DC/DC-преобразователи: принципы работы и уникальные решения Maxim Integrated

17 декабря 2019

учёт ресурсовуправление питаниемпотребительская электроникаавтоматизацияинтернет вещейMaxim Integratedстатьяинтегральные микросхемысредства разработки и материалыDC-DC

Александр Русу (г. Одесса)

Общий КПД импульсного преобразователя в электронных приборах малой мощности с автономным питанием снижается в основном за счет тока утечки схемы управления. Свести этот ток практически к нулю помогут интегральные DC/DC из новой серии nanoPower производства Maxim Integrated.

На сегодняшний день найти или изготовить самостоятельно высококачественный преобразователь постоянного напряжения мощностью от нескольких ватт до нескольких киловатт не представляет особой сложности. Однако питание оборудования, потребляемая мощность которого измеряется микроваттами, уже является серьезной технической проблемой, ведь при таких уровнях потребления увеличивается относительная величина «накладных расходов» в виде затрат энергии на работу схемы управления, что приводит к ощутимому снижению КПД преобразователя в целом. Кроме этого, практически во всех современных устройствах, питающихся от батарей, активно используются энергосберегающие режимы, в которых все неиспользуемые в данный момент системы отключаются от источника энергии. А это еще больше ужесточает требования к узлам питания, ведь теперь они должны иметь еще и минимально возможный ток утечки в выключенном состоянии.

При этом количество устройств с батарейным питанием с каждым годом постоянно увеличивается, а требования к ним ужесточаются. Поэтому большинство ведущих производителей электронных компонентов регулярно предлагают инженерам новые решения в этой области.

Не осталась в стороне и компания Maxim Integrated, которая не так давно представила линейку микросхем nanoPower, отличающихся сверхмалым энергопотреблением. На сегодняшний день в этой линейке присутствуют малопотребляющие операционные усилители, компараторы, датчики температуры и другие узлы, активно использующиеся в самых разнообразных радиотехнических устройствах. Конечно же, Maxim Integrated не оставил без внимания и сектор DC/DC преобразователей напряжения, разработав в рамках данного направления целые семейства специализированных микросхем с ультрамалым энергопотреблением.

Сравнение линейного и импульсного способов преобразования

Самой популярной схемой преобразователей постоянного напряжения можно назвать понижающую, ведь в реальной аппаратуре задача уменьшения напряжения возникает намного чаще, чем увеличения или изменения его полярности. Но уменьшить входное напряжение можно двумя способами: импульсным и линейным. Поскольку каждый из способов имеет свои достоинства и недостатки, а значит – и свои области применения, то разработчику необходимо их изучить.

Фундаментальную разницу между линейным и импульсным способами уменьшения напряжения можно понять из рисунка 1. Линейный стабилизатор работает по принципу резистивного делителя напряжения. Его регулирующий элемент (транзистор VT1) функционирует в активном режиме, обеспечивая такое падение напряжения между выводами коллектора и эмиттера, чтобы выходное напряжение VOUT на нагрузке RLOAD находилось в заданных пределах. Поскольку через транзистор VT1 протекает весь ток нагрузки IOUT, КПД данной схемы будет напрямую зависеть от разницы напряжений между входом и выходом (формула 1):

$$\eta =\frac{P_{OUT}}{P_{IN}}=\frac{I_{OUT}\times V_{OUT}}{I_{OUT}\times V_{IN}}=\frac{V_{OUT}}{V_{IN}},\qquad{\mathrm{(}}{1}{\mathrm{)}}$$

где РIN и POUT – соответственно, входная и выходная мощности преобразователя.

Рис. 1. Сравнение линейного и импульсного способов уменьшения напряжения

И теперь становится очевидным главный недостаток линейных стабилизаторов – чем больше разница напряжений между входом и выходом, тем меньше его КПД, причем практически вся «лишняя» мощность выделяется на регулирующем элементе VT1, что требует установки его на радиатор, размеры которого порой превосходят размеры всех остальных элементов устройства.

До недавнего времени линейные стабилизаторы строились на основе биполярных кремниевых транзисторов, у большинства из которых падение напряжения между коллектором и эмиттером физически не могло быть меньше 1 В. Для стабилизаторов с относительно высоким выходным напряжением (более 5 B) такое падение напряжения было еще вполне приемлемым, однако в современных микроконтроллерных устройствах напряжение питания которых может быть меньше 1 В, использование биполярных транзисторов в таком режиме недопустимо.

В свое время это привело к созданию линейных стабилизаторов, использующих в качестве регулирующих элементов полевые транзисторы, которые, как известно, лишены такого ограничения. Эти стабилизаторы в русскоязычной литературе получили название «стабилизаторы с низким падением напряжения», или LDO-стабилизаторы/регуляторы (Low-Drop Out Regulator). Поскольку при малой разнице напряжений между входом и выходом КПД LDO-стабилизаторов не уступает импульсным преобразователям, а их масса, габариты и уровень электромагнитных помех при этом намного меньше, они до сих пор активно используются в современной технике.

В импульсных преобразователях активный режим полупроводниковых компонентов не используется принципиально. В рассматриваемом примере (рисунок 1) транзистор VT1 работает в ключевом режиме, периодически подключая нагрузку RLOAD к источнику питания на время tON. Это означает, что выделение мощности на силовых полупроводниковых компонентах теоретически может быть сколько угодно малым и не зависит от соотношения напряжений между входом и выходом, что является главным преимуществом данных схем. К сожалению, от такого способа преобразования появляется и главный недостаток – пульсирующий характер выходного напряжения с высоким содержанием высокочастотных гармоник.

Поскольку использовать подобное напряжение для питания потребителей в большинстве случаев не представляется возможным, то на выходе импульсных преобразователей необходимо устанавливать фильтры, уменьшающие пульсации выходного напряжения. Причем в этих фильтрах должны обязательно использоваться реактивные элементы, способные накапливать энергию (активный фильтр на полупроводниковых транзисторах для этой цели не подойдет). А это означает, что импульсный преобразователь просто физически не может быть миниатюрным, ведь энергетическая емкость реактивных компонентов прямо пропорциональна массе и объему использованного в них магнитного или диэлектрического материала.

Если сравнить достоинства и недостатки линейных и импульсных преобразователей (таблица 1), то окажется, что они взаимно компенсируют друг друга. Поэтому на практике очень часто используются гибридные системы: импульсный преобразователь формирует некоторое промежуточное напряжение невысокой стабильности с относительно высоким уровнем пульсаций, а окончательная точная регулировка уже осуществляется с помощью линейных LDO-стабилизаторов.

Таблица 1. Сравнение импульсного и линейного способов преобразования

МетодИмпульсныйЛинейный
Соотношение входного и выходного напряженийЛюбоеВыходное напряжение не может быть больше входного
Точность стабилизации выходного напряженияИз-за того что энергия преобразуется «порциями», точность выходного напряжения зависит от характера переходных процессов и метода стабилизацииТеоретически не ограничена. Практически определяется уровнем шумов и стабильностью характеристик используемых компонентов
Уровень пульсаций выходного напряженияВысокий. При использовании некоторых методов управления (гистерезисных) принципиально не может быть низкимТеоретически может быть сколь угодно малым. Практически ограничен быстродействием используемых компонентов
Уровень электромагнитных помехВысокий из-за высоких скоростей изменения напряжений и токовТеоретически может быть сколь угодно малым
КПДВысокийОпределяется разностью напряжений между входом и выходом
Масса и габаритыЗависят от частоты преобразования. Обычно больше, чем у линейных преобразователейЗависят от уровня рассеиваемой мощности. При малых мощностях могут быть микроскопическими
Сложность схемыСложнаяОтносительно простая
СтоимостьОтносительно высокаяНизкая
Основная сфера примененияПреобразователи с высоким соотношением входного и выходного напряжений, преобразователи рода тока, многоканальные преобразователи и прочиеСтабилизаторы для узлов, требующих прецизионного выходного напряжения с низким уровнем пульсаций и электромагнитных помех

В современном оборудовании линейные преобразователи в основном используются для питания маломощных узлов, требующих высококачественного выходного напряжения с низким уровнем пульсаций, а также в приложениях, чувствительных к уровню электромагнитных помех, а импульсные – во всех остальных случаях (по возможности).

Однако у линейных преобразователей есть один серьезный недостаток, который в ряде случаев делает их использование невозможным – выходное напряжение линейного преобразователя принципиально не может быть больше входного. А это означает, что в случаях, когда напряжение необходимо увеличить или изменить его полярность, импульсный способ преобразования является практически безальтернативным.

Критерии выбора

Критерии которым должен отвечать качественный импульсный преобразователь и стабилизатор:

  • Продолжительный режим работы в экстремальных моментах когда ток в нагрузке максимален;
  • Полная автоматизация регулирования напряжения на выходе. Только тогда можно не бояться ни перегрузок, ни даже короткого замыкания;
  • Высокая надёжность устройства, обусловленная высоким показателем КПД и как следствие низким выделением тепла;
  • Минимальные габариты и вес;
  • Наличие гальванической развязки, которая исключает даже теоретически саму возможность попадания опасного напряжения входа, на выходные контакты, а значит на незащищенный потребитель.

Человек не знакомый с электроникой должен помнить при выборе нужного бытового стабилизатора напряжения что он должен соответствовать главным образом мощности тех приборов, к которым он будет подключен. А также падения и всплескам напряжения, которые могут возникнуть в сети. Лучше выбирать стабилизатор или импульсный понижающий преобразователь напряжения немного с запасом по мощности, так как количество используемых потребителей в квартирах и частных домах постоянно растёт.

Принцип работы импульсных преобразователей

На сегодняшний день существует множество импульсных преобразователей постоянного напряжения, отличающихся количеством и типом реактивных компонентов, алгоритмами преобразования и прочими характеристиками. Однако наиболее простыми, а следовательно, и наиболее популярными являются всего четыре схемы: понижающая, повышающая, инвертирующая и обратноходовая (рисунок 2). Эти преобразователи используют одинаковый принцип работы, имеют идентичное количество компонентов и отличаются лишь способом коммутации накопительного дросселя L1, от режима работы которого и зависят все характеристики схемы.

Рис. 2. Схемы наиболее популярных преобразователей

Преобразование электрической энергии происходит в два этапа. На первом этапе ключ S1 замыкается, и к дросселю L1 прикладывается некоторое напряжение VL1, под действием которого за время tON его ток возрастает на величину dI1 (формула 2, рисунок 3):

$$dI_{1}=\frac{V_{L1}}{L_{1}}\times t_{ON},\qquad{\mathrm{(}}{2}{\mathrm{)}}$$

где L1 – индуктивность обмотки, активной на первом этапе.

При этом к диоду VD1 приложено напряжение обратной полярности, поэтому ток через него не протекает. В конце этого интервала ток дросселя достигает максимального значения IMAX1, а это значит, что в его магнитопроводе накапливается энергия E (формула 3):

$$E=\frac{I_{MAX1}^2\times L_{1}}{2}\qquad{\mathrm{(}}{3}{\mathrm{)}}$$

Рис. 3. Диаграммы напряжения и тока дросселя различных преобразователей

Поскольку на первом этапе энергия в дросселе увеличивается, то его очень часто называют этапом накопления или заряда дросселя.

После размыкания ключа S1 на выводах всех обмоток дросселя формируется ЭДС самоиндукции, полярность которой противоположна полярности, присутствовавшей на первом этапе, это означает, что дроссель L1 теперь становится не потребителем, а источником электрической энергии. Изменение полярности напряжения на обмотках приводит к открытию диода VD1, который и обеспечивает путь протекания тока на втором этапе, называемом этапом возврата, или разряда дросселя.

Поскольку количество энергии в дросселе в момент коммутации ключей не изменяется, то ток в его активной обмотке сразу после размыкания ключа S1 также будет максимальным, однако его величина IMAX2 может измениться, ведь он теперь может протекать уже по другому количеству витков (формула 4):

$$E=\frac{I_{MAX2}^2\times L_{2}}{2},\qquad{\mathrm{(}}{4}{\mathrm{)}}$$

где L2 – индуктивность обмотки, активной на втором этапе.

Дроссель понижающей, повышающей и инвертирующей схем обычно содержит только одну обмотку, поэтому L1 = L2, а значит и IMAX1 = IMAX2 = IMAX. А вот для обратноходовой схемы индуктивности L1 и L2 чаще всего отличаются, поэтому ток IMAX2 можно определить (формула 5), приравняв формулы 3 и 4 :

$$I_{MAX2}=I_{MAX1}\times \sqrt{\frac{L_{1}}{L_{2}}}=I_{MAX1}\times \frac{N_{1}}{N_{2}},\qquad{\mathrm{(}}{5}{\mathrm{)}}$$

где N1 и N2 – количество витков, соответственно, первичной и вторичной обмоток.

Вторую часть формулы 5 можно легко получить, вспомнив, что индуктивность обмотки пропорциональна квадрату количества витков (формула 6):

$$L_{1,2}=N_{1,2}^2\times A_{L},\qquad{\mathrm{(}}{6}{\mathrm{)}}$$

где AL – конструктивный параметр магнитопровода.

После открытия диода напряжение на обмотке дросселя фиксируется на уровне VL2, под действием которого ток дросселя за время tOFF уменьшится на величину dI2 (формула 7):

$$dI_{2}=\frac{V_{L2}}{L_{2}}\times t_{OFF}\qquad{\mathrm{(}}{7}{\mathrm{)}}$$

В квазиустановившемся режиме, когда отсутствуют какие-либо переходные процессы как в цепях питания, так и в цепях нагрузки, дроссель на втором этапе преобразования должен отдать всю энергию, накопленную на первом интервале. Это означает, что к моменту начала следующего цикла его ток должен быть таким же, как и в начале предыдущего. Для схем с однообмоточным дросселем dI1 = -dI2, но в общем случае (для обратноходового преобразователя) изменения токов обмоток определяются Законом полного тока (формула 8):

$$dI_{1}\times N_{1}=-dI_{2}\times N_{2}\qquad{\mathrm{(}}{8}{\mathrm{)}}$$

Подставляя в формулу 8 соотношения 2 и 7, с учетом 6, можно получить основное уравнение 9, связывающее величины напряжений на выводах обмоток дросселя с отношением длительностей основных этапов преобразования:

$$\frac{V_{L1}}{N_{1}}\times t_{ON}=-\frac{V_{L2}}{N_{2}}\times t_{OFF}\qquad{\mathrm{(}}{9}{\mathrm{)}}$$

Формула 9 является основой для получения регулировочной характеристики преобразователя – зависимости выходного напряжения от относительной длительности первого этапа преобразования D = tON/(tON + tOFF). Однако для того чтобы получить эти зависимости, далее необходимо рассматривать каждую схему в отдельности.

Понижающий преобразователь

Понижающий преобразователь (Step-Down Converter, Buck Converter) обычно имеет только одну обмотку, поэтому N1 = N2. На первом этапе преобразования к дросселю приложена разница входного и выходного напряжений (VL1 = VIN – VOUT), а на втором – только выходное напряжение (VL2 = VOUT), как показано на рисунке 4. Подставляя эти значения в формулу 9, получим формулу 10:

$$\left(V_{IN}-V_{OUT} \right)\times t_{ON}=-V_{OUT}\times t_{OFF}\qquad{\mathrm{(}}{10}{\mathrm{)}}$$

Следовательно (формула 11):

$$V_{OUT}=V_{IN}\times \frac{t_{ON}}{t_{ON}+t_{OFF}}=V_{IN}\times D\qquad{\mathrm{(}}{11}{\mathrm{)}}$$

Рис. 4. Принцип работы понижающего преобразователя

Из формулы 11 видно, что выходное напряжение VOUT понижающего преобразователя не может превышать входное VIN, иначе левая часть уравнения станет отрицательной, к дросселю на обоих этапах преобразования будет приложено однополярное напряжение, и схема работать не будет.

Повышающий преобразователь

Повышающий преобразователь (Step-Up Converter, Boost Converter) также обычно строится на основе однообмоточного дросселя (N1 = N2). На первом этапе преобразования, когда ключ S1 замкнут, к обмотке дросселя приложено полное напряжение питания (VL1 = VIN), а вот на втором есть разница между входным и выходным напряжениями (VL1 = VOUT – VIN), как показано на рисунке 5. Подставляя эти значения в формулу 9, получим формулу 12:

$$V_{IN}\times t_{ON}=-\left(V_{OUT}-V_{IN} \right)\times t_{OFF}\qquad{\mathrm{(}}{12}{\mathrm{)}}$$

Из формулы 12 теперь можно получить уравнение для регулировочной характеристики (формула 13):

$$V_{OUT}=V_{IN}\times \frac{t_{ON}+t_{OFF}}{t_{OFF}}=V_{IN}\times \frac{1}{1-D}\qquad{\mathrm{(}}{13}{\mathrm{)}}$$

Рис. 5. Принцип работы повышающего преобразователя

Как и в понижающем преобразователе, формула 13 накладывает ограничения на соотношение напряжений VIN и VOUT. При VOUT < VIN правая часть формулы 13 изменит свой знак, и дроссель перестанет отдавать энергию. Поэтому повышающий преобразователь может только увеличивать входное напряжение.

Внешний осмотр, элементная база

Первоначально dc dc преобразователи строились на дискретных аналоговых элементах. Схемы подобных устройств отличались высокой сложностью и были под силу только подготовленным специалистам.

По мере совершенствования элементной базы, в частности, с появлением специализированных интегральных микросхем, стало возможным создавать устройства с минимальным количеством деталей, к тому же не требующие настройки и регулировки.


Популярная микросхема ШИМ контроллера

Усложняя элементарную схему из технической документации на ИМС, можно существенно улучшить эксплуатационные показатели преобразователя. В частности, добавление мощного ключевого транзистора увеличивает максимальный ток нагрузки, в отличие от прямого включения ИМС.

Инвертирующий и обратноходовой преобразователи

И в инвертирующем (Inverting Converter), и в обратноходовом (Flyback Converter) преобразователях к обмоткам дросселя на первом этапе прикладывается полное входное (VL1 = VIN), а на втором – полное выходное напряжение (VL2 = VOUT), как показано на рисунок 6. Поэтому базовое уравнение для определения их регулировочных характеристик одинаково (формула 14):

$$\frac{V_{IN}}{N_{1}}\times t_{ON}=-\frac{V_{OUT}}{N_{2}}\times t_{OFF}\qquad{\mathrm{(}}{14}{\mathrm{)}}$$

Рис. 6. Принцип работы инвертирующего и обратноходового преобразователей

Но, поскольку инвертирующие преобразователи обычно строятся на основе однообмоточных дросселей, для которых N1 = N2, то их регулировочная характеристика при работе во всех режимах, кроме разрывного, несколько проще (формула 15):

$$V_{OUT}=-V_{IN}\times \frac{t_{ON}}{t_{OFF}}=-V_{IN}\times \frac{D}{1-D}\qquad{\mathrm{(}}{15}{\mathrm{)}}$$

Ключевой особенностью обратноходового преобразователя является возможность обеспечения гальванической развязки между входом и выходом. В этом случае обмотки дросселя могут иметь разное количество витков (формула 16):

$$V_{OUT}=-V_{IN}\times \frac{t_{ON}}{t_{OFF}}\times \frac{N_{2}}{N_{1}}=-V_{IN}\times \frac{D}{1-D}\times \frac{N_{2}}{N_{1}}\qquad{\mathrm{(}}{16}{\mathrm{)}}$$

Для инвертирующего преобразователя, вход и выход которого имеют один общий провод, выходное напряжение VOUT по абсолютному значению может быть как больше, так и меньше входного VIN. Однако оно обязательно должно иметь обратную полярность, ведь ни продолжительность первого tON, ни второго tOFF этапов преобразования не могут быть отрицательными. Для обратноходового преобразователя обеспечение двухполярного напряжения на обмотке осуществляется правильной фазировкой обмоток и включением диода VD1. Если это правило будет нарушено, то обратноходовой преобразователь работать не будет (фактически он превратится в прямоходовой, который имеет несколько иной принцип работы).

При использовании в понижающей, повышающей и инвертирующей схемах дросселя с одной обмоткой наибольшая эффективность преобразователя будет в диапазоне 0,1 ≤ VIN…VOUT ≤ 10. Если же входное напряжение отличается от входного больше чем в 10 раз, тогда, в соответствии с формулой 9, длительность одного из этапов преобразования (tON или tOFF) будет значительно меньше другого (рисунок 7).

Рис. 7. Зависимости соотношения напряжения на входе и выходе преобразователей (VOUT/VIN) от соотношения длительностей первого и второго этапов (tON/tOFF)

При этом становится сложно как регулировать выходное напряжение, так и фильтровать его, поскольку при малых длительностях tON или tOFF увеличиваются пульсации токов, что в конечном итоге приводит к катастрофическому уменьшению КПД, вплоть до физической невозможности реализации данного режима (необходимая длительность tON или tOFF может оказаться меньше чем время включения/выключения полупроводникового компонента). Поэтому при большой разнице напряжений между входом и выходом используют автотрансформаторное включение дросселей, при котором транзистор или диод подключаются к части обмотки (рисунок 8). В этом случае N1 ≠ N2 и формулы 10…15 придется выводить заново из базового соотношения формулы 9.

Рис. 8. Понижающий преобразователь с автотрансформаторным включением дросселя, работающий при большой разнице напряжений (VIN >>VOUT)

Где можно применять модуль

Применять этот модуль можно для разных поделок:

  • Лабораторный блок питания
  • Зарядное устройство
  • Драйвер мощного светодиода или ленты
  • Регулируемый источник напряжения для лабораторного генератора
  • Можно питать ноутбук в автомобиле
  • Для преобразования 12- 24 вольт
  • Мощность для вашего электронного оборудования
  • Солнечное зарядное устройство для электромобилей
  • Для подзарядки автомобильного аккумулятора от БП на 12V и т.п

При использовании модуля в качестве зарядного устройства красный светодиод означает зарядку, зеленый окончание зарядки. При использовании модуля для зарядки аккумулятора установите ток, равный 0.1 емкости батареи. Можно использовать в качестве светодиодного драйвера.

Так же почитайте статью – Понижающий преобразователь напряжения XL4016

Так же посмотрите видео на моем youtube канале про повышающий преобразователь напряжения.

На главную страницу.

Особенности преобразователей nanoPower

Как видно из принципа работы, максимальное значение КПД импульсных преобразователей теоретически не ограничено. Но на практике всегда будут потери из-за неидеальности элементной базы, поэтому реальное значение КПД силовой части у наилучших представителей импульсных преобразователей находится на уровне 98…99%.

Однако при расчете КПД преобразователя в целом следует учитывать также и затраты энергии на работу схемы управления. Если рассмотреть структурные схемы контроллеров, реализующих два наиболее популярных на сегодняшний день метода управления – по напряжению (рисунок 9) и по току (рисунок 10), – то можно увидеть, что для обеспечения выходного напряжения необходимого качества требуется достаточно большое количество узлов. И хоть на сегодняшний день технологии изготовления полупроводниковых микросхем находится на очень высоком уровне, тем не менее, когда мощность силовой части преобразователя ничтожно мала, ток потребления узлов управления может оказаться соизмеримым с током нагрузок.

Рис. 9. Контроллер преобразователя с методом управления по напряжению

Рис. 10. Контроллер преобразователя с методом управления по току

У контроллеров преобразователей постоянного напряжения можно выделить три основных тока, на которые следует обращать внимание при выборе: ток, потребляемый от входной IQINT, выходной IQOUT цепи в активном режиме и ток утечки ISDT, потребляемый микросхемой в выключенном состоянии (рисунок 11). Эти токи, по возможности, должны быть минимальными, ведь чем они меньше – тем выше КПД преобразователя.

Рис. 11. Пути протекания токов IQINT, IQOUT и ISDT микросхемы MAX17222

Из этих параметров наиболее важным для устройств с батарейным питанием является ток утечки ISDT. И связано это с их спецификой работы, ведь как показывает практика, большую часть времени они находятся либо в спящем (дежурном), либо в выключенном состоянии. Поскольку физически отключить схему управления преобразователя от источника питания в большинстве случаев не представляется возможным, ток утечки ISDT будет напрямую влиять на время автономной работы.

В интегральных преобразователях постоянного напряжения nanoPower основной технологией уменьшения токов IQINT, IQOUT и ISDT является тщательная проработка схемотехники внутренних узлов контроллера и процессов изготовления интегральных компонентов. Из других методов уменьшения собственного энергопотребления можно также выделить отключение резистивного делителя выходного напряжения, используемого в цепи обратной связи. Все это позволило добиться впечатляющих значений собственного энергопотребления этих узлов. Так, например, для микросхем повышающих преобразователей MAX17220/21//// ток, потребляемый от цепей нагрузки (IQOUT), не превышает 300 нА, а токи, потребляемые от источника питания (IQINT, ISDT) равны всего 0,5 нА.

Кроме этого, повышающие преобразователи имеют одну специфическую особенность, на которую также необходимо обращать внимание. При использовании в качестве верхнего ключа полупроводниковых диодов или n-канальных MOSFET становится невозможным полное отключение выходного напряжения – при остановке преобразователя на его выходе присутствует напряжение питания, которое приводит к увеличению энергопотребления. Поэтому в микросхемах nanoPower реализована также технология True Shutdown, блокирующая появление напряжения на выходе преобразователей при их отключении.

На сегодняшний день в линейку малопотребляющих преобразователей nanoPower входят микросхемы для наиболее популярных схем преобразователей: понижающего и повышающего типов (таблица 2). Линейка повышающих преобразователей MAX17220…25 (рисунок 12) позволяет обеспечить нагрузку выходным напряжением 1,8…5 В, устанавливаемым путем выбора внешнего резистора RSEL с шагом 0,1 В. Входное напряжение при этом может находиться в диапазоне 0,4…5,5 В.

Высокая степень интеграции позволила использовать для микросхем MAX17220…25 миниатюрные шестивыводные корпуса WLP и µDFN и обойтись минимальным количеством внешних компонентов. Как видно из рисунка 12, кроме обязательных внешних реактивных элементов – конденсаторов CIN, COUT и накопительного дросселя, которые, во-первых технологически сложно изготовить в интегральном исполнении, а во-вторых, их параметры зависят от конкретного приложения, для работы микросхем требуется единственный внешний прецизионный (с точностью 1%) резистор RSEL, отвечающий за величину выходного напряжения.

Таблица 2. Характеристики микросхем nanoPower

НаименованиеТок, потребляемый от выходных цепей IQOUT, нАТок, потребляемый в выключенном состоянии ISDT, нАМаксимальный ток накопительного дросселя, мАВыходной ток, мАКорпусОтладочная плата
MAX38640A3305250160WLP/6MAX38640EVKIT
MAX172203000,5225205WLP/6, µDFN/6MAX17222EVKIT, MAX17220EVKIT
MAX172223000,5500200WLP/6MAX17222EVKIT
MAX172233000,5500205WLP/6, µDFN/6MAX17222EVKIT, MAX17220EVKIT
MAX172243000,51000205WLP/6, µDFN/6MAX17222EVKIT, MAX17220EVKIT
MAX172253000,51000205WLP/6, µDFN/6MAX17222EVKIT, MAX17220EVKIT

Рис. 12. Структурная схема микросхем MAX17220…25

В микросхемах MAX17220…25 реализован метод управления по току, поэтому величина индуктивности накопительного дросселя во многом определяет величину рабочей частоты преобразователя. Для большинства приложений на основе данных микросхем можно использовать малогабаритные дроссели в корпусе 0603 индуктивностью 2,2 мкГн с максимальным током 225 мА, 500 мА или 1 А. Все это позволяет реализовывать ультракомпактные повышающие преобразователи, занимающие на печатной плате площадь, не превышающую 6,75 мм2.

Аналогичными характеристиками обладают и микросхемы понижающих преобразователей MAX38640/41/42/43 (рисунок 13), позволяющие понижать входное напряжение 1,8…5,5 В до величины 0,7…3,3 В (микросхемы с суффиксом А) или до 0,5… 5,0 В (с суффиксом B). Так же, как и в рассмотренных выше повышающих преобразователях, для установки выходного напряжения MAX38640…43 используется единственный прецизионный резистор RSEL, а сами микросхемы требуют всего четырех внешних компонентов.

Рис. 13. Структурная схема микросхем MAX38640…43

Для ускорения выхода продуктов на рынок компания Maxim Integrated предлагает разработчикам максимальную поддержку, не ограничивающуюся только предоставлением всей необходимой технической документации. Так, например, на официальном сайте компании присутствуют математические модели, с помощью которых можно изучить электрические процессы разрабатываемых схем в специализированных средах разработки: автономной EE-Sim® OASIS Simulation Tool на основе ядра SIMPLIS® и онлайновой EE-Sim Design And SimulationTool. Обе среды ориентированы на разработку импульсных источников питания и позволяют на основе предлагаемых шаблонов собрать виртуальный аналог разрабатываемой схемы менее чем за 5 минут.

Кроме этого, для оценки реальных возможностей микросхем nanoPower компания Maxim Integrated предлагает специализированные отладочные платы. Так, например, для микросхем MAX17220…25 доступна отладочная плата MAX17222EVKIT (рисунок 14), состоящая из двух независимых частей, содержащих одну и ту же микросхему MAX17222, но изготовленную в разных корпусах: µDFN и WLP. В каталогах Maxim Integrated присутствует также аналогичная отладочная плата MAX17220EVKIT с установленными микросхемами MAX17220 (в двух вариантах корпусов) и MAX38640EVKIT с установленной микросхемой MAX38640A в корпусе WLP.

Рис. 14. Внешний вид отладочной платы MAX17222EVKIT

Введение

В последние годы производители электронных компонентов все чаще используют контрактное производство полупроводниковых приборов. В таких компаниях работают высококлассные специалисты — разработчики и схемотехники, а производство готовых изделий размещается на лучших мировых фабриках, оснащенных самым современным оборудованием. Это связано с очевидными преимуществами, которые получает компания-разработчик:

  • резкое снижение накладных расходов, связанных с содержанием собственного высокотехнологичного производства;
  • возможность выбора лучших контрактных производителей для обеспечения высокого качества изделий;
  • сосредоточение усилий на разработке новых изделий и технологий;
  • гарантия длительного жизненного цикла приборов;
  • высокая динамика производства, как следствие — низкие сроки поставки продукции конечным потребителям;
  • относительно низкая численность сотрудников и одновременно высокий профессиональный уровень.

Все это дает возможность значительно снизить себестоимость изделий и, как следствие, цену для конечного потребителя, обеспечивая при этом высокое качество и передовые схемотехнические решения.

Ярким примером такой компании является Monolithic Power Systems (MPS). MPS была образована в 1997 году в Санта Клара (США). В настоящее время компания насчитывает около 100 человек, среди ее инвесторов — Bank of America, Investar, Aser Venture. Являясь держателем 18 патентов в области технологий BiCMOS и DMOS, компания специализируется на разработке и контрактном производстве силовых интегральных схем для источников питания постоянного тока, твердотельных источников света, драйверов люминесцентных ламп с холодным катодом и аудиоусилителей класса D. В перспективе MPS планирует разработку интегральных контроллеров сетевых источников питания. Передовые технологические решения позволяют интегрировать на одном кристалле цифровые схемы управления, прецизионные аналоговые компоненты и силовые транзисторы и достичь высокой плотности мощности при сверхмалых размерах интегральных схем.

В данной статье будет рассмотрена линейка интегральных схем для источников питания постоянного тока.

Дополнительные материалы:

Статьи:

  1. Технология Maxim Integrated nanoPower: когда малый IQ имеет преимущества
  2. Контроль в спящем режиме: повышение КПД батарейного питания с помощью DC/DC MAX17225 nanoPower
  3. Один дроссель для всей системы: многоканальные преобразователи Maxim с технологиями SIMO и nanoPower
  4. Измерение мощности в режиме реального времени с помощью ИС регистратора потребляемой мощности
  5. Увеличение времени работы портативной электроники с помощью преобразователя на основе SIMO
  6. Борцы SIMO: особенности применения SIMO-преобразователей Maxim
  7. Выбор SIMO PMIC-преобразователя для проекта портативного устройства
  8. Увеличение энергоэффективности портативных устройств при помощи SIMO PMIC-преобразователей

Новости

  1. MAX17222 — длинная жизнь для маленьких вещей
  2. MAX38640/1/2/3 – понижающие конвертеры семейства NanoPower с ультранизким током потребления
  3. MAX17270 – преобразователь NanoPower SIMO PMIC для IoT с ультранизким потреблением

•••

Питание схем с использованием трансформаторных БП

В трансформаторных блоках питания преобразуется напряжение питающей электросети – как правило, трансформатор уменьшает его до требуемой величины. Уменьшенное напряжение выпрямляется при помощи диодного моста, проходит через полупроводниковый стабилизатор (при необходимости) и нивелируется конденсаторным фильтром.

Стабилизаторы обычно используются линейные. Они дешевые и содержат в обвязке минимум компонентов, но имеют скромный КПД. Частично Uвх тратится на нагревание регулирующего транзистора. Поэтому трансформаторные БП не подходят для использования в переносной электронике.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]