Некоторые типовые узлы микросхем и особенности их эксплуатации

Многие электронные компоненты чувствительны к статическому электричеству, влаге и механическим повреждениям. В особенности это касается микросхем, ведь их логика размещается на хрупком полупроводниковом кристалле или плёнке. Корпус в данном случае является неотъемлемой составляющей конструкции микросхемы, защищающей её от внешних воздействий. Помимо этого он несёт также и соединительную функцию, коммутируя микросхему с другими компонентами электронного устройства, в которое она интегрируется.

С целью упростить процесс сборки изделий, корпуса микросхем стандартизуются по ряду признаков. На сегодняшний день можно купить микросхемы в сотнях различных корпусов, поэтому для упрощения подбора все они поделены на серии и промаркированы. Ниже представлены серии микросхем зарубежного производства, получившие наибольшее распространение в наших широтах.

DIP

Один из самых распространённых корпусов на сегодняшний день. Используется для защиты многовыводных микросхем и некоторых других электронных компонентов (светодиоды, переключатели, всевозможные датчики). Может иметь от 4 до 48 выводов, размещённых параллельно вдоль краёв корпуса. Сам корпус выполнен в форме прямоугольника и монтируется путём впаивания выводов в плату или посредством установки в принимающий разъём. Помимо стандартных пластиковых (PDIP), существуют также более надёжные керамические корпуса (CDIP).

Чертежи корпусов микросхем DIP

Типы микросхем

В настоящее время выпускается огромное количество типов микросхем. Практически любой законченный электронный узел, стандартный или специализированный, выпускается в микроисполнении. Перечислить и разобрать все типы в рамках одного обзора не представляется возможным. Но в целом по функциональному назначению микросхемы можно разделить на три глобальные категории.

  1. Цифровые. Работают с дискретными сигналами. Цифровые уровни подаются на вход, с выхода также снимаются сигналы в цифровом виде. Этот класс устройств охватывает область от простых логических элементов до самых современных микропроцессоров. Сюда же относятся программируемые логические матрицы, устройства памяти и т.п.
  2. Аналоговые. Работают с сигналами, изменяющимися по непрерывному закону. Характерный пример такой микросхемы – усилитель звуковой частоты. Также к этому классу относят интегральные линейные стабилизаторы, генераторы сигналов, измерительные датчики и многое другое. К категории аналоговых принадлежат и наборы пассивных элементов (резисторов, RC-цепей и т.п.).
  3. Аналогово-цифровые (цифро-аналоговые). Эти микросхемы не только преобразовывают дискретные данные в непрерывные или в обратную сторону. Исходные или полученные сигналы в том же корпусе могут усиливаться, преобразовываться, модулироваться, декодироваться и т.п. Широко распространены аналого-цифровые датчики для связи измерительных цепей различных технологических процессов с вычислительными устройствами.

SOIC

Компактный прямоугольный корпус с выводами по краям. Часто маркируется производителями аббревиатурой SO или SOP. Упрятанная в такой корпус микросхема может быть вдвое компактней и занимать вдвое меньше места на плате, чем если бы она была установлена в DIP. Ещё одно отличие касается выводов. Как и в случае с DIP корпусами, они располагаются вдоль краёв. Но запаиваемые на плате лепестки расположены в данном случае не перпендикулярно плоскости корпуса, а параллельно ей.

Чертежи корпусов микросхем SOIC

Многокристальные модули (MCM)

Многокристальные модули относились, до начала 1990-х, к области космической и военной технологии и высококачественной компьютерной промышленности. Первой преуспела в практическом использовании МСМ фирма IBM при организации производства серии ЭВМ четвертого поколения. В качестве монтажного и теплоотводящего основания использовались многослойные керамические платы. Специально для этого был построен завод по их производству. Большой объем работ сегодня ведется в Германии, в частности, в Ростокском университете и Техническом университете в Берлине, где за счет использования технологий МСМ увеличивается компоновка не только в плоскости модуля, но и по его вертикали (рис. 9).

Рис. 9. Экспериментальные образцы элементов МСМ в Берлинском Техническом университете

В 1990-х годах использование МСМ было единственным решением по увеличению интеграции и соответствующему повышению функциональности аппаратуры. Тогда вложения в создание многокристальных модулей были меньше, чем инвестиции в микроэлектронику.

Но в дальнейшем развитие электроники пошло по ставшему уже традиционным пути — по пути увеличения интеграции микросхем, что повлекло громадные вложения в их производство. Эти тенденции прослеживаются и сейчас. Построенные в Юго-Восточной Азии фабрики микросхем с топологическим разрешением 0,065 мкм и 0,093 мкм пока не до конца загружены. Поэтому сегодня усилия сосредоточены на проектах, которые бы использовали возможности развивающегося микроэлектронного производства.

Тем не менее, проекты МСМ прорабатываются всерьез там, где другие пути интеграции по тем или другим причинам не доступны.

Главная трудность в создании МСМ — сложности в тестировании кристаллов микросхем. Если вероятность попадания в состав трехкристального модуля равна 95% годных микросхем, выход годных МСМ составляет 85,7%. Далее встает вопрос идентификации годных и негодных компонентов модуля. Рентабельность производства МСМ напрямую связана с вероятностью годных микросхем.

Рис. 10

Рис. 11

Рис. 12

Во всяком случае, самая дорогая часть MCM — основание (подложка). В таблице 1 показаны варианты исполнения монтажных оснований МСМ. Вариант MCM-L предпочтителен с позиций экономичности.

Таблица 1. Современные представления о многокристальных модулях

QFP

Плоский четырёхугольный корпус для поверхностного монтажа. Выводы размещены по краям. Во многом QFP корпус походит на SOIC, с той лишь разницей, что выводы располагаются здесь вдоль всех четырёх сторон, а не только вдоль двух.

Чертежи корпусов микросхем QFP, TQFP, LQFP

SIP

Удобный тип корпуса для вертикального монтажа на плату. Выводы располагаются с одной стороны, а число после аббревиатуры SIP указывает на их количество. У Xilinx и других крупных производителей встречаются модификации HSIP — это корпус того же формата, но дооснащённый рассеивателем тепла.

Чертежи корпусов микросхем SIP

BGA-компоненты

BGA-технология возникла приблизительно 20 лет назад в фирме IBM для внутреннего потребления. Первая фирма, которая переняла опыт IBM, была Motorola, она купила лицензию у IBM и развила ее технологию до компоновки, названной OMPAC (Overmoulded Plastic Array Carrier). Структура BGA-компонента показана на рис. 2.

Рис. 2. BGA-компонент в пластиковом корпусе

По этой схеме кристалл устанавливается на монтажную подложку из композиционного материала с органическим связующим (FR-4, FR-5, BT), имеющим высокую температуру стеклования. Для этих целей предпочтительнее использовать материал на основе ВТ (Bismaleimid Triasine) с особенно высокой температурой стеклования и отличными электрическими свойствами. На обе стороны подложки наносится финишное покрытие NiAu, универсальное для микросварки (разварки проводов от микросхемы к подложке) и пайки шариковых выводов.

Кристалл приклеивается к подложке теплопроводным адгезивом на основе эпоксидной смолы. В свою очередь, подложка имеет элементы кондуктивного теплоотвода с одной стороны на другую. Часть шариковых выводов предназначена для тепловых соединений.

Современные стандарты устанавливают шаг сетки матричных выводов: 1,5 мм, 1,27 мм и 1,0 мм и диаметром шариковых выводов 0,6 мм. Конструкции подложек 50×50 мм позволяют размещать на них 2401 вывода с шагом 1,0 мм.

Кристаллы микросхем монтируют на подложку с помощью одного из четырех методов:

  1. Термокомпрессионная микросварка (wirebonding) — наиболее старый, наиболее гибкий и широко применяемый метод (рис. 2). С его помощью до сих пор изготавливают более 96% всех микросхем.
  2. Присоединение кристаллов к выводам ленточного носителя (рис. 3), или TAB (Tape-automated Bonding). Этот метод используется для автоматического монтажа кристаллов с малым шагом выводов на промежуточный носитель. Кроме возможности автоматизации монтажа, он обеспечивает возможность предварительного тестирования кристаллов перед окончательной установкой его на монтажную подложку.
  1. Присоединение перевернутого кристалла(Flip Chip) через шариковые выводы (рис. 4). Компактность и улучшенные электрические характеристики этого метода межсоединений способствуют расширению его применения.

Рис. 4. Монтаж микросхемы на подложку методом перевернутого кристалла (Flip Chip)

  1. Присоединение кристалла балочными выводами (рис. 5). При этом методе используют технологии термокомпрессионной и ультразвуковой микросварки балочных выводов к периферийным контактным площадкам на кристалле и затем — балочных выводов к подложке.

LCC

Компактный низкопрофильный корпус, монтируемый в специально оборудованное гнездо с контактными лепестками по бокам (в простонародье — «кроватка»). Изготавливается из пластика (в таком случае маркируется аббревиатурой PLCC) или керамики (CLCC). Купить микросхемы обоих типов можно во всех крупных магазинах радиоэлектронных компонентов, включая наш.

Чертежи корпусов микросхем LCC, PLCC

TSOP

Одна из разновидностей корпусов SOP, отличительной чертой которой служит малая толщина. В данные корпуса часто помещают низковольтные электронные компоненты, имеющие малый размер и большое количество выводов (такие, как DRAM).

Чертежи корпусов микросхем TSOP

Структурная интегральная схема внутри чипа

Итак, процесс создания интегральной схемы начинается от монокристалла кремния, напоминающего по форме длинную сплошную трубу, «нарезанную» тонкими дисками — пластинами. Такие пластины размечаются на множество одинаковых квадратных или прямоугольных областей, каждая из которых представляет один кремниевый чип (микрочип). Пример внутренней структуры интегральной схемы, демонстрирующий возможности такой уникальной технологии интеграции полноценных электронных схемотехнических решений.

Будет интересно➡ Что такое элементная база и где она применяется

Затем на каждом таком чипе создаются тысячи, миллионы или даже миллиарды компонентов путём легирования различных участков поверхности — превращения в кремний N-типа или P-типа. Легирование осуществляется различными способами. Один из вариантов — распыление, когда ионами легирующего материала «бомбардируют» кремниевую пластину.

Другой вариант — осаждение из паровой фазы, включающий введение легирующего материала газовой фазой с последующей конденсацией. В результате такого ввода примесные атомы образуют тонкую пленку на поверхности кремниевой пластины. Самым точным вариантом осаждения считается молекулярно-лучевая эпитаксия.

Конечно, создание интегральных микросхем, когда упаковываются сотни, миллионы или миллиарды компонентов в кремниевый чип размером с ноготь, видится сложнейшим процессом. Можно представить, какой хаос принесёт даже небольшая крупинка в условиях работы в микроскопическом (наноскопическом) масштабе. Вот почему полупроводники производятся в лабораторных условиях безупречно чистых. Воздух лабораторных помещений тщательно фильтруется, а рабочие обязательно проходят защитные шлюзы и облачаются в защитную одежду.

Интересно почитать: что такое клистроны.

Кто создал интегральную схему?

Разработка интегральной схемы приписывается двум физикам — Джеку Килби и Роберту Нойсу, как совместное изобретение. Однако фактически Килби и Нойс вынашивали идею интегральной схемы независимо друг от друга. Между учёными даже существовала своего рода конкуренция за права на изобретение.

Джек Килби трудился в «Texas Instruments», когда учёному удалось реализовать идею монолитного принципа размещения различных частей электронной схемы на кремниевом чипе. Учёный вручную создал первую в мире интегральную микросхему (1958 год), использовав чип на основе германия. спустя год подала заявку на патент.

Тем временем представитель другой — Роберт Нойс, проводил эксперименты с миниатюрными цепями своего устройства. Благодаря серии фотографических и химических методов (планарный процесс), учёный всего лишь на год позже Килби создал практичную интегральную схему. Методика получения также была оформлена заявкой на патент.

Микросхемы на плате

SSOP

Ещё одна разновидность SOP корпусов, отличающаяся ещё меньшими размерами. Рассчитана на поверхностный монтаж. Хорошо подходит для компактных микросхем с умеренным тепловыделением. Для более горячих экземпляров лучше применять TSSOP, так как данные корпуса имеют большую площадь, способную эффективнее рассеивать тепло.

Чертежи корпусов микросхем SSOP

ZIP

Очень компактный плоский корпус с зигзагообразными контактами, размещёнными в нижней части. Купить микросхемы данного типа можно как в стандартной, так и в HZIP модификации (оборудована теплорассеивателем).

Чертежи корпусов микросхем ZIP

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]