Блок питания ATX, устройство и принцип работы. Часть 1.
Так как блок питания есть неотъемлемой частью ПК, то знать подробнее про него будет интересно каждому человеку связанным с электроникой и не только. От качества БП напрямую зависит работа ПК в целом. И так, полагаю, что надо начать с самого простого, для каких целей предназначен блок питания: — формирование напряжения питания компонентов ПК: +3,3 +5 +12 Вольт (дополнительно -12В и -5В); — гальваническая развязка между 220 и ПК (чтобы не бился током, и не было утечек тока при сопряжении компонент). Простой пример гальванической развязки это трансформатор. Но для питания ПК нужна большая мощность, а соответственно и трансформатор больших размеров (комп был бы очень большим :), и переносили его бы вдвоем из за немалого веса, но нас это миновало :)). Для построения компактных блоков используется повышенная частота тока питания трансформатора, с ростом частоты для того самого магнитного потока в трансформаторе нужно меньшее сечение магнитопровода и меньше витков. Создавать легкие и компактные БП позволяет завышенная в 1000 и больше раз частота питающего напряжения трансформатора. Основной принцип работы БП заключается в следующем, преобразование переменного сетевого напряжения (50 Гц) в пер. напряжение высокой частоты прямоугольной формы (был бы осциллограф показал бы на примере), которое с помощью трансформатора понижается, дальше выпрямляется и фильтруется.
Блок-хема импульсного БП.
1. Блок Преобразовывает переменные 220В в постоянные. Состав такого блока: диодный мост для выпрямления переменного напряжения + фильтр для сглаживания пульсаций выпрямленного напряжения. А также должен быть (в дешевых БП на них экономят не впаивая, но я сразу рекомендую при переделке или ремонте их ставить) фильтр напряжения сети от пульсаций импульсного генератора, а также термисторы сглаживают скачок тока при включении. На картинке фильтр, на схеме обозначен пунктиром, его мы встретим почти в любой схеме БП (но не всегда на плате :)). 2. Блок Этот блок генерирует импульсы определенной частоты, которыми питается первичная обмотка трансформатора. Частота генерирующих импульсов у различных фирм производителей БП находится, где то в 30-200кГц пределах. 3. Блок На трансформатор положены такие функции: — гальваническая развязка; — понижение напряжения на вторичных обмотках до необходимого уровня. 4. Блок Этот блок преобразует напряжение, полученное от блока 3, в постоянное. Он состоит из выпрямляющих напряжение диодов и фильтра пульсаций. Состав фильтра: дроссель и группа конденсаторов. Часто для экономии конденсаторы ставят малой емкости, а дроссели малой индуктивности.
Импульсный генератор подробнее.
Схема ВЧ преобразователя состоит с мощных транзисторов, которые работают в режиме ключа и импульсного трансформатора. БП может собой представлять однотактный и двухтактный преобразователь: — однотактный: открывается и закрывается один транзистор; — двухтактный: поочередно открываются и закрываются два транзистора. Смотрим рисунок.
Элементы схемы: R1 — сопротивление, задающее смещение на ключах. Необходимое для более стабильного запуска процесса колебаний в преобразователе. R2 – сопротивление, ограничивающее ток базы на транзисторах, необходимо для защиты транзисторов от выхода из строя. ТР1 — Трансформатор имеющий три группы обмоток. Первая формирует выходное напряжение. Вторая служит нагрузкой для транзисторов. Третья формирует управляющее напряжение для транзисторов. При включении первой схемы транзистор приоткрыт совсем немного, потому, что к базе приложено положительное напряжение через резистор R1. На приоткрытом транзисторе протекает ток, который протекает через II обмотку. Ток создает магнитное поле. Магнитное поле создает напряжение в остальных обмотках. На III обмотке создается положительное напряжение, которое открывает транзистор еще больше. Процесс до тех пор происходит, пока транзистор не попадет в режим насыщения. Режим насыщения характеризуется тем, что при увеличении приложенного управляющего тока к транзистору, неизменным остается выходной ток. Только при изменении магнитного поля генерируется напряжение на обмотках, при отсутствии изменений на транзисторе так же исчезнет и ЭДС в обмотках II и III. Когда напряжение на обмотке III пропадет, тогда и уменьшится открытие транзистора, а следовательно уменьшиться выходной ток транзистора и магнитное поле, что приведет к появлению напряжения противоположной полярности. Отрицательное напряжение на III обмотке еще больше закроет транзистор. Процесс длится пока магнитное поле не исчезнет полностью. Когда поле исчезнет, исчезнет отрицательное напряжение и процесс пойдет по кругу снова. Двухтактный преобразователь работает так же, но так как в нем два транзистора, работающих поочередно, то такое применение повышает КПД преобразователя и улучшает его характеристики. В основном применяют двухтактные, но если надо малая мощность и габариты, а также простота, то однотактные. Рассмотренные выше преобразователи есть законченными устройствами, но их применение усложняется разбросом различных параметров таких как: загруженности выхода, напряжения питания, и температуры преобразователя.
Управление ключами ШИМ контролером (494).
Преобразователь состоит из трансформатора Т1 и транзистора VT1. Сетевое напряжение через сетевой фильтр (СФ) подается на сетевой выпрямитель (СВ) диодный мост, фильтруется конденсатором Сф и через обмотку W1 подается на коллектор транзистора VT1. При подаче на базу транзистора импульса прямоугольной формы, он открывается и через него течет ток Iк который нарастает. Этот же ток протекающий и через первичную обмотку трансформатора Т1, приводит к тому, что увеличивается магнитный поток в сердечнике трансформатора, и наводится ЭДС самоиндукции во вторичной обмотке W2. В итоге на диоде VD появиться положительное напряжение. Увеличивая длительность импульса на базе транзистора VT1, будет увеличиваться напряжение во вторичной цепи, а если уменьшать длительность, то напряжение будет уменьшаться. Изменяя длительность импульса на базе транзистора, мы меняем выходное напряжения на W1 обмотке Т1, и осуществляем стабилизацию выходных напряжений блока питания. Нужна схема формирования импульсов запуска и управления их длительностью (широтой). Такой схемой используется ШИМ (широтно – импульсная модуляция) контроллер. ШИМ контроллер состоит из: — задающего импульсного генератора (определяющего частоту работы преобразователя); — схемы контроля; — логической схемы, которая и управляет длительностью импульса; — схемы защиты. Это тема другой статьи. Чтобы стабилизировать выходные напряжения БП, схема ШИМ контроллера «должна знать» величину выходных напряжений. Для этого используется цепь обратной связи (или цепь слежения), выполненная на оптопаре U1 и резисторе R2. Увеличение напряжения во вторичной цепи трансформатора Т1 приведет к увеличению интенсивности излучения светодиода, а следовательно уменьшению сопротивления перехода фототранзистора (входящих в состав оптопары U1). Это приводит на резисторе R2 включенном последовательно фототранзистору к увеличению падения напряжения, и уменьшению напряжения на выводе 1 ШИМки. Уменьшение напряжения заставляет логическую схему, составляющую ШИМ, увеличивать длительность импульса, пока напряжение на 1-м выводе не будет соответствовать заданным параметрам. Процесс обратный, когда напряжение уменьшается. Есть две реализации цепей обратной связи: — «непосредственная» на схеме выше, обратная связь снимается непосредственно с вторичного выпрямителя; — «косвенная» снимается непосредственно с дополнительной обмотки W3 (смотрите рисунок ниже); Изменение напряжения на вторичной обмотке приведет к изменению его на обмотке W3, которое через R2 передается на 1 вывод ШИМки.
Ниже приведена реальная схема БП.
1. Блок Выпрямляет и фильтрует переменное напряжение, а также здесь находится фильтр от помех которые создает сам БП. 2. Блок Этот блок формирует +5VSB (дежурное напряжение), а также питает контролер ШИМ. 3. Блок На третий блок (ШИМ — контролер 494) положены такие функции: — управление транзисторными ключами; — стабилизация выходных напряжений; — защита от короткого замыкания. 4. Блок В состав этого блока входят два трансформатора, и две группы транзисторных ключей. Первый трансформатор формирует напряжение управления для выходных транзисторов. 1 группа транзисторов усиливает генерируемый сигнал TL494 и передает его первому трансформатору. 2 группа транзисторов нагружена на основной трансформатор, на котором формируются основные напряжения питания. 5. Блок В состав этого блока входят диоды Шоттки для выпрямления выходного напряжения трансформатора, а также фильтр низких частот. В состав ФНЧ входят электролитические конденсаторы больших емкостей (зависит от производителя БП) и дросселей, а также резисторов для разрядки этих конденсаторов при выключенном БП.
Немного о дежурке.
Различиями между блоками стандарта АТХ от БП стандарта АТ в том, что БП АТХ стандарта имеют источник дежурного напряжения питания. На 9 контакте (20 контактного, фиолетовый провод) разъема вырабатывается напряжение +5VSB которое идет на мат плату для питания схемы управления БП. Эта схема осуществляет формирования сигнала «PS-ON» (14 контакт разъема, зеленый провод).
В данной схеме преобразователь работает на частоте, определяемой в основном параметрами трансформатора Т3 и номиналами элементов в базовой цепи ключевого транзистора Q5 — емкостью конденсатора С28 и сопротивлением резистора начального смещения R48 [1]. Положительная обратная связь на базу транзистора Q5 поступает с вспомогательной обмотки трансформатора Т2 через элементы С28 и R51. Отрицательное напряжение с этой же обмотки после выпрямителя на элементах D29 и С27, в случае если оно превышает напряжение стабилизации стабилитрона ZD1 (в данном случае 16 В) также подается на базу Q5, запрещая работу преобразователя. Таким способом выполняется контроль за уровнем выходного напряжения. Напряжение питания с сетевого выпрямителя на преобразователь поступает через токоограничительный резистор R45, который при его выходе из строя можно заменить предохранителем на ток 500 мА, либо исключить совсем. В схеме на рис.1 резистор R56 номиналом 0.5 Ом, включенный в эмиттер транзистора Q5 является датчиком тока, при превышении тока транзистора Q5 выше допустимого напряжение с него через резистор R54 поступает на базу транзистора Q9 типа 2SC945 открывая его, и тем самым запрещая работу Q5. Подобным образом осуществляется дополнительная защита Q5 и первичной обмотки Т3. Цепочка R47C29 служит для защиты транзистора Q5 от выбросов напряжения. В качестве ключевого транзистора Q5 в указанной модели БП применяются транзисторы KSC5027. В предыдущей моей статье БП был на аналогичных элементах (дежурка).
А теперь рассмотрим БП вживую.
1. Элементы фильтра сети от помех генерируемых БП. 2. Диодный мост, выпрямляющий переменные 220В. 3. Емкости фильтра сетевого напряжения. 4. Радиатор для выходных транзисторов преобразователя, а также транзистора преобразователя дежурки. 5. Основной трансформатор: развязка с сетью и формирование всех напряжений. 6. Трансформатор для формирования управляющего напряжения выходных транзисторов. 7. Трансформатор преобразователя, формирующий дежурное напряжение. 8. Радиатор для диодов Шоттки. 9. Микросхема ШИМ – контролера. 10. Фильтры выходных напряжений (электролитические конденсаторы). 11. Дроссели фильтра выходных напряжений.
На этом пока остановлюсь. Всем спасибо за столь долгое внимание. Надеюсь хоть кому то принес пользу Жду комментариев и предложений по дополнению. Продолжение будет…
Даем определение
Блок питания — это устройство в задачи которого входит преобразовать сетевое переменное напряжение в постоянное и подать его компонентам компьютера (системной карте, процессору, видеокарте, жесткому диску, оперативной памяти и другим периферийным устройствам).
Также блок питания (БП) имеет свойство защитить компьютер от перепадов напряжения.
По сути, это инверторная система (относиться к устройствам импульсного типа), которая инвертирует, изменяет сетевое напряжение для разных задач.
Выглядит БП, как небольшая коробочка с вентилятором, вставляемая в системный блок.
В разных странах напряжение и частота тока в сети разная. К примеру, если в России, а также в большинстве странах Европы, данные показатели равны 220В и 50 Гц соответственно, то в США напряжение тока в сети равна 120В, а частота 60Гц.
К примеру, в Австралии данные показатели равны 240В/50Гц.
Соответственно производство блоков питания, в техническом плане, налаживается исходя из того, в какую страну мира они будут поставляться.
Есть универсальные устройства, которые можно использовать в некоторых странах.
Без блока питания компьютер работать не будет. Очень часто если не включается системный блок в первую очередь следует искать причину именно в этом устройстве, и при необходимости заменять его на новое.
Сегодня существуют устройства с различной мощностью.
Мощность блоков питания современных ноутбуков, к примеру, 25-100 Ватт. В обычных персональных компьютерах параметр порой достигает 2000 Ватт.
Говорят, что, чем мощнее устройство, тем лучше. Однако не каждому нужен такой мощный и дорогой аппарат.
Многие специалисты расценивают покупку блока питания с большой мощностью как бесполезную трату денег (в том числе и на электроэнергию).
Некоторые компании сегодня отказываются от выпуска таких устройств с высокой мощностью вследствие экологических проблем в мире.
Хотя наличие устройств на полках магазинов мощностью в 500 Ватт, в наше время является обыденным делом.
Комплектующие
Это пожалуй самые современные устройства регулирования в цепях постоянного тока. Его можно сравнить с трансформатором, поскольку поведение импульсного преобразователя подобно трансформатору с плавно меняющимся количеством витков:
Большим плюсом таких устройств есть то, что они могут осуществить рекуперацию энергии в сеть, плавно регулируют скорость нарастания тока, обладают высоким КПД и быстродействием.
Полезные советы Схемы для подключения Принципы работы устройств Главные понятия Счетчики от Энергомера Меры предосторожности Лампы накаливания Видеоинструкции для мастера Проверка мультиметром
Простой двух полярный стабилизатор напряжения на LM317.
За основу устройства взята схема описанная в выше, и добавлено плечо стабилизации отрицательного напряжения.
Характеристики и достоинства двух полярного стабилизатора
- напряжение стабилизации от 1,2 до 30 В;
- максимальный ток до 5 А;
- используется малое количество элементов;
- простота в выборе трансформатора, так как можно использовать вторичную обмотку без центрального отвода;
Детали устанавливаются на односторонний стеклотекстолит. Транзистор VT1, VT2 и микросхемы LM317 и LM337 следует устанавливать на радиаторы. При установке на общий радиатор следует использовать изолирующие прокладки и втулки.
Импульсный БП
Сам ИБП конструктивно был собран в корпусе того же разобранного БП АТХ. Транзисторы VT3,VT4 установлены на радиаторы площадью 50 см 2 .
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
Блок питания своими руками: 100 фото, чертежи и лучшие проекты с регулировкой Трансформаторы имеют небольшие размеры и вес при использовании импульсного блока по причине того, что повышение частоты позволяет повысить эффективность их работы, а также уменьшить толщину сердечника. Спрашивайте, я на связи!
Регулятор тока и напряжения
Регулятор постоянного тока может нормально функционировать при максимальной температуре 40С. Этот фактор следует обязательно учитывать в процессе эксплуатации. Полевые транзисторы располагаются следом за тиристорами, поскольку они пропускают ток лишь в одном направлении. За счет этого отрицательное сопротивление будет сохраняться на уровне, не превышающем 8 Ом.
Во время регулировок в сети должна быть обеспечена плавная стабилизация тока. При высоких нагрузках схема дополняется стабилитронами обратного направления. Для их соединения между собой используются транзисторы и дроссель. Таким образом, регулятор тока на транзисторе выполняет преобразование тока быстро и без потерь.
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
Монтаж пошагово А именно это микросхема TL494, конденсаторы С9,С10, диодный мост VDS1, конденсаторы С1,С2, С5,С6,С7, диод VD2, диоды Шоттки VD3,VD4, и ферритовые сердечники с каркасами TR1,TR2. Спрашивайте, я на связи!
Сетевой импульсный источник питания
Сетевой импульсный источник питания (рис. 3) разработан для телефонных аппаратов с автоматическим определителем номера или для других устройств с потребляемой мощностью 3…5Вт, питаемых напряжением 5…24В.
Источник питания защищен от короткого замыкания на выходе. Нестабильность выходного напряжения не превышает 5% при изменении напряжения питания от 150 до 240 В и тока нагрузки в пределах 20… 100% от номинального значения. Управляемый генератор импульсов обеспечивает на базе транзистора VT3 сигнал частотой 25…30 кГц. Дроссели L1, L2 и L3 намотаны на магнитопроводах типа К10x6x3 из пресспермаллоя МП140. Обмотки дросселя L1, L2 содержат по 20 витков провода ПЭТВ 0,35 мм и расположены каждая на своей половине кольца с зазором между обмотками не менее 1 мм.
Дроссель L3 наматывают проводом ПЭТВ 0,63 мм виток к витку в один слой по внутреннему периметру кольца. Трансформатор Т1 выполнен на магнитопроводе Б22 из феррита М2000НМ1.
Рис. 3. Схема сетевого импульсного источника питания.
Его обмотки наматывают на разборном каркасе виток к витку проводом ПЭТВ и пропитывают клеем. Первой наматывают в несколько слоев обмотку I, содержащую 260 витков провода 0,12 мм. Таким же проводом наматывают экранирующую обмотку с одним выводом (на рис. 3 показана пунктирной линией), затем наносят клей БФ-2 и обматывают одним слоем лакот-кани.
Обмотку III наматывают проводом 0,56 мм. Для выходного напряжения 5В она содержит 13 витков. Последней наматывают обмотку II. Она содержит 22 витка провода 0,15…0,18 мм. Между чашками обеспечивают немагнитный зазор.
Импульсный источник питания с микросхемой
Схема источника питания с микросхемой той же фирмы Power Integration показана на рис. 6. В устройстве применен полупроводниковый ограничитель напряжения — 1,5КЕ250А.
Преобразователь обеспечивает гальваническую развязку выходного напряжения от напряжения сети. При указанных на схеме номиналах и элементах устройство позволяет подключать нагрузку, потребляющую 20 Вт при напряжении 24 В. КПД преобразователя приближается к 90%. Частота преобразования — 100 Гц. Устройство защищено от коротких замыканий в нагрузке.
Рис. 6. Схема импульсного источника питания 24В на микросхеме фирмы Power Integration.
Выходная мощность преобразователя определяется типом используемой микросхемы, основные характеристики которых приведены в таблице 1.
Таблица 1. Характеристики микросхем серии TOP221Y — TOP227Y.
Тип микросхемы | Рmax, Вт | Ток срабатывания защиты, А | Сопротивление открытого транзистора, Ом |
TOP221Y | 7 | 0,25 | 31,2 |
T0P222Y | 15 | 0,5 | 15,6 |
T0P223Y | 30 | 1 | 7,8 |
T0P224Y | 45 | 1,5 | 5,2 |
T0P225Y | 60 | 2 | 3,9 |
T0P226Y | 75 | 2,5 | 3,1 |
T0P227Y | 90 | 3 | 2,6 |