Двухтактные ИБП
style=»display:inline-block;width:728px;height:90px» data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»2660907582″>
♥ Наибольшее распространение получили двухтактные источники вторичного электропитания, хотя и имеют более сложную электрическую схему по сравнению с однотактными. Они позволяют получать на выходе значительно большую выходную мощность при высоком КПД.
Схемы двухтактных преобразователей-инверторов имеют три вида включения ключевых транзисторов и первичной обмотки выходного трансформатора: полумостовая, мостовая и с первичной обмоткой имеющей отвод от середины.
♥ Полумостоваясхема построения ключевого каскада. Ее особенностью является включение первичной обмотки выходного трансформатора в среднюю точку емкостного делителя С1 — С2.
♥ Амплитуда импульсов напряжения на переходах транзисторов эмиттер-коллектор Т1 и Т2 не превышает Uпит величины питающего напряжения. Это позволяет использовать транзисторы с максимальным напряжением Uэк до 400 вольт.
В то же время напряжение на первичной обмотке трансформатора Т2 не превышает значения Uпит/2, потому, что снимается с делителя С1 — С2 (Uпит/2).Управляющее напряжение противоположной полярности подается на базы ключевых транзисторов Т1 и Т2 через трансформатор Тр1.
♥ В мостовом преобразователе емкостной делитель (С1 и С2) заменен транзисторами Т3 и Т4. Транзисторы в каждом полупериоде открываются попарно по диагонали (Т1, Т4) и (Т2, Т3).
Напряжение на переходах Uэк закрытых транзисторов не превышает напряжения питания Uпит. Но напряжение на первичной обмотке трансформатора Тр3 увеличится и будет равно величине Uпит, что повышает КПД преобразователя. Ток же через первичную обмотку трансформатора Тр3 при той же мощности, по сравнению с полумостовой схемой, будет меньше. Из за сложности в наладке цепей управления транзисторов Т1 – Т4, мостовая схема включения применяется редко.
♥ Схема инвертора с так называемым пушпульным выходом наиболее предпочтительна в мощных преобразователях-инверторах. Отличительной особенностью в данной схеме является то, что первичная обмотка выходного трансформатора Тр2 имеет вывод от середины. За каждый полупериод напряжения поочередно работает один транзистор и одна полуобмотка трансформатора.♥ Данная схема отличается наибольшим КПД, низким уровнем пульсаций и слабым излучением помех.
Достигается это за счет уменьшения тока в первичной обмотке и уменьшения рассеиваемой мощности в ключевых транзисторах.Амплитуда напряжения импульсов в половине первичной обмотки Тр2 возрастает до значения Uпит, а напряжение Uэк на каждом транзисторе достигает значения 2 Uпит (ЭДС самоиндукции + Uпит).Необходимо использовать транзисторы с высоким значением Uкэmах, равным 600 – 700 вольт.
Средний ток через каждый транзистор равен половине тока потребления от питающей сети.
Обратная связь по току или по напряжению.
♥ Особенностью двухтактных схем с самовозбуждением является наличие обратной связи (ОС) с выхода на вход, по току или по напряжению.
♥ В схеме обратной связи по току обмотка связи w3 трансформатора Тр1 включена последовательно с первичной обмоткой w1 выходного трансформатора Тр2. Чем больше нагрузка на выходе инвертора, тем больше ток в первичной обмотке Тр2, тем больше обратная связь и больше базовый ток транзисторов Т1 и Т2.Если нагрузка меньше минимально допустимой, ток обратной связи в обмотке w3 трансформатора Тр1 недостаточен для управления транзисторами и генерация переменного напряжения срывается.
Иными словами, при пропадании нагрузки — генератор не работает.
♥ В схеме обратной связи по напряжению обмотка обратной связи w3 трансформатора Тр2 соединена через резистор R с обмоткой связи w3 трансформатора Тр1. По этой цепи осуществляется обратная связь с выходного трансформатора на вход управляющего трансформатора Тр1 и далее в базовые цепи транзисторов Т1 и Т2.♥ Обратная связь по напряжению слабо зависит от нагрузки.
Если же на выходе будет очень большая нагрузка (короткое замыкание), напряжение на обмотке w3 трансформатора Тр2 снижается и может наступить такой момент, когда напряжение на базовых обмотках w1 и w2 трансформатора Тр1 будет недостаточно для управления транзисторами. Генератор перестанет работать .При определенных обстоятельствах это явление может быть использовано как защита от короткого замыкания на выходе.
♥ На практике широко применяются обе схемы с обратной связью ОС как по току, так и по напряжению.
Двухтактная схема инвертора с ОС по напряжению
♥ Для примера, рассмотрим работу наиболее распространенной схемы преобразователя-инвертора – полумостовой схемы. Схема состоит из нескольких независимых блоков:
- — выпрямительный блок – преобразует переменное напряжение 220 вольт 50 Гц в постоянное напряжение 310 вольт;
- — устройство запускающих импульсов – вырабатывает короткие импульсы напряжения для запуска автогенератора;
- — генератор переменного напряжения – преобразует постоянное напряжение 310 вольт в переменное напряжение прямоугольной формы высокой частоты 20 – 100 КГц;
- — выпрямитель – преобразует переменное напряжение 20 -100 КГц в постоянное напряжение.
Трех- и четырехфазные повышающие преобразователи
Несмотря на то, что сейчас на рынке господствуют двухфазные преобразователи, современные контроллеры позволяют создавать блочный дизайн многофазных контроллеров, где две фазы повышения представляют один блок. Электрическая схема четырехфаз-ного преобразователя показана на рис. 5, а временная диаграмма — на рис. 6. Эта схема позволяет получать 48 В при 8 А от входа при входном напряжении в диапазоне 12-24 В и способна поддерживать выходное напряжение 48 В при падении входного напряжения до 6 В, с соответствующим снижением выходного тока.
Рис. 5. Четырехфазный синхронный повышающий преобразователь, V0 48 В на 8 А, Vin от 5 до 24 В
Рис. 6. Временная диаграмма четырехфазного повышающего преобразователя. Ch1–Ch4 напряжения на истоках Q1–Q4 соответственно (50 В/Div)
В этой схеме двухфазные контроллеры соединены для управления четырехфазным преобразователем. Контроллер U1 работает в качестве ведущего, а U2 — в качестве ведомого. U1 генерирует, а U2 принимает тактовый сигнал. Контроллер U1 создает разницу между фазой 1 и фазой 3 в 90 градусов, однако разница между фазой 1 и фазой 2, а также фазой 3 и фазой 4 остается 180 градусов. Четырехфазное повышение легко приводится к трехфазному путем отключения четвертой фазы на L4 и Q4, а ножка Phasemode контроллера U1 подключается к выходу 3V8 контроллера. В этом случае все три фазы будут отличаться друг от друга на 120°.
Полумостовой инвертор принцип работы
Довольно часто для построения сварочного инвертора применяют основные три типа высокочастотных преобразователей, а именно преобразователи включенные по схемам: асимметричный или косой мост, полумост, а также полный мост. При этом резонансные преобразователи являются подвидами схем полумоста и полного моста. По системе управления данные устройства можно поделить на: ШИМ (широтно-импульсной модуляцией), ЧИМ (регулирование частоты), фазовое управления, а также могут существовать комбинации всех трех систем.
Все выше перечисленные преобразователи имеют свои плюсы и минусы. Разберемся с каждым в отдельности.
Система полумост с ШИМ
Блок схема показана ниже:
Это, пожалуй, один из самых простых, но не менее надежных преобразователей семейства двухтактных. «Раскачка» напряжения первичной обмотки трансформатора силового будет равна половине напряжения питания – это недостаток данной схемы. Но если посмотреть с другой стороны, то можно применить трансформатор с меньшим сердечником, не опасаясь при этом захода в зону насыщения, что одновременно является и плюсом. Для сварочных инверторов имеющих мощность порядка 2-3 кВт такой силовой модуль вполне перспективен.
Поскольку силовые транзисторы работают в режиме жесткого переключения, то для их нормальной работы необходимо ставить драйверы. Это связано с тем, что при работе в таком режиме, транзисторам необходим высококачественный управляющий сигнал. Также обязательно наличие безтоковой паузы, чтоб не допустить одновременное открытие транзисторов, результатом чего станет выход последних из строя.
Резонансный полумост
Довольно перспективный вид полумостового преобразователя, его схема показана ниже:
Резонансный полумост будет немного проще, чем полумост с ШИМ. Это обусловлено наличием индуктивности резонансной, которая ограничивает максимальный ток транзисторов, а коммутация транзисторов происходит в нуле тока или напряжения.
Ток, протекающий по силовой цепи, будет иметь форму синусоиды, что снимет нагрузку с конденсаторных фильтров. При таком построении схемы необязательно необходимы драйверы, переключение может осуществляться обычным импульсным трансформатором.
Качество управляющих импульсов в данной схеме не столь существенно как в предыдущей, но безтоковая пауза все равно должна быть.
В данном случае можно обойтись без токовой защиты, а форма вольт-амперной характеристики ВАХ будет иметь падающий вид, что не требует ее параметрического формирования.
Выходной ток будет ограничиваться только индуктивностью намагничивания трансформатора и соответственно сможет достигать довольно таки значительных величин, в случае, когда возникнет короткое замыкание КЗ. Данное свойство положительно влияет на поджиг и горение дуги, но и его также необходимо учитывать при подборе выходных диодов.
Как правило, выходные параметры регулируются изменением частоты. Но и регулирование фазное тоже дает немного своих плюсов и является более перспективным для сварочных инверторов. Он позволяет обойти такое неприятное явление как совпадение режима короткого замыкания с резонансом, а также увеличивает диапазон регулирования выходных параметров. Применение фазовой регулировки может позволить изменять выходной ток в диапазоне от 0 до Imax.
Ассиметричный или «косой» мост
Это однотактный, прямоходовой преобразователь, блок схема которого приведена ниже:
Данный тип преобразователя довольно популярен как у простых радиолюбителей, так и у производителей сварочных инверторов. Самые первые сварочные инверторы строились именно по таким схемам – асимметричный или «косой» мост. Помехозащищенность, довольно широкий диапазон регулирования выходного тока, надежность и простота – эти все качества до сих пор привлекают производителей до сих пор.
Довольно высокие токи, проходящие через транзисторы, повышенное требование к качеству управляющего импульса, что приводит к необходимости использовать мощные драйвера для управления транзисторами, а высокие требования к выполнению монтажных работ в этих устройствах и наличие больших импульсных токов, которые в свою очередь повышают требования к конденсаторным фильтрам – это существенные недостатки такого типа преобразователя. Также для поддерживания нормальной работы транзисторов необходимо добавление RCD цепочек – снабберов.
Но несмотря на выше перечисленные недостатки и низкий КПД устройства по схеме асимметричный или «косой» мост все еще применяются в сварочных инверторах. В данном случае транзисторы Т1 и Т2 будут работать синфазно, то есть закрываться и открываться одновременно.
В данном случае накопление энергии будет происходить не в трансформаторе, а в катушке дросселя Др1. Именно поэтому для того, чтоб получить одинаковую мощность с мостовым преобразователем необходим удвоенный ток через транзисторы, так как рабочий цикл при этом не будет превышать 50%.
Источник: https://respect-kovka.com/polumostovoy-invertor-printsip-raboty/
Как работает полу-мостовой стабилизатор напряжения. Где он применяется. Описание принципа действия. Пошаговая инструкция по разработке и расчету (10+) Полумостовой преобразователь напряжения. Схема, принцип работы, расчет Оглавление :: ПоискТехника безопасности :: Помощь Идея прямоходового преобразователя с исключением излишних скачков напряжения на силовых элементах, описанная здесь, может быть усовершенствована до мостовой и полумостовой топологий. Полумостовую топологию мы рассмотрим здесь. С помощью конденсаторов C3, C4 создана казисредняя точка источника питания. Работа схемы основана на попеременном пропускании тока через верхнее и нижнее плечо. При этом через первичную обмотку трансформатора проходит симметричный ток. Напряжение в точке соединения конденсаторов C3, C4 формируется немного отличным от половины напряжения питания как раз так, чтобы компенсировать некоторую асимметрию плеч. [td] |
В схеме исключено возникновение на силовых ключах напряжения больше питающего, так как обратные диоды немедленно отведут такое напряжение в цепи питания. Платой за это является то, что амплитуда напряжения, приложенного к первичной обмотке равно только половине напряжения питания. В результате для формирования выходного тока понадобится двойной ток через силовые ключи по сравнению с пушпульной схемой.
На картинке я показал контуры, по которым идет электрический ток, когда замкнут нижний ключ (контур S1), и когда оба ключа разомкнуты (контур S2). Когда оба ключа разомкнуты, накопленная в трансформаторе энергия сбрасывается в цепи питания через шунтирующий диод верхнего плеча. Нарисовать направление движения токов при замыкании верхнего ключа и после его размыкания Вы легко сможете сами по аналогии.
Типичные схемы полумостовых преобразователей
Схема 1
Схема 2
На этих схемах изображен вариант, когда контроллер и силовая часть питаются одним напряжением. Тут вариант питания от разного напряжения. Он используется, например, в источниках питания, работающих от сети.
В схемах может применяться ШИМ — контроллер 1156ЕУ2 (D1) и драйвер верхнего плеча полумоста IR2125 (D2).
Для этих схем подходит только контроллер с двухтактными каскадами на выходе, то есть предназначенный для управления полевыми транзисторами. Хотя во второй схеме применены биполярные транзисторы, в такой схеме управления контроллер нужен именно для полевых. Контроллер с открытыми эмиттерами на выходе здесь не годится.