Как работают полевые транзисторы и как проверить полевой транзистор мультиметром


Принципы работы полевых транзисторов в электронных схемах: упрощенная информация

Все сложные процессы электроники удобно представлять на примере обычного водопроводного крана с рукояткой, которая позволяет перекрывать воду или регулировать ее напор от очень тонкой струйки (течь) до максимально сильного проходящего потока.

Показал это примитивной картинкой, на которой:

  • входной патрубок с напором назван стоком;
  • место выхода воды (истечения) обозначен истоком;
  • рукоятка управления или вентиль со штоком — затвор.

Аналогичным образом работает рассматриваемая нами электрическая схема полевого транзистора. Только у нее между стоком и истоком приложено основное постоянное напряжение. Эту область называют каналом. Он выполнен из полупроводника определенной структуры:

  1. n-типа (преобладают электроны — носители отрицательных зарядов);
  2. p-типа — с излишком положительных дырок.

На чертежах эти выводы показываются одним из следующих образов.

На обозначении затвора нам надо обращать внимание на направление стрелки. У полупроводников n- канального типа она направлена на затвор, а с p- проводимостью — в противоположную сторону.

Любой field-effect transistors является полупроводником, причем управляемым. Это значит, что он пропускает через себя нагрузку исключительно в одну сторону, а противоположное движение электрических зарядов всегда заблокировано.

Движение тока через полупроводниковые переходы всегда направлено от стока к истоку, как и воды в кране. Это важно запомнить.

Функции закрытия или открытия этого крана (затвора), а также роль регулирования силы потока электрических зарядов возложены на затвор. Здесь действует известный всем закон Ома:

I=U/R

Сопротивление среды канала управляет нагрузкой, а на него действует приложенный извне потенциал.

Говоря другими словами: энергия электрического поля, приложенная к затвору, меняет сопротивление внутренних полупроводниковых переходов и влияет на величину тока в выходной силовой цепи.

Слово «поле» здесь знаковое. Оно определило целый ряд транзисторных изделий, работающих по этому принципу управления.

Потенциал электрического поля регулирует величину сопротивления через силовой полупроводниковый слой (канал), закрывая/открывая транзистор или изменяя ток через него.

Аналогичным образом управляются биполярные транзисторы (БТ), про которые у меня на блоге опубликована предыдущая статья.

Только у них силовая цепь образована меду коллектором и эмиттером, а схема управления работает от тока, образованного приложением напряжения между базой и эмиттером. У БТ своя система обозначения выводов, но те же два внутренних контура (силовая цепь и цепочка ее регулирования).

Заостряю внимание: при одном и том же напряжении между входом и выходом полевого транзистора (сток-исток) потенциал на затворе изменяет электрическое сопротивление встроенных полупроводниковых переходов.

Причем происходит это по одному из предусмотренных заранее сценариев. О них я последовательно рассказываю дальше.

Исправность p-канала

Проверка исправности p-канального элемента производится аналогичным методом, что и для n-канального вида. Отличие состоит в том, что к минусу мультиметра необходимо подключать красный щуп, а к плюсу прибора следует произвести подключение черного провода.

Таким образом, можно сделать следующие выводы относительно полевых транзисторных компонентов и проверочных процедур:

  • Полевые элементы разновидности МОСФЕТ широко применяются в радиоэлектронике, технике и прочих сферах, связанных с практической электроникой;
  • Проверка работоспособности транзисторных элементов удобнее всего и качественнее осуществляется с помощью мультиметра — при следовании определенной пошаговой методике;
  • Проверка p-канального и n-канального транзисторного компонента осуществляется одинаковыми методами, но при этом необходимо сменить полярность подключения проводов мультиметра на обратную.

Полевые транзисторные компоненты очень популярны в различных технических и электронных устройствах. Но для качественной и долговечной работы требуется периодическая проверка мосфет транзисторов с применением мультиметра. Следуя всем вышеописанным методам, можно сэкономить значительные финансовые затраты, связанные с заменой и ремонтом полевых транзисторов.

Как устроен полевой транзистор: 6 типов — краткие сведения

Разобраться с конкретным полевиком и понять его структуру нам поможет классификация, приведенная на картинке ниже, где структурированы их виды.

JFET и MOSFET имеют разную структуру. У JFET затвор (Gate) непосредственно встроен в поперечное сечение канала, работает как управляющий p-n переход.

У мосфета:

  1. имеется дополнительный четвертый вывод, соединенный внутренней связью с корпусом. При подключении к внешним цепям им не пользуются;
  2. зона вывода затвора отделена слоем диоксида кремния (диэлектрика) от полупроводника канала. Он работает как пластина конденсатора с емкостной связью. За счет этой доработки его и называют «с изолированным затвором» или МДП, МОП транзистор.

МДП обозначает металл-диэлектрик-полупроводник, а МОП — металл-оксид-полупроводник. Разница между ними для начинающего электрика не существенна, практически отсутствует.

На схемах мосфет и джифет обозначаются разными способами. MOSFET чертится с:

  1. четвертым выводом, который никуда не подключается;
  2. затвором, отделенным от основного канала.

Мосфеты производятся с разными подложками (каналами), которые могут быть обедненными или обогащенными основными носителями заряда.

Более подробно разрисовывать и описывать отличия каждого типа этих полупроводников для начинающего электрика я не буду: нет большого смысла.

Ниже просто привожу типовые графики их работы. Они дадут общее представление о поведении, а конкретные данные вам надо будет брать из даташита — технической документации.

Сила протекающего тока через сток зависит от приложенного напряжения между затвором и истоком, а также от окружающей температуры.

Выходные стоковые характеристики тока зависят от величины приложенного напряжения между стоком-истоком и затвором-истоком.

Так работает МДП-транзистор с встроенным каналом. Крутизна тока увеличивается при возрастании напряжения Uси, Uзи.

А здесь характеристики транзисторов с индуцированным каналом.

Перед любой проверкой каждого транзистора необходимо уточнять его технические возможности по заводской документации.

Такие графические изображения и зависимости процессов электротехники, благодаря наглядности, обладают лучшей информативностью.

6 особенностей работы электронных устройств с MOSFET

В последнее время у нас все чаще работают полевики типа мосфет с каналом любой проводимости.

Вкратце проанализируем подобную схему и ее свойства.

Нюанс №1: в какое плечо включать нагрузку

При полностью открытом полупроводниковом переходе между стоком и истоком создается очень маленькое сопротивление в десятки или сотни миллиОм (Rоткр), что образует низкое падение напряжения на этом участке (Iн·Rоткр), где Iн — величина тока нагрузки.

Потенциала напряжения, подаваемого на затвор, может не хватить для полного открытия полупроводника. Поэтому нагрузку включают выше со стороны стока в полевике n- типа, а истока — у p- типа при питании схемы от одного источника.

Если же в устройстве используются дополнительные источники напряжения, то это требование соблюдать не обязательно.

Нюанс №2: хитрости подключения полевика к микроконтроллерам

Для надежной работы MOSFET необходимо между его затвором и истоком (gate-source) подать пороговое значение напряжения, которое указывается в даташите. Обычно оно составляет около 10 вольт. Все же цифровые устройства работают до пяти: их питания недостаточно, потребуется добавить уровень.

Решить проблему можно одним из трех способов:

  1. ключом с биполярными транзисторами подается необходимое питание на затвор;
  2. подключить специальный драйвер (микросхему) для формирования управляющего сигнала. Они созданы как для верхнего, так и нижнего плеча с учетом нагрузки. Причем в драйвере верхнего плеча часто применяется схема увеличения выходного напряжения;
  3. использовать специализированный полевик низкого уровня открытия (logic level). Однако приобрести его бывает проблематично.

Нюанс №3: как избежать влияния электрических помех

Появление любого потенциала помехи на выводе транзистора часто приводит к его несанкционированным переключениям и нарушению алгоритмов работы электроники.

Поэтому затвор всегда «притягивают» к питанию либо земле через определенное сопротивление даже при подключении через микроконтроллер. Его нельзя оставлять в свободном состоянии, доступном для проникновения посторонних помех.

Нюанс №4: борьба с броском тока при включении

Естественное наличие емкости на выводе gate приводит к «броску тока» при каждом открытии транзистора. Это чревато выводом из строя полупроводникового перехода.

Проблема решается введением в цепочку затвора резистора достаточного номинала. Однако подбирать его величину необходимо с учетом увеличения времени открытия ключа.

Нюанс №5: предохранение от броска тока при отключении индуктивных нагрузок

Защитный быстродействующий TVS-диод, параллельно включенный между истоком и стоком, надежно шунтирует импульсы, создаваемые отключением индуктивных нагрузок.

При работе на высоких частотах мостовых или полумостовых схем импульсных блоков питания либо индукционных нагревателей варочных панелей на вывод стока встречно подключают диод Шоттки, блокирующий паразитный диод, ибо он увеличивает время закрытия, что чревато повреждением полупроводника.

Нюанс №6: дополнительная защита MOSFET

Безопасная работа скоростного высокочастотного ключа в режиме переключения мощных индуктивнных нагрузок обеспечивается его подключением к снабберным цепям. Они:

  1. замыкают на себя апериодические токи, создаваемые переходными процессами;
  2. снижают нагрев полупроводников;
  3. защищают полевик от несанкционированного открывания во время быстрого возрастания напряжения между стоком и истоком.

Цоколевка IRF740

Классическим корпусом прибора является ТО-220AB. Он способен выдержать серьезное повышение температур и рассеянную мощность до 50 Вт. Распиновка встречается у большей части транзисторов-полевиков от данной фирмы. Левая нога является затвором, правая — истоком, а центральная — стоком.

Чтобы определить распиновку, нужно приглядеться к внешней стороне прибора с нанесенной на нее маркировкой. Во время монтажа на плату учитывайте, как корпус физически соединяется со стоковым выводом.

Как паять полевые транзисторы правильно и безопасно: 5 советов

Рекомендую новичкам на этот вопрос обратить самое пристальное внимание. Тогда разочарования от проделанной работы у вас не возникнет.

Где спрятана засада или чем опасна статика для электроники

В повседневной жизни статическое электричество мы ощущаем редко, например, при расчесывании волос пластиковой расческой, выходе из автомобиля после поездки или в некоторых других случаях.

Обычно статика доставляет нашему организму небольшие неприятности, которые просто раздражают. Но с полупроводниками дела обстоят иначе.

У МОП транзисторов очень тонкий слой изоляции между затвором и материалом канала. Он образует емкостную связь затвор-исток, затвор-сток. Причем сам диэлектрик создает этот эффект, работая как емкость.

Мы знаем, что любой конденсатор выпускается для работы под определенным напряжением. Если его превысить, то происходит пробой изоляции. Для повреждения оксидной пленки полевика обычно достаточно десятка вольт, а иногда и меньше.

Теперь показываю фотографиями какие опасности мы можем создать своими руками для транзисторов, если не будем соблюдать правила их пайки.

Я взял свой любимый трансформаторный паяльник Момент, включил его шнур питания в розетку, но кнопку включения не нажимал. Один конец провода мультиметра через крокодил посадил на жало, а второй — просто прислонил к пальцу. Установил режим вольтметра переменного тока.

Прибор показывает 28 вольт. Вот такие наводки создаются даже при обесточенном трансформаторе.

Продолжаю эксперимент. Черный щуп оставил на прежнем месте, а красный прислонил к диэлектрической поверхности табуретки, где размещены все приборы.

Почти 6,4 вольта. Когда отделил красный щуп воздушным пространством — показание стало вообще 8 вольт.

А ведь это совершенно случайные замеры, результаты которых зависят от множества факторов, что значит: напряжение может быть значительно больше или меньше.

Мы можем даже не чувствовать эту статику, но ее случайный разряд способен выжечь тонкий полупроводниковый переход кристалла.

Чтобы этого не допустить важно соблюдать обязательные рекомендации.

Как избежать скрытой опасности и безопасно работать паяльником: 5 рекомендаций

Совет №1: шунтирование выводов

Исключить повреждение полупроводниковых переходов при хранении и работе можно содержанием микросхем, транзисторов, изделий интегральной электроники в слое фольги.

Аналогичный результат, в частности, получается, если обмотать контакты их выводов тонкой медной проволочкой без изоляции.

Совет №2: снятие статики с работающего оборудования

Работать лучше всего профессиональной паяльной станцией с заземленным наконечником. Если ее нет, то заземлите отдельными проводниками жало паяльника и монтажную плату. Выводы транзистора зашунтируйте тонкой проволочкой, которая будет снята после пайки.

Снять опасный потенциал статики с пинцета и инструмента, которым будете работать, позволяет заземляющий браслет на руке или иной части тела. Его сопротивление в 1 МОм исключает возможность опасного статического разряда.

Совет №3: подготовка рабочего места

Сухой воздух северных широт, особенно зимой, способствует накоплению статики на окружающих предметах. Увлажнители и мойки воздуха успешно борются с этим явлением.

Антистатический коврик сразу надежно снимает статические потенциалы, воздействия электрических помех из окружающей среды.

Совет№4: профессиональные смеси

Специальный флюс марки FluxOff не только отлично смывает канифоль и следы от коррозии, но реально убирает статику. Им достаточно просто смочить плату.

Совет №5: быстрая пайка

Выбирайте минимально необходимую мощность паяльника, но работайте им быстро. Опытные ремонтники умудряются разогреть жало, взять им припой, обесточить паяльник и затем припаять деталь на место.

Часть современных микросхем и транзисторов имеет защиту от статики, но это не отменяет необходимости соблюдать правила безопасной пайки со всеми остальными изделиями.

Характеристики IRF740

Изучая характеристики полевиков, нужно в первую очередь учесть его наибольшие возможные показатели. Далее, следуя поставленной задаче, нужно узнать об электрических параметрах. Затем — перейти на графики типичных выходных значений передачи, и других. Вся эта информация содержится в русскоязычной версии DataSheet irf740.

Максимумы

Рассмотрим наибольшие из возможных показатели MOSFET IRF740. Не считайте их основными, как будто только при них транзистор нормально работает. Превысив каждый из них даже на недолгое время, можно вывести прибор из строя.

Тепловые характеристики

Главный параметр, ограничивающий использование полевика — температура, необходимая для его нормальной работы, то есть, ее возрастание. Оно зависит от сопротивления прибора, когда сквозь него проходит электричество. Если оно небольшое, все равно присутствует небольшая рассеивающаяся мощность, что и вызывает нагрев.

Чтобы упростить расчеты, зависящие от нагревания IRF740, а в datasheet прописаны показатели его теплового сопротивления: от кристалла к корпусу и кристалл-внешняя среда.

Неверные вычисления тепловых характеристик для применения в проектах и неправильная пайка вызывают перегревание транзисторов. Как-то раз я читал радиолюбительский форум, и там один из участников говорил, что в сформированной им схеме пиратский металлоискатель слишком нагрет. Электронщик долго разбирался, и оказалось, что дело в некачественной пайке устройства на плату и снижение температуры.

Рабочие режимы IRF740

Uзи (напряжение) бывает или нулевым, или обратным. Второе помогает прикрыть транзистор, поэтому и применяется внутри усилителей группы А и иных схемах с плавным регулированием.

В так называемом режиме отсечки Uзи=Uотсечки. Тогда для всех приборов оно разное, хоть и прилагается в обратную сторону.

Типы подключений

По аналогии с биполярниками, у рассматриваемого устройства есть 3 варианта подключения:

  1. С одним истоком. Самая распространенная схема, усиливает ток и мощность.
  2. С одним затвором. Непопулярный вариант. Небольшое напряжение входа, усиление отсутствует.
  3. С одним стоком. Напряжение усиливается почти на 100%, сильное сопротивление входа, маленькое — выхода. По-другому схема называется токовым повторителем.

Чем можно заменить IRF740

Прибор имеет несколько иностранных аналогов:

  1. D84EQ2 (National Semiconductor).
  2. STP11NK40Z (STM).

У них — внешне похожие корпуса и показатели. Поэтому, если включить один из этих приборов в проектную схему, ее не нужно менять. Еще одно аналогичное устройство, подходящее на замену, — это российский аналог транзистора, КП776. Он изготавливается в компании “Интеграл”, в Беларуси. Есть несколько допустимых электрических режимов использования этого устройства.

Детали устройства

Трансформатор согласующий: Ш-образный сердечник, с площадью сечения не меньше 2 кв.см. Обе обмотки намотаны проводом ПЭВ-2 диаметр 0,1мм. Первичная обмотка состоит из 2300 витков, вторичная из 644 витка с отводом от середины намотки.

При выполнении намотки желательно сперва намотать вторичную обмотку, после чего заизолировать ее и поверх нее намотать первичную. Можно применить и готовый миниатюрный трансформатор от радиоприемника. Обычно они бывают УШ12,5Х20 или Ш12Х16. Конденсатор С1 — К73-5.

В роли звукового сигнализатора допускается применение головных телефонов следующих типов ТК-47, ТА-56М, ТА-4.

Источник: Самодельные электронные устройства для дома, Сидоров И.Н.

Мосфеты — проверка, подбор аналогов

MOSFET — Metal-Oxide-Semiconductor Field Effect Transistor — МОП полевой транзистор.
добавлю сразу на мосфеты серии АРМ****нужно обращать пристальное внимание

G-ЗАТВОР S-ИСТОК D-СТОК мосфеты повсеместно используються как силовые транзисторы импульсных и линейных устройств стабилизаторов, регулирующие и переключающие устройства в этой теме попробуем наглядно обьяснить как проверить мосфет как заменить и чем заменить а так-же собрать минимум информации о аналогах и критичной замене, если получиться то и более

1. Kак проверить мосфет? для того чтобы его правильно проверить нужно начать с замеров напряжений на них, для этого нужно знать какой мосфет за что отвечает, но замеры напруг это уже совсем другая тема чтобы правильно проверить мосфет его нужно сначала выпаять либо отпаять ножки от платы, но делать это надо очень осторожно,так-как их просто можно выломать из корпуса 2. Как выпаять мосфет? все это делают по разному, лично я термовоздушной станцией выпаиваю или нижним подогревом если припой с свинцом то ставлю температуру300гр и как только припой поплывет снимаю пинцетом мосфет с безсвинцовкой потяжелее , снимаю только нижним подогревом потому как боюсь перегреть сам транзистор можно выпаять с помощью 2 паяльников, первым ватт на 60 разогреваем основу вторым отпаиваем ноги и им же снимаем мосфет (лично я такой способ считаю лишней заморочкой), предлагают некоторые еще и такой вариант, разогрев ножки подсунуть под них кусочек лезвия, а потом отпаять основу 3. Выпаяли мосфет начинаем прозванивать за образец возьмем наиболее распространенные мосфеты в корпусе ТО252аа или D2pak


1 ножка G-затвор, 2 ножка или основаD-сток,и3ножка S-исток пример проверки покажу на обычном китайском мультиметре EM362

переключаем мультиметр в режим прозвонки диодов и начинаем замерять падения напряжений для N-channel mosfet минусовой (черный) щуп ставим на подложку (D-сток), плюсовой(красный) на правый вывод мосфета (S-исток),тестер показывает падение напряжения на внутреннем диоде примерно около 500 миливольт(показания в зависимости от мосфетов могут быть разные), полевик закрыт теперь попытаемся открыть его, для этого не отрываясь черным щупом от подложки красным щупом касаемся левой ножки(G-затвор) теперь опять переносим красный щуп на исток тестер показывает падение напряжения равное 0, (если тестр с пищалкой то он вас развеселит своим подпискиванием) если теперь черным щупом дотронуться до затвора и переставить его обратно к подложке, то мосфет снова должен показывать только падение напряжения на диоде транзистор закрыт для P-channel mosfet проверяеться точно так же только щупы прибора между собой надо поменять местами и если транзистор открылся и закрылся как описано здесь то радуйтесь мосфет рабочий если же при прозвонке только вы прикоснулись щупами к транзистору и видите на табло тестера 0000, не переживайте сразу, попытайтесь сначала закрыть переход мосфета,(бывает и такое и довольно часто) если вы нашли неисправный мосфет, а он стоит и работает в паре с другим то желательно поменять оба транзистора(так же если вы транзистор в одном плече заменили на аналог, то и второе плече надо менять на такой-же) 4. Как подобрать аналог а что там подбирать то? качаем даташит многое тут и подбираем мосфет по параметрам У аналога Vds и Vgs должны быть не меньше оригинала (больше можно), хотя более точно они должны быть больше входного напряжения плюс некоторый запас на броски (кто его знает какой запас уже был в оригинале), Id — не меньше оригинала (больше можно), Pd — рассеиваемая мощность. Rds(on) чем меньше тем лучше, но если будет чуть больше чем у оигинала, не страшно (правда греться будет сильнее). И НЕЛЬЗЯ ЗАБЫВАТЬ ЧТО ЕСЛИ ВЫ НАМНОГО ЗАВЫСИТЕ VDS ТО СКОРОСТЬ СРАБАТЫВАНИЯ ТРАНЗИСТОРА СТАНЕТ МЕНЬШЕ поэтому в импульсных цепях стараються подбирать мосфеты поточнее о мосфетах
о moсфетах и аналогах
Мосфеты в линейных стабилизаторах:

Схемотехника довольно популярна и проста. Усилитель ошибки на ОУ, (LM358,324 и др) или TL431., который управляет полевиком по затвору, открывая его ( отслеживая по обратной связи) , тем самым поддерживая постоянство выходного напряжения. 2.5в, 1.8в, 1.5в,1.2в, 1.06в.

Сгорел мосфет в линейном стабилизаторе, как подобрать аналог?

Полевики в данном случае можно разделить на 2 группы, различающиеся нормированным напряжением VGS (ON) , и сопротивлением открытого канала RDS(ON). Дело в том что управляющую схему на ОУ конструкторы по желанию могут запитывать от 12в источника как и от 5в. Это значит что усилитель ошибки может управлять полевиком по затвору от 0 до 9-10в, или от 0 до 4,5-4.,8в..

Смотрим даташиты, и в некоторых видим нормированное RDS(ON) при различных VGS (ON).

Если схема управления 5 вольтовая, придется тщательнее подбирать транзистор, по даташитам сравнивая RDS(ON)&VGS (ON) обращая особое внимание на VGS (ON) = 2,5в(4.5в).и RDS(ON) при этом напряжении. Сравнив с даташитом «погорельца» — подбираем по характеристикам не худшим чем было. Можно подбором, но нужно учесть, что в уже работающей схеме на затворе должно быть не более 4в ( лучше меньше) , для обеспечения запаса регулировки.

Если она 12 вольтовая , то практически любой мосфет с донорской матплаты , (с не меньшим током) сможет работать в этом участке..

Как определить какая схема использована в данном участке.

Очень просто, без полевика, включив аппарат — измеряем относительно «земли» напряжение на точке завтора в плате.,схема усилителя ошибки будет стремится максимально увеличить напряжение на затворе, пытаясь открыть мосфет (которого нет..
). Если мы видим около 9-10в, значит схема 12-вольтовая, параметры подбора сужаются. Если не более 5в то схема управления 5-вольтовая.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]