого напряжения или использовать умножитель напряжения.

Режим рекуперации

А что произойдет, если среднее значение магнитного потока дросселя ФСР будет иметь знак, противоположный ΔФ, например, если ФНАЧКОН НАЧ КОН? В этом случае, согласно (7), WИМП

Рисунок 9.Режим рекуперации.

Когда такой режим необходим? Например, если вход преобразователя подключен к системной питающей шине, а выход – к аккумуляторной батарее, содержащей аварийный запас энергии (Рисунок 10). В нормальном режиме система питается от основного источника, а преобразователь выполняет функцию зарядного устройства, при этом энергия передается с входа на выход преобразователя, что соответствует режиму передачи. Если аккумулятор заряжен, то энергия никуда не передается, и преобразователь работает в режиме холостого хода. При аварии основного источника энергия из аккумулятора через преобразователь, работающий в режиме рекуперации, поступает на шину питания, обеспечивая питанием нагрузку.

Рисунок 10.Пример работы преобразователя в трех режимах.

Необходимо отметить, что переход из одного режима в другой происходит автоматически, без какого-либо участия со стороны контроллера, основной задачей которого в этом случае является только поддержание нужного соотношения t1/t2 так, чтобы, согласно (9), обеспечить или требуемое значение UВХ/UВЫХ, или требуемый ток нагрузки.

Схема двуполярного импульсного преобразователя

Для питания многих электронных устройств требуется источник двухполярного напряжения, обеспечивающий положительное и отрицательное напряжения питания. Схема, приведенная на рис. 11, содержит гораздо меньшее число компонентов, чем аналогичные устройства, благодаря тому, что она одновременно выполняет функции повышающего и инвертирующего индуктивного преобразователя.

Рис. 11. Схема преобразователя с одним индуктивным элементом.

Схема преобразователя (рис. 11) использует новое сочетание основных компонентов и включает в себя генератор четырехфазных импульсов, катушку индуктивности и два транзисторных ключа.

Управляющие импульсы формирует D-триггер (DD1.1). В течение первой фазы импульсов катушка индуктивности L1 запасается энергией через транзисторные ключи VT1 и VT2. В течение второй фазы ключ VT2 размыкается, и энергия передается на шину положительного выходного напряжения.

Во время третьей фазы замыкаются оба ключа, в результате чего катушка индуктивности вновь накапливает энергию. При размыкании ключа VT1 во время заключительной фазы импульсов эта энергия передается на отрицательную шину питания. При поступлении на вход импульсов с частотой 8 кГц схема обеспечивает выходные напряжения ±12 В. На временной диаграмме (рис. 11, справа) показано формирование управляющих импульсов.

В схеме можно использовать транзисторы КТ315, КТ361.

Преобразователь напряжения со стабильными 30В

Преобразователь напряжения (рис. 12) позволяет получить на выходе стабилизированное напряжение 30 В. Напряжение такой величины используется для питания варикапов, а также вакуумных люминесцентных индикаторов.

Рис. 12. Схема преобразователя напряжения с выходным стабилизированным напряжением 30 В.

На микросхеме DA1 типа КР1006ВИ1 по обычной схеме собран задающий генератор, вырабатывающий прямоугольные импульсы с частотой около 40 кГц.

К выходу генератора подключен транзисторный ключ VT1, коммутирующий катушку индуктивности L1. Амплитуда импульсов при коммутации катушки зависит от качества ее изготовления.

Во всяком случае напряжение на ней достигает десятков вольт. Выходное напряжение выпрямляется диодом VD1. К выходу выпрямителя подключен П-образный RC-фильтр и стабилитрон VD2. Напряжение на выходе стабилизатора целиком определяется типом используемого стабилитрона. В качестве «высоковольтного» стабилитрона можно использовать цепочку стабилитронов, имеющих более низкое напряжение стабилизации.

Преобразователь напряжения с индуктивным накопителем энергии

Преобразователь напряжения с индуктивным накопителем энергии, позволяющий поддерживать на выходе стабильное регулируемое напряжение, показан на рис. 13.

Рис. 13. Схема преобразователя напряжения со стабилизацией.

Схема содержит генератор импульсов, двухкаскадный усилитель мощности, индуктивный накопитель энергии, выпрямитель, фильтр, схему стабилизации выходного напряжения. Резистором R6 устанавливают необходимое выходное напряжение в пределах от 30 до 200 В.

Аналоги транзисторов: ВС237В — КТ342А, КТ3102; ВС307В — КТ3107И, BF459—КТ940А.

Светодиодный драйвер

Чтобы обеспечить стабильное электропитание, нужна специальная электросхема в виде блока или драйвера питания. Он называется led driver.

За счет электронной схемы обеспечивается стабилизация напряжения и тока, которые подводятся к кристаллу.

Данная схема автоматически не поддерживает ток. Он увеличивается при росте напряжения. Когда его допустимое значение будет превышено, кристалл разрушится от перегревания.

Этот вариант подходит для led-источников света с небольшой мощностью, но для мощных светоизлучателей он не годится категорически. Не путайте светодиодный драйвер с люминесцентной лампой, их принципы работы сильно отличаются.

Понижающие и инвертирующие преобразователей напряжения

Два варианта — понижающего и инвертирующего преобразователей напряжения [4.1] показаны на рис. 14. Первый из них обеспечивает выходное напряжение 8,4 В при токе нагрузки до 300 мА, второй — позволяет получить напряжение отрицательной полярности (-19,4 В) при таком же токе нагрузки. Выходной транзистор ѴТЗ должен быть установлен на радиатор.

Рис. 14. Схемы стабилизированных преобразователей напряжения.

Аналоги транзисторов: 2N2222 — КТЗ117А 2N4903 — КТ814.

Понижающий стабилизированный преобразователь напряжения

Понижающий стабилизированный преобразователь напряжения, использующий в качестве задающего генератора микросхему КР1006ВИ1 (DA1) и имеющий защиту потоку нагрузки, показан на рис. 15. Выходное напряжение составляет 10 В при токе нагрузки до 100 мА.

Рис. 15. Схема понижающего преобразователя напряжения.

При изменении сопротивления нагрузки на 1% выходное напряжение преобразователя изменяется не более чем на 0,5%.

Аналоги транзисторов: 2N1613 — КТ630Г, 2N2905 — КТ3107Е, КТ814.

Возрастание тока выхода

Ток микросхемы довольно высок, но иногда требуется еще больше.

Запараллельте преобразователи, настроенные на одинаковое напряжение выхода. При таких обстоятельствах нельзя использовать простые резисторы smd в цепи, задающей напряжение, Feedback. Применяйте резисторы с точностью до 1% или задавайте напряжение самостоятельно с помощью переменного резистора.

Если вы не уверены, что разброс напряжения мал, параллельте преобразователи с помощью небольшого шунта с сопротивлением несколько десятков мОм. Тогда всю нагрузку возьмет на себя преобразователь с наибольшим напряжением, и не факт, что он выдержит.

Можно воспользоваться высоким уровнем охлаждения с помощью большого радиатора или многослойной печатной платы крупной площади. Это помогает повысить ток.

Есть еще вариант — вынесение мощного ключа за корпус микросхемы. Поэтому есть возможность использования полевого резистора с небольшим падением напряжения, повысить КПД и ток выхода.

Двухполярный инвертор напряжения

Для питания радиоэлектронных схем, содержащих операционные усилители, часто требуются двухполярные источники питания. Решить эту проблему можно, использовав инвертор напряжения, схема которого показана на рис. 16.

Устройство содержит генератор прямоугольных импульсов, нагруженный на дроссель L1. Напряжение с дросселя выпрямляется диодом VD2 и поступает на выход устройства (конденсаторы фильтра СЗ и С4 и сопротивление нагрузки). Стабилитрон VD1 обеспечивает постоянство выходного напряжения — регулирует длительность импульса положительной полярности на дросселе.

Рис. 16. Схема инвертора напряжения +15/-15 В.

Рабочая частота генерации — около 200 кГц под нагрузкой и до 500 кГц без нагрузки. Максимальный ток нагрузки — до 50 мА, КПД устройства — 80%.

Недостатком конструкции является относительно высокий уровень электромагнитных помех, впрочем, характерный и для других подобных схем.

В качестве L1 использован дроссель ДМ-0,2-200.

Технические характеристики прибора

Технические характеристики инверторов по большей части совпадают с таковыми у классических источников питания. Но есть и отличия. Импульсный преобразователь может работать при более широком диапазоне входного напряжения, имеет меньшие массу и габариты, более высокий КПД. Устройства отличаются высоким уровнем высокочастотных помех, но их легко снизить при использовании фильтров. Благодаря высокой частоте габариты фильтра невелики.

Обратите внимание! Инвертор имеет отрицательную величину входного сопротивления. На практике это выражается в том, что при увеличении напряжения питающей сети происходит снижение тока потребления.

Вам это будет интересно Электрогенератор Николы Тесла

Инверторы на специализированных микросхемах

Наиболее удобно собирать высокоэффективные современные преобразователи напряжения, используя специально созданные для этих целей микросхемы.

Микросхема КР1156ЕУ5 (МС33063А, МС34063А фирмы Motorola) предназначена для работы в стабилизированных повышающих, понижающих, инвертирующих преобразователях мощностью в несколько ватт.

На рис. 17 приведена схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5. Преобразователь содержит входные и выходные фильтрующие конденсаторы С1, СЗ, С4, накопительный дроссель L1, выпрямительный диод VD1, конденсатор С2, задающий частоту работы преобразователя, дроссель фильтра L2 для сглаживания пульсаций. Резистор R1 служит датчиком тока. Делитель напряжения R2, R3 определяет величину выходного напряжения.

Рис. 17. Схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5.

Частота работы преобразователя близка к 15 кГц при входном напряжении 12 В и номинальной нагрузке. Размах пульсаций напряжения на конденсаторах СЗ и С4 составлял соответственно 70 и 15 мВ.

Дроссель L1 индуктивностью 170 мкГн намотан на трех склеенных кольцах К12x8x3 М4000НМ проводом ПЭШО 0,5. Обмотка состоит из 59 витков. Каждое кольцо перед намоткой следует разломить на две части.

В один из зазоров вводят общую прокладку из текстолита толщиной 0,5 мм и склеивают пакет. Можно также применить кольца из феррита с магнитной проницаемостью свыше 1000.

Пример выполнения понижающего преобразователя на микросхеме КР1156ЕУ5 приведен на рис. 18. На вход такого преобразователя нельзя подавать напряжение более 40 В. Частота работы преобразователя — 30 кГц при UBX=15 В. Размах пульсаций напряжения на конденсаторах СЗ и С4 — 50 мВ.

Рис. 18. Схема понижающего преобразователя напряжения на микросхеме КР1156ЕУ5.

Рис. 4.19. Схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5.

Дроссель L1 индуктивностью 220 мкГч намотан аналогичным образом (см. выше) на трех кольцах, но зазор при склейке был установлен 0,25 мм, обмотка содержала 55 витков такого же провода.

На следующем рисунке (рис. 4.19) показана типовая схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5, Микросхема DA1 питается суммой входного и выходного напряжений, которая не должна превышать 40 В.

Частота работы преобразователя — 30 кГц при UBX=5 S; размах пульсаций напряжения на конденсаторах СЗ и С4 — 100 и 40 мВ.

Для дросселя L1 инвертирующего преобразователя индуктивностью 88 мкГн были использованы два кольца К12x8x3 М4000НМ с зазором 0,25 мм. Обмотка состоит из 35 витков провода ПЭВ-2 0,7. Дроссель L2 во всех преобразователях стандартный — ДМ-2,4 индуктивностью 3 мкГч. Диод VD1 во всех схемах (рис. 17 — 19) должен быть диодом Шотки.

Для получения двухполярного напряжения из однополярного фирмой MAXIM разработаны специализированные микросхемы. На рис. 20 показана возможность преобразования напряжения низкого уровня (4,5…5 6) в двухполярное выходное напряжение 12 (или 15 6) при токе нагрузки до 130 (или 100 мА).

Рис. 20. Схема преобразователя напряжения на микросхеме МАХ743.

По внутренней структуре микросхема не отличается от типового построения подобного рода преобразователей, выполненных на дискретных элементах, однако интегральное исполнение позволяет при минимальном количестве внешних элементов создавать высокоэффективные преобразователи напряжения.

Так, для микросхемы МАХ743 (рис. 20) частота преобразования может достигать 200 кГц (что намного превышает частоту преобразования подавляющего большинства преобразователей, выполненных на дискретных элементах). При напряжении питания 5 В КПД составляет 80…82% при нестабильности выходного напряжения не более 3%.

Микросхема снабжена защитой от аварийных ситуаций: при снижении питающего напряжения на 10% ниже нормы, а также при перегреве корпуса (выше 195°С).

Для снижения на выходе преобразователя пульсаций с частотой преобразования (200 кГц) на выходах устройства установлены П-образные LC-фильтры. Перемычка J1 на выводах 11 и 13 микросхемы предназначена для изменения величины выходных напряжений.

Для преобразования напряжения низкого уровня (2,0…4,5 6) в стабилизированное 3,3 или 5,0 В предназначена специальная микросхема, разработанная фирмой MAXIM, — МАХ765. Отечественные аналоги — КР1446ПН1А и КР1446ПН1Б. Микросхема близкого назначения — МАХ757 — позволяет получить на выходе плавно регулируемое напряжение в пределах 2,7…5,5 В.

Рис. 21. Схема низковольтного повышающего преобразователя напряжения до уровня 3,3 или 5,0 В.

Схема преобразователя, показанная на рис. 21, содержит незначительное количество внешних (навесных) деталей.

Работает это устройство по традиционному принципу, описанному ранее. Рабочая частота генератора зависит от величины входного напряжения и тока нагрузки и изменяется в широких пределах — от десятков Гц до 100 кГц.

Величина выходного напряжения определяется тем, куда подключен вывод 2 микросхемы DA1: если он соединен с общей шиной (см. рис. 21), выходное напряжение микросхемы КР1446ПН1А равно 5,0±0,25 В, если же этот вывод соединен с выводом 6, то выходное напряжение понизится до 3,3±0,15 В. Для микросхемы КР1446ПН1Б значения будут 5,2±0,45 В и 3,44±0,29 В. соответственно. Максимальный выходной ток преобразователя — 100 мА. Микросхема МАХ765 обеспечивает выходной ток 200 мА при напряжении 5-6 и 300 мА при напряжении 3,3 В. КПД преобразователя — до 80%.

Назначение вывода 1 (SHDN) — временное отключение преобразователя путем замыкания этого вывода на общий провод. Напряжение на выходе в этом случае понизится до значения, несколько меньшего, чем входное напряжение.

Светодиод HL1 предназначен для индикации аварийного снижения питающего напряжения (ниже 2 В), хотя сам преобразователь способен работать и при более низких значениях входного напряжения (до 1,25 6 и ниже).

Дроссель L1 выполняют на кольце К10x6x4,5 из феррита М2000НМ1. Он содержит 28 витков провода ПЭШО 0,5 мм и имеет индуктивность 22 мкГч. Перед намоткой ферритовое кольцо разламывают пополам, предварительно надпилив алмазным надфилем. Затем кольцо склеивают эпоксидным клеем, установив в один из образовавшихся зазоров текстолитовую прокладку толщиной 0,5 мм.

Индуктивность полученного таким образом дросселя зависит в большей степени от толщины зазора и в меньшей — от магнитной проницаемости сердечника и числа витков катушки. Если смириться с увеличением уровня электромагнитных помех, то можно использовать дроссель типа ДМ-2,4 индуктивностью 20 мкГч.

Конденсаторы С2 и С5 типа К53 (К53-18), С1 и С4 — керамические (для снижения уровня высокочастотных помех), VD1 — диод Шотки (1 N5818, 1 N5819, SR106, SR160 и др.).

Как сделать АС/АС конвертор

АС/АС и DC/DC конверторы, имеют идентичные схемы. Только в АС/АС конверторах необходимо исключить полярные элементы и использовать силовые ключи, которые «…способны находиться или в замкнутом (проводящем), или в разомкнутом (непроводящем) состоянии и обеспечивать протекание или блокировку протекания тока в любом направлении» . Если первое условие интуитивно понятно – нельзя использовать полярные элементы на переменном токе, то второе условие необходимо объяснить более подробно.

Сегодня в качестве силовых ключей из доступной элементной базы можно использовать механические контакты (например, контакты реле), полупроводниковые диоды, биполярные транзисторы, MOSFET и IGBT (Рисунок 1).

Рисунок 1.Протекание тока в силовых элементах.

Диоды, биполярные транзисторы и IGBT пропускают ток только в одном направлении, причем диод – это неуправляемый элемент. Поэтому в качестве самостоятельных ключей АС/АС конверторов эти приборы использовать нельзя. Проводящий канал MOSFET пропускает ток в обоих направлениях, а его сопротивление определяется напряжением между затвором и истоком. Теоретически, MOSFET вполне подходит для преобразования переменного тока. Однако наличие в этих приборах паразитного диода приводит к тому, что для одного из направлений ток невозможно блокировать. Таким образом, единственными элементами, которые можно использовать для ключей АС/АС конвертора, остаются механические контакты. Они могут, как пропускать ток, так и блокировать его протекание в любом направлении. Но механические контакты физически не могут переключаться с высокой частотой, имеют низкую надежность, высокий уровень шума и много других недостатков, из-за которых в современных преобразователях они не применяются.

В результате, ни один из приборов, показанных на Рисунке 1, в качестве полноценного самостоятельного силового ключа АС/АС конвертора использовать нельзя, поэтому в преобразователях переменного напряжения силовые ключи представляет собой комбинацию из нескольких полупроводниковых приборов (Рисунок 2). Аналогичные схемы используются в матричных преобразователях и подробно описаны в .

Рисунок 2.Силовые ключи АС/АС конверторов.

Сразу видно, что эти схемы имеют серьезный недостаток – ток протекает минимум через два силовых элемента: диод и транзистор, что негативно сказывается на КПД и стоимости преобразователя. Но, возможно, в будущем появятся более эффективные решения. Например, в упомянуты RB-IGBT и BD-IGBT, но эти приборы по своим характеристикам, доступности и стоимости пока не достигли уровня, достаточного для широкого применения.

Рисунок 3.Понижающий (а), повышающий (б) и инвертирующий (в) АС/АС конверторы.

Из приведенных решений наибольший интерес представляет схема Рисунка 2в, поскольку в ней один драйвер может управлять двумя транзисторами, в качестве которых из-за меньших потерь на управление лучше использовать MOSFET или IGBT. При использовании MOSFET, если падение напряжения на открытом канале меньше прямого напряжения на диоде, ток будет проходить только через каналы транзисторов, а диод в процессе преобразования принимать участия не будет. Для ключей на основе IGBT можно использовать приборы со встроенным антипараллельным диодом. Это позволяет уменьшить количество корпусов и упростить разводку платы, хотя при этом ухудшается охлаждение кристаллов

При выборе IGBT со встроенным диодом необходимо обращать внимание также на тепловое сопротивление переход-корпус диода – оно должно быть соизмеримо с аналогичным сопротивлением транзистора, потому что в некоторых приборах диод может иметь в несколько раз большее тепловое сопротивление, чем транзистор

Для построения АС/АС конвертора можно взять любую схему DC/DC преобразователя, исключить полярные элементы, а в качестве традиционных транзисторов и диодов использовать управляемые двунаправленные силовые ключи, показанные на Рисунке 2. В качестве примера на Рисунке 3 приведены схемы классических (базовых) АС/АС конверторов понижающего, повышающего и инвертирующего типов. При преобразовании переменного тока они будут выполнять те же функции: понижать, повышать и инвертировать величину входного напряжения.

Источник питания для питания портативных и карманных приемников

Бестрансформаторный источник питания (рис. 23) предназначен для питания портативных и карманных приемников от сети переменного тока напряжением 220 В. Следует учитывать, что этот источник электрически не изолирован от питающей сети. При выходном напряжении 9В и токе нагрузки 50 мА источник питания потребляет от сети около 8 мА.

Рис. 23. Схема бестрансформаторного источника питания на основе импульсного преобразователя напряжения.

Сетевое напряжение, выпрямленное диодным мостом VD1 — VD4 (рис. 4.23), заряжает конденсаторы С1 и С2. Время заряда конденсатора С2 определяется постоянной цепи R1, С2. В первый момент после включения устройства тиристор VS1 закрыт, но при некотором напряжении на конденсаторе С2 он откроется и подключит к этому конденсатору цепь L1, СЗ.

При этом от конденсатора С2 будет заряжаться конденсатор СЗ большой емкости. Напряжение на конденсаторе С2 будет уменьшаться, а на СЗ — увеличиваться.

Ток через дроссель L1, равный нулю в первый момент после открывания тиристора, постепенно увеличивается до тех пор, пока напряжения на конденсаторах С2 и СЗ не уравняются. Как только это произойдет, тиристор VS1 закроется, но энергия, запасенная в дросселе L1, будет некоторое время поддерживать ток заряда конденсатора СЗ через открывшийся диод VD5. Далее диод VD5 закрывается, и начинается относительно медленный разряд конденсатора СЗ через нагрузку. Стабилитрон VD6 ограничивает напряжение на нагрузке.

Как только закрывается тиристор VS1 напряжение на конденсаторе С2 снова начинает увеличиваться. В некоторый момент тиристор снова открывается, и начинается новый цикл работы устройства. Частота открывания тиристора в несколько раз превышает частоту пульсации напряжения на конденсаторе С1 и зависит от номиналов элементов цепи R1, С2 и параметров тиристора VS1.

Конденсаторы С1 и С2 — типа МБМ на напряжение не ниже 250 В. Дроссель L1 имеет индуктивность 1…2 мГн и сопротивление не более 0,5 Ом. Он намотан на цилиндрическом каркасе диаметром 7 мм.

Ширина обмотки 10 мм, она состоит из пяти слоев провода ПЭВ-2 0,25 мм, намотанного плотно, виток к витку. В отверстие каркаса вставлен подстроечный сердечник СС2,8х12 из феррита М200НН-3. Индуктивность дросселя можно менять в широких пределах, а иногда и исключить его совсем.

Добавить ссылку на обсуждение статьи на форуме

РадиоКот >Схемы >Питание >Преобразователи и UPS >

Теги статьи:Добавить тег

Инвертор питания к ноутбуку для грузового автомобиля 24…28В / 19В 10А.

Автор: Провада Юрий Петрович aka Simurg Опубликовано 09.09.2010

2010

Предлагаемый Вашему вниманию преобразователь будет полезен водителям дальнобойщикам, водителям грузовых автомобилей с напряжением на борту 24 В, а также для тех, кто хочет разобраться в принципе работы и построения импульсного понижаемого преобразователя напряжения большой мощности. На грузовых машинах обычно установлены соединенные последовательно два аккумулятора по 12В. Большинство ноутбуков рассчитаны на 19В. Самый простой способ подключить ноутбук к линейному стабилизатору напряжения по схеме:

Но это давно в прошлом. Сейчас наступил век энергосбережения, и расходовать столько мощности на тепло, а потом бороться с его выделением — не наши методы. Наша цель — понижающий преобразователь напряжения до 19 В, без большого выделения тепла. Для самого мощного ноутбука на максимальной загрузке и зарядке с нуля необходим ток 5:8А, а с учетом запаса выходной ток преобразователя должен быть в районе 10:12А. А это уже не маленькая мощность 228 Вт. Нагревать силовыми компонентами схемы воздух в кабине недопустимо, и так жарко. Эта статья предназначена для тех, кто хочет понять принцип работы импульсного понижающего преобразователя напряжения. Сделав данный преобразователь, вы получите достаточно опыта для самостоятельного проектирования понижаемых преобразователей DC/DC. Сначала преподнесу немного теории, которую все из Вас знают. Освежить знания в памяти никогда вредным не бывает. Основы накопления энергии. Уравнение (1.1), выражающее правило Ленца, содержит определение индуктивности. Катушка обладает индуктивностью в один генри, если изменение тока на один ампер за одну секунду производит напряжение на катушке в один вольт: V=L di/dt. (1.1) Первое следствие уравнения (1.1) состоит в том, что ток, протекающий через катушку индуктивности, не может изменяться мгновенно. Ведь в этом случае на катушке возникло бы бесконечное напряжение. В реальности же такие эффекты, как, например, возникающая при «пробое» контактов электрическая дуга, ограничивают это напряжение очень высоким, но не бесконечным значением. Вторым следствием уравнения (1.1) является то, что напряжение на катушке индуктивности мгновенно изменяется с положительного на отрицательное при переключении с накопления энергии в индуктивности (производная di/dt положительна) на извлечение энергии из неё (di/dt отрицательна). Разложим по коробочкам наш понижающий преобразователь. На Рис. 1 изображена идеальная модель понижающего преобразователя, содержащая из идеального источника напряжения, идеального управляемого ключа, идеального диода, идеального дросселя, идеального конденсатора и нагрузочного резистора.

Преобразователь понижающий потому, что выходное напряжение всегда меньше входного, так как напряжение на дросселе встречно входному (противоположно по полярности напряжению источника). Данный идеальный стабилизатор предназначен для работы от источника напряжением 24 В и обеспечивает напряжение 19 В на нагрузке 2 Ом. Ключ размыкается и замыкается через каждые 1 мкс, и на пассивных компонентах формируется сигнал с широтно — импульсной модуляцией. В установившемся режиме выходное напряжение стабилизатора равно 19вольт = 28вольта * коэффициент заполнения. Следовательно: коэффициент заполнения = 19вольт / 28вольта (0,678 *100% = 68%) Коэффициент заполнения — величина, характеризующая отношение между положительными и отрицательными полупериодами в последовательности импульсов. Это уравнение определяет выходное напряжение преобразователя вне зависимости от значений индуктивности, тока нагрузки и ёмкости выходного конденсатора, при условии, что через дроссель течёт непрерывный ток. При этом подразумевается, что напряжение на дросселе имеет прямоугольную форму. В данной схеме диод используется в качестве управляемого напряжением вентиля. В то время, когда входной ключ разомкнут, диод обеспечивает канал для протекания разрядного тока дросселя. Напряжение на дросселе при уменьшении протекающего через него тока, имеет отрицательную полярность, поэтому диод открывается. При замкнутом ключе дроссель накапливает энергию и диод смещён в обратном направлении, поэтому ток через него не течёт. При проектировании понижающего преобразователя мы будем для простоты считать, что прикладываемое к дросселю напряжение в процессе накопления энергии имеет идеально прямоугольную форму. Хорошее приближение к идеально прямоугольной форме достигается при колебаниях напряжения на дросселе в процессе накопления энергии в пределах 0.04 В при входном напряжении 24 В, т. е. 0.16%, а в процессе отдачи энергии — 0.04 В при выходном напряжении 19 В, т. е. 0.21%. Постоянная амплитуда прямоугольных импульсов способствует постоянству di/dt в уравнении (1.1). На Рис. 1.2 изображены кривая выходного напряжения (нижний график) и кривая тока дросселя (верхний график) в установившемся режиме преобразователя, обеспечивающем напряжение 19 В и ток 9,5 А на нагрузочном резисторе 2 ома.

Заметим, что колебания выходного тока относительно малы по сравнению со значением постоянного тока в дросселе. В данном случае пиковый ток пульсаций составляет 1,4 А. Ещё одним важным моментом является то, что в установившемся режиме ток пульсаций не зависит от тока нагрузки, так как ток, протекающий через дроссель, управляется напряжением на нём. Крутизна нарастания тока и продолжительность фазы накопления энергии определяются исключительно разностью напряжений Vin-Vout. Средний ток дросселя равен выходному току. с Работа понижающего преобразователя может также осуществляться в прерывистом режиме, при котором в течение некоторой части периода коммутации ток дросселя равен нулю. Для прерывистого режима работы уравнение (1.1) несправедливо. Пульсации выходного напряжения в понижающем преобразователе, работающем в прерывистом режиме, выше, так как конденсатор фильтра должен обеспечивать ток нагрузки в то время, когда ток дросселя равен нулю. Как правило, понижающий преобразователь работает в прерывистом режиме, только когда ток нагрузки становится намного меньше номинального расчётного значения. Режимы работы дросселя (непрерывный и прерывистый ток) — при увеличении индуктивности выше определенного значения (зависит от нагрузки) ток дросселя перестает уменьшаться до нуля в течении каждого периода. Индуктивность в таком случае влияет на приращение тока за время открытого состояния ключа. Если W(I) =(L*I^2)/2 зависимость накопленной в дросселе энергии от тока, то в непрерывном режиме передаваемая за один период энергия составит W = W(I0 + deltaI) — W(I0), где I0 — ток в дросселе на момент включения ключевого транзистора. Скважность в режиме непрерывного тока от нагрузки не зависит. При увеличении нагрузки приращение тока дросселя (deltaI) остается постоянным, но растет I0 — за счет чего будет обеспечена любая выходная мощность при любом значении индуктивности. В режиме непрерывного тока, при дальнейшем увеличении индуктивности, форма тока ключа приближается к прямоугольным импульсам (соответственно, уменьшается пиковый ток). Приращение тока дросселя практически не зависит от сопротивления ключа. Оно определяется как Uвх*ton/L. Разумеется, в реальности мощность будет ограничена одним из следующих факторов: 1) потери на активном сопротивлении (ключа, дросселя, диода), 2) насыщение магнитопровода дросселя (как следствие, пункт 1), 3) переход ключевого транзистора в активный режим (опять же, как следствие, пункт 1), 4) ограниченный диапазон регулирования скважности ШИМ-контроллером И многое другое. При нормальном функционировании ключа, падение напряжения на нем в открытом состоянии много меньше напряжения питания. Соответственно, ток в дросселе нарастает практически линейно, в соответвии с законом di=U*dt/L. Если дело дошло до того, что активное сопротивление ключа существенно влияет на работу преобразователя — надо ставить другой ключ. Слишком малая величина индуктивности потребует слишком большой пиковый ток ключа, но энергию накопит. Сколь угодно большая величина индуктиности не ограничит выходную мощность, даже если не менять рабочую частоту. Преобразователь будет работать в режиме непрерывного тока дросселя со всеми вытекающими. В общем случае, оптимальная индуктивность зависит от частоты, входного напряжения, и выходной мощности (а критерии оптимальности могут быть разными) Если использовать большую индуктивность (при той же частоте преобразования и выходной мощности), ничего страшного не произойдет. Потребуется дроссель больших габаритов, но уменьшится пиковый ток ключа. Преобразователь начнет работать в режиме непрерывного тока после того, как нагрузка превысит определенный порог. Форма тока ключа в таком режиме — трапеция. В момент включения устройства ток дросселя нулевой, за одно включение ключа он увеличится до Uпит*ton/L. В следующий период, к моменту включения ключа, ток дросселя не успевает снизится до нуля, в чем собственно отличие режима непрерывного тока от прерывистого. С каждым следующим периодом начальный ток дросселя (на момент включения ключа) растет. Это происходит до тех пор, пока преобразователь не выйдет на установившийся режим (за энное количество периодов). В установившемся режиме (непрерывного тока), при достаточно большой индуктивности (любой конечной величине), пиковый ток дросселя практически равен среднему (пульсации тока много меньше среднего значения), средний ток = Iвых*Uвых/Uвх (без учета потерь). Дроссель работает как некое подобие трансформатора. В режиме непрерывного тока коэффициент заполнения от нагрузки не зависит. Время включения ключа составляет ton = (1/f)*(Vout-Vin)/Vout (без учета потерь), Передаточные функции преобразователя в режиме прерывистого и непрерывного тока разные. Если в первом случае дроссель работает как накопитель энергии, то во втором — как трансформатор (примерно).

Синхронное выпрямление

Во всех рассмотренных в этой главе схемах диоды используются в качестве ключей, управляемых напряжением. Смещённые в обратном направлении, они представляют собой разомкнутые ключи, а в прямом направлении — замкнутые. В качестве ключей могут также выступать полевые МОП-транзисторы (MOSFET). Если напряжение затвор-исток достаточно для отпирания транзистора, ток может течь через транзистор в том или другом направлении. Полевые транзисторы, применяемые в качестве ключей, имеют сопротивление в открытом состоянии от 0.01 Ом и ниже. Падение напряжения на диоде Шотки при токе 10 А составляет примерно 0.6 В, а мощность рассеяния — 6 Вт. Полевой транзистор с сопротивлением 0.01 Ом при токе 10 А рассеивает мощность 0.1 Вт. Поэтому применение полевого транзистора существенно повышает эффективность преобразователя. На Рис. 2 изображён понижающий стабилизатор с использованием синхронного выпрямителя и идеальных пассивных компонентов. В этой схеме используется интегральная микросхема — идеальный контроллер понижающего преобразователя, который управляет полевыми транзисторами и обеспечивает обратную связь по напряжению. Когда закрывается Q1, на короткое время открывается Q2, для сброса в начальный момент максимального тока, далее на малом остаточном ток работает диод шоттки. В этом примере показан только понижающий преобразователь, но подобным образом можно заменить диоды полевыми МОП-транзисторами во всех типах преобразователей.

В нашем понижающем преобразователе частота следования импульсов постоянна, а их ширина меняется, т. е. используется широтно-импульсная модуляция (ШИМ), и нам обеспечить электромагнитную совместимость оказывается проще чем в схеме с частотно-импульсной модуляцией, а пульсации на выходе схемы более предсказуемы и контролируемы. Базовая схема ШИМ-контроллера с управлением по напряжению изображена на Рис.3.

Выходное напряжение преобразователя через делитель напряжения поступает на неинвертирующий вход усилителя ошибки, на выходе которого формируется масштабированный, с учётом опорного напряжения, сигнал ошибки (рассогласования). Для генерации пилообразного сигнала постоянной частоты используется мультивибратор, такой, как в микросхеме КР1006ВИ1. Как правило, зарядный ток времязадающего конденсатора определяется сопротивлением времязадающего резистора. Когда напряжение на конденсаторе достигает точки срабатывания, включается входящий в состав генератора пилообразного напряжения (ГПН) триггер и конденсатор быстро разряжается до напряжения отпускания. В результате сравнения напряжения на выходе усилителя ошибки и напряжения ГПН вырабатывается сигнал управления выходным ключом преобразователя, что иллюстрирует график:

Когда напряжение ГПН меньше выходного напряжения усилителя ошибки, ключ открывается (замыкается). Когда напряжение ГПН превышает выходное напряжение усилителя ошибки, ключ размыкается. Если напряжение ошибки меньше, чем минимальное значение пилообразного напряжения, то коэффициент заполнения составляет 80%; если напряжение ошибки превышает максимальную величину пилообразного напряжения, то коэффициент заполнения составляет 0%. В обратноходовых и повышающих преобразователях необходимо обеспечивать некое минимальное значение интервала между импульсами, то есть коэффициент заполнения не должен достигать 100%, с тем чтобы энергия, накопленная в дросселе, могла быть передана в выходную цепь. Некоторые схемы прямоходовых преобразователей также требуют определённого значения интервала между импульсами. Современные ШИМ-контроллеры с управлением по напряжению снабжены механизмом, обеспечивающим коэффициент заполнения менее 100%.

ШИМ управление по току имеет свои преимущества перед управлением по напряжению. Они заключаются в улучшенной переходной характеристике и более простом контуре управления. На Рис. 4 изображена типовая схема ШИМ контроллера с управлением по току (типа UC3842 — UC3845). В этой схеме используется генератор импульсов постоянной частоты.

Очередной импульс с генератора, поступающий на вход установки (S) RS-триггера, устанавливает его выход в ВЫСОКИЙ уровень, что приводит к открыванию транзисторного ключа. Когда напряжение на токоизмерительном резисторе Лизм. достигает величины задаваемого усилителем ошибки напряжения срабатывания компаратора, последний «сбрасывает» (переключает) триггер, в результате чего ключ размыкается (ток через транзистор больше не течет). Усилитель ошибки используется для регулировки точки срабатывания ключа по току так, чтобы тока дросселя хватило для поддержания выходного напряжения. По мере того как выходное напряжение достигает желаемого значения, сигнал ошибки «снижает» ток срабатывания, чтобы поддерживать средний ток дросселя постоянным.

Далее конкретно по нашим схемам: Первая схема (готовая плата), не большой мощности, годится для небольшого ноутбука, или нетбука с максимальным током 4 ампера.

Частота преобразования 78кГц. В ходе испытаний выяснилось, что при приближении к максимальной мощности выходному ключу не хватает драйвера. (Что бы исправить этот недостаток, можно собрать на LM3477 у которой уже есть встроенный драйвер. Даташит на неё https://www.nscrus.ru/content/catalog/pdf/LM3477.pdf

или вообще, если лень пересиливает, без транзистора на LM2677 (см. даташит по ссылке https://www.nscrus.ru/content/catalog/pdf/LM2677.pdf )). Так как коты лёгких путей не ищут, то экспериментируем, исследуем свои схемы. Схема на LM3578 работает и многократно испытана. В данной схеме нет токового ограничения, и она боится короткого замыкания в нагрузке. Будьте внимательны. Дроссель намотан на желтом кольце с одной белой стороной. Индуктивность дросселя 88 мкГн, но можно до 100мкГн. Примерно 50-65 витков ПЭВ-2 0,6 мм равномерно распределённых по кольцу. Схема собрана на МС LM3578. Даташит на неё здесь: https://www.datasheetcatalog.org/datasheet/nationalsemiconductor/DS008711.PDF Выходной транзистор здесь: https://www.datasheetcatalog.org/datasheet/cet/CEM9435A.pdf

Вид печатной платы:

Для защиты от перенапряжения при пробое транзистора, используется супрессор на 20 вольт 1,5КЕ20А в паре с предохранителем на 5 ампер. Микросхема не дорогая, но дороже чем МС34063. В данной схеме нет синхронного выпрямления и диод греется до 85 градусов, что не есть хорошо. В следующей схеме мы будем использовать синхронное выпрямление на полевом n-канальном транзисторе, что бы увеличить КПД на 5 — 10%.

Мощный понижающий преобразователь с синхронным выпрямлением

Схема:

Это понижающий преобразователь с синхронным выпрямлением. Данный вид преобразователя лучший вариант, так как при большой мощности синхронное выпрямление дает нам прирост КПД на 5-10%, при этом сильно не усложняет схему. Управляющая микросхема МС34063, как самая доступная. Микросхему выпускают большое количество производителей. MC34063 плоховато годится для маленькой нагрузки при работе на дополнительный ключ, а не на свой встроенный. При избыточно установленной мощности, в ней включается режим пропуска такта при малой нагрузке, следствием которого будут повышенные помехи в выходном напряжении. Но это есть во многих контроллерах питания. Например, в той же TNY26х. Только в МС34063 это сделано просто. Если хочется удостоверится в сходстве, то возьмите, например, всем известную UC3842, про которую явно написано, что это «ШИМ-контроллер с обратной связью по току». Что произойдет, если сигнал на входе Vfb упадет ниже 1,3В? Да то же самое, что и у МС34063 — UC3842 будет пропускать импульсы. Это, кстати, один из способ ее блокировки (подтягивание сигнала на Vfb к потенциалу PGND). Для питания же мощного ноутбука использование в качестве управляющей микросхемы МС34063 вполне приемлемо. Главные достоинства МС34063 низкая стоимость, минимум дополнительной обвязки, шунт в плюсовой цепи. Но сюда конечно можно установить и UC3843 и UC3842 (если UC3842, то напряжение питания надо поднять до 16,3в) с соответствующей обвязкой, но тогда шунт будет на минусовом проводе, что очень плохо. Тогда нельзя подключаться к диагностическому разъему самого автомобиля при одновременном питании от преобразователя. Шунт в этом случае будет закорочен. Далее по схеме драйвер. Драйвер силовых транзисторов IR2183 (цена около 3 у.е.). Один из ее входов — прямой, второй — инверсный и для синхронного выпрямления внешний инвертор не нужен. В микросхему встроена логика, препятствующая одновременному отпиранию обоих транзисторов (сквозные токи) и генератор пауз («мертвое время», dead time) между импульсами на выходах. У микросхемы мощные для управления выходными полевыми транзисторами выходы — 1,7А. Дифференцирующая цепь R6, C4 — для работы нижнего транзистора в синхронном выпрямителе, позволяет драйверу включать его только в короткий момент времени, сразу после закрытия верхнего транзистора. В этот короткий момент ток протекающий через транзистор максимальный. В дальнейшем, когда ток уже минимальный, работает 45- вольтовый диод шоттки с компьютерного блока питания канала 5 вольт. Если цепь R6, C4 не ставить, а соединить выводы 2 и 3 вместе, транзистор нижнего уровня будет открыт больше необходимого, тем самым закоротит выходной конденсатор. В качестве диода, использован полевой транзистор VT2 — у диодов падение напряжения на переходе 0,8В, у диодов Шоттки — 0,6В, здесь оно около 0,1В. Для оптимальной работы транзистора подбирается цепочка R6C4 и делитель R7R8. Для защиты от короткого замыкания нагрузки и ограничения выходного тока работает блок защиты встроенный в микросхему МС34063. Резистор R12 — датчик тока, при падении напряжения на этом резисторе более 300 мВ, МС34063 уменьшит длительность импульсов на своем выходе, соответственно уменьшится напряжение на выходе преобразователя. Для питания микросхемы драйвера и коллектора выходного транзистора в МС34063 напряжение питания 15 В. Фильтрующие электролитические конденсаторы набраны из нескольких параллельно соединенных конденсаторов меньшей емкости, и зашунтированы керамическими SMD. При работе эти конденсаторы немного теплые. При токе нагрузки 5:6 А, нагрев всего преобразователя менее 40 градусов при окружающей температуре 28 градусов. Дроссель взят в качестве эксперимента с компьютерного блока питания канала 3,3 вольта и не перематывался. Во время испытаний показал хорошие характеристики и не сильно греется. Его индуктивность 51 мкГн. Дроссель намотан на желтом кольце с одной белой стороной. Его так и оставил, хотя можно было бы и перемотать в несколько проволочек, для снижения скин-эффекта. Процесс сборки: Плата сделана по технологии ЛУТа.

Зачищаем и покрываем спирто-канифольным раствором (у автора он хранится в масленке, так проще пользоваться), далее сушим термофеном, чтобы не прилипала к рукам в процессе сборки. Фото по шагам. Счищаем наждачной бумагой тонер:

Плата разрабатывалась под такой радиатор

Готовая плата:

Верхняя сторона минусового проводника соединяется с нижней стороной по самому краю платы с дорожкой входа выхода и является экраном.

Настройка. Подключаем к блоку питания через лампочку на 24 В, 1:2 А. Напряжение на выходе преобразователя около 19 В, лампочка по питанию не светится. При работе преобразователь не должен возбуждаться, не должно быть слышно никакого треска. Теперь вместо лампочки в цепи питания ставим амперметр с пределом измерений более 20 А, а к выходу подключаем спираль из нихрома на ток 8 А (т.е. ее мощность 24:48 Вт). Потребляемый схемой от аккумулятора ток должен быть примерно в 1,3 раза меньше тока спирали, оба полевых транзистора греться сильно не должны и температура обоих транзисторов должна быть одинаковой. Если нижний транзистор вообще не греется, а заметно греется диод, то надо убедиться в присутствии сигнала на его затворе. Настройка синхронного выпрямителя: Вместо R6 подключите подстроечный резистор и медленно вращая его смотрим на потребляемый схемой ток. Он начнет уменьшаться — примерно на 5:10%. Этот ток раньше потреблял диод шоттки. Если вращать далее то, потребляемый схемой ток резко возрастает в несколько раз. Движок устанавливаем в такое положение, когда потребляемый ток уменьшился, но до резкого возрастания далеко. Все электролиты необходимо набрать из нескольких параллельно соединенных конденсаторов, но меньшей емкости, а так же параллельно им включить многослойные SMD керамические конденсаторы емкостью 1 мкф и больше. Силовые дорожки должны быть потолще и тщательно пролужены с толстым-толстым слоем шоколада припоя. Если возникает возбуждение — скорее всего, недостаточно керамических шунтирующих конденсаторов по питанию. Вышеприведенные инверторы легко можно переделать на выходное напряжение 12 вольт, изменив лишь резистор обратной связи по напряжению на другой номинал. Теперь некоторые осциллограммы: На выходе 34063. Драйвер и транзисторы еще не подключены. 34063 на максимальной ширине.

С выхода драйвера нижнего ключа

И оно же более растянуто

По транзисторам: Автор применил выходные транзисторы, аккуратно выломанные из UPS-ов, у которых вышел из строя аккумулятор. Фото транзисторов для преобразователя:

Для корпуса возьмем готовую покупную коробочку-корпус ценой за 1,5$

Фото собранного преобразователя на испытаниях. Ток выхода 7 ампер 19 вольт. Под радиатором вырезана нихромовой проволочкой большое отверстие для платы, которая в него проваливается до радиатора. Надпись напротив светодиодов «Safety is damaged» означает что предохранитель сгорел, а «Accum. Discharged» — аккумулятор сел. Схема индикатора разрядки аккумулятора:

В результате проделанных исследований получился понижающий преобразователь с 28 на 19 вольт для любого ноутбука с высоким КПД 84 — 90% в зависимости от входного напряжения, и номинальным током 10А. Удачных экспериментов, а также увлекательной и познавательной работы. Спасибо за проявленное терпение в чтении статьи.

Файлы:

Печатные платы в формате SL 5.0.

Вопросы, как обычно, складываем тут.

Как вам эта статья? Заработало ли это устройство у вас?
2410

Схемы устройств для преобразования энергии

Схемы устройств для преобразования энергии показаны на рис. 4.24 и 4.25. Они представляют собой понижающие преобразователи энергии с питанием от выпрямителей с гасящим конденсатором. Напряжение на выходе устройств стабилизировано.

Рис. 24. Схема понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.

Рис. 25. Вариант схемы понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.

В качестве динисторов VD4 можно использовать отечественные низковольтные аналоги — КН102А, Б. Как и предыдущее устройство (рис. 23), источники питания (рис. 24 и 25) имеют гальваническую связь с питающей сетью.

Как регулируется выходной ток

Это возможно только в том случае, если мы имеем дело с настраиваемым напряжением выхода в варианте LM2596ADJ. В Китае производится именно такая плата, где есть всевозможная индикация. Такой модуль можно приобрести под наименованием xw026fr4.


xw026fr4

Если у вас нет желания использовать готовый модуль, сделайте устройство своими руками. Это не сложно. Есть только одна проблема — микросхема не управляет током, но это можно изменить.

Преобразователь тока — актуальное устройство, применяемое в световых и лазерных диодах, гальванических элементах, зарядках. Приобрести его можно в популярных интернет-магазинах.

Преобразователь напряжения с импульсным накоплением энергии

В преобразователе напряжения С. Ф. Сиколенко с «импульсным накоплением энергии» (рис. 26) ключи К1 и К2 выполнены на транзисторах КТ630, система управления (СУ) — на микросхеме серии К564.

Рис. 26. Схема преобразователя напряжения с импульсным накоплением.

Накопительный конденсатор С1 — 47 мкФ. В качестве источника питания используется батарея напряжением 9 В. Выходное напряжение на сопротивлении нагрузки 1 кОм достигает 50 В. КПД составляет 80% и возрастает до 95% при использовании в качестве ключевых элементов К1 и К2 КМОП-структур типа RFLIN20L.

Свойства инверторов [ править | править код ]

  • Инверторы напряжения позволяют устранить или по крайней мере ослабить зависимость работы информационных систем от качества сетей переменного тока. Например, в персональных компьютерах при внезапном отказе сети с помощью резервной аккумуляторной батареи и инвертора, образующих источник бесперебойного питания
    (ИБП), можно обеспечить работу компьютеров для корректного завершения решаемых задач. В более сложных ответственных системах инверторные устройства могут работать в длительном контролируемом режиме параллельно с сетью или независимо от неё.
  • Кроме «самостоятельных» приложений, где инвертор выступает в качестве источника питания потребителей переменного тока, широкое развитие получили технологии преобразования энергии, где инвертор является промежуточным звеном в цепочке преобразователей. Принципиальной особенностью инверторов напряжения для таких приложений является высокая частота преобразования (десятки-сотни килогерц). Для эффективного преобразования энергии на высокой частоте требуется более совершенная элементная база (полупроводниковые ключи, магнитные материалы, специализированные контроллеры).
  • Как и любое другое силовое устройство, инвертор должен иметь высокий КПД, обладать высокой надежностью и иметь приемлемые массо-габаритные характеристики. Кроме того, он должен иметь допустимый уровень высших гармонических составляющих в кривой выходного напряжения (допустимое значение коэффициентов гармоник) и не создавать при работе недопустимый для других потребителей уровень пульсации на зажимах источника энергии.
  • В системах чистого измеренияGr > Работа инвертора

Работа инвертора напряжения основана на переключении источника постоянного напряжения с целью периодического изменения полярности напряжения на зажимах нагрузки. Частота переключения задается сигналами управления, формируемыми управляющей схемой (контроллером). Контроллер также может решать дополнительные задачи:

  • регулирование напряжения;
  • синхронизация частоты переключения ключей;
  • защитой их от перегрузок и др.

По принципу действия инверторы делятся на:

  • инверторы напряжения (АИН), пример — инверторы большинства ИБП;
  • инверторы тока (АИТ), пример — советский аэродромный преобразователь АПЧС-63У1 ;
  • резонансные инверторы (АИР);

зависимые (инверторы, ведомые сетью), пример — силовой преобразователь электровозов ВЛ85, ЭП1 и др.

Импульсно-резонансный преобразователь

Импульсно-резонансные преобразователи конструкции к,т.н. Н. М. Музыченко, один из которых показан на рис. 4,27, в зависимости от формы тока в ключе VT1 делятся на три разновидности, в которых коммутирующие элементы замыкаются при нулевом токе, а размыкаются — при нулевом напряжении. На этапе переключения преобразователи работают как резонансные, а остальную, большую, часть периода — как импульсные.

Рис. 27. Схема импульсно-резонансного преобразователя Н. М. Музыченко.

Отличительной чертой таких преобразователей является то, что их силовая часть выполнена в виде индуктивно-емкостного моста с коммутатором в одной диагонали и с коммутатором и источником питания в другом. Такие схемы (рис. 27) отличаются высокой эффективностью.

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.

Принцип работы импульсного блока питания

В основе работы инвертора лежит выпрямление первичного напряжения и дальнейшее его преобразование в последовательность импульсов высокой частоты. Этим он отличается от обычного трансформатора. Выходное напряжение блока служит для формирования сигнала отрицательной обратной связи, что позволяет регулировать параметры импульсов. Управляя шириной импульсов, легко организовать стабилизацию и регулировку выходных параметров, напряжения или тока. То есть это может быть как стабилизатор напряжения, так и стабилизатор тока.

Количество и полярность выходных значений может быть самым различным в зависимости от того, как работает импульсный блок питания.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]