Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.
Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения “треугольника” и метод “звезды”. При соединении концов применяют специально предназначенные для этого перемычки.
Различия между «звездой» и «треугольником»
Исходя из теории и практических знаний основ электротехники, способ подключения «звезда», позволяет электродвигателю работать плавнее и мягче. Но при этом данный способ не позволяет выйти двигателю на всю мощность, представленную в технических характеристиках.
Соединив фазные обмотки по схеме «треугольник», двигатель способен быстро выйти на максимальную рабочую мощность. Это позволяет использовать по полной КПД электродвигателя, согласно техпаспорта. Но у такой схемы соединения есть свой недостаток: большие пусковые токи. Для уменьшения значения токов применяют пусковой реостат, позволяя осуществить более плавный пуск двигателя.
Варианты подключения
Трехфазные двигатели имеют отличные характеристики, довольно широкий модельный ряд и применяются в самых разнообразных устройствах. Поэтому их применяют как в промышленных устройствах с трехфазным питанием, так и в бытовых однофазных электроустановках. Далее разберем оба варианта подключения электрических машин.
В однофазную сеть
Конструктивная особенность трехфазного агрегата, в отличии от однофазных асинхронных двигателей, состоит в необходимости сдвига фаз в обмотках, иначе вращения вала не будет происходить. Чтобы изменить ситуацию одну фазу разделяют для всех трех обмоток, в две из которых включаются дополнительная индуктивность и пусковая емкость. Которые и обеспечивают сдвиг тока и напряжения относительно напряжения в сети. Индуктивность позволяет осуществить сдвиг напряжения в отрицательную область до -90°, а вот однофазный конденсатор, наоборот, в положительную до +90°.
Графически функция отставания напряжения от тока будет выглядеть следующим образом:
Изменение тока и напряжения на емкости и индуктивности
Однако на практике смещение обеспечивается только емкостными элементами, которые включаются в цепь электроснабжения одной из обмоток, а две другие запускаются между фазным и нулевым проводом. Схема подключения трехфазного двигателя в однофазной цепи приведена на рисунке ниже:
Схема включения в однофазную сеть
Как видите на рисунке, от фазного провода делается отпайка, содержащая конденсаторный однофазный магазин из двух элементов, один для пуска C2, второй для постоянной работы C1. При нажатии кнопки пуска происходит одновременное замыкание контактов SA1 и SA2, но после создания достаточного момента и начала вращения SA1 отбрасывается и выводит C1 из цепи, оставляя C2. Мощность, при такой схеме включения двигателя, снижается до 30 – 50%.
Расчет конденсаторного пуска производится по формуле:
Сраб = (2800*I)/U — для включения трехфазного двигателя звездой
Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником
Пусковой конденсатор используется только в нагруженном пуске, поэтому в легком запуске его можно не применять. Тогда вместо емкости пускового будет задействоваться рабочий.
В трёхфазную сеть
В трехфазной сети, несмотря на наличие необходимого типа питающего напряжения, всегда используется магнитный пускатель для приведения двигателя во вращение. Производить запуск без пускателя или контактора довольно опасно, поэтому они являются неотъемлемым элементом.
Схема включения в трехфазную сеть
На рисунке выше приведена обычная схема подключения двигателя к трехфазной сети, которая работает по такому принципу:
- подача напряжения на двигатель от сети производится через рубильник 1.
- далее, при включении кнопки пуска 6 осуществляется питание катушки контактора 4, которая притягивает силовые контакты пускателя 3;
- после чего двигатель начинает вращение, а пусковая кнопка 6 шунтируется через повторитель 5;
- для остановки трехфазного двигателя используется кнопка Стоп – 7, находящаяся в нормально замкнутом положении;
- защита двигателя от перегрузки контролирует токовую нагрузку в сети и при возникновении угрозы размыкает контакты 2.
Данная схема может упрощаться в связи с конструктивными особенностями применяемых пускателей. Так как некоторые из них изготавливаются без повторителей, могут иметь функцию реверсирования трехфазного двигателя или выпускаться без защиты. Более детальную информацию о магнитных пускателях вы можете почерпнуть из соответствующей статьи на сайте:
Соединение «звездой» и его преимущества
Реверсивная схема двигателя 380 на 220 Вольт
Каждая из трех рабочих обмоток электродвигателя имеет два вывода – соответственно начало и конец. Концы всех трех обмоток соединяют в одну общую точку, так называемую нейтраль.
При наличии нейтрального провода в цепи схему называют 4-х проводной, в противном случае, она будет считаться 3-х проводной.
Начало выводов присоединяют к соответствующим фазам питающей сети. Приложенное напряжение на таких фазах составляет 380 В, реже 660 В.
Основные преимущества применения схемы «звезда»:
- Устойчивый и длительный режим безостановочной работы двигателя;
- Повышенная надежность и долговечность, за счет снижения мощности оборудования;
- Максимальная плавность пуска электрического привода;
- Возможность воздействия кратковременной перегрузки;
- В процессе эксплуатации корпус оборудования не перегревается.
Существует оборудование с внутренним соединением концов обмоток. На колодку такого оборудования будет выведено всего лишь три вывода, что не позволяет применить другие методы соединения. Выполненное в таком виде электрооборудование, для своего подключения не требует грамотных специалистов.
Подключение трехфазного двигателя к однофазной сети по схеме звезда
Схема управления
Подключение оперативного напряжения, через контакт реле времени К1 и контакт К2, в цепи катушки контактора К3. Включение контактора К3, размыкает контакт К3 в цепи катушки контактора К2 (блокировка ошибочного включения), замыкается контакт К3, в цепи катушки контактора К1 совмещенного с пневматическим реле времени.
Включение контактора К1, замыкает контакт К1 в цепи катушки контактора К1 (самоподпитка), одновременно включается пневматическое реле времени, которое размыкает через определенное время свой контакт К1 в цепи катушки контактора К3, а также замыкает свой контакт К1 в цепи катушки контактора К2. Отключение контактора К3, замыкается контакт К3 в цепи катушки контактора К2. Включение контактора К2, размыкает контакт К2 в цепи катушки контактора К3 (блокировка ошибочного включения).
Соединение «треугольником» и его преимущества
Принцип соединения «треугольник» заключается в последовательном соединении конца обмотки фазы А с началом обмотки фазы В. И дальше по аналогии – конец одной обмотки с началом другой. В итоге конец обмотки фазы С замыкает электрическую цепь, создавая неразрывный контур. Данную схему можно назвать было кругом, если бы не структура монтирования. Форму треугольника предает эргономичное размещение соединения обмоток.
При соединении «треугольником» на каждой из обмоток, присутствует линейное напряжение равное 220В или 380В.
Основные преимущества применения схемы «треугольник»:
- Увеличение до максимального значения мощности электрооборудования;
- Использование пускового реостата;
- Повышенный вращающийся момент;
- Большие тяговые усилия.
Недостатки:
- Повышенный ток пуска;
- При длительной работе двигатель сильно греется.
Метод соединения обмоток двигателя «треугольником» широко используется при работе с мощными механизмами и наличия высоких пусковых нагрузок. Большой вращающий момент создается за счет увеличения показателей ЭДС самоиндукции, вызванных протекающими большими токами.
Подключение трехфазного двигателя к однофазной сети по схеме треугольник
Соединение обмоток трансформатора в зигзаг
Соединение в зигзаг используется в случае, если на вторичных нагрузках неравномерная нагрузка. После соединения в зигзаг нагрузка распределяется более равномерно по фазам и магнитный поток трансформатора сохраняет равновесие, несмотря на неравномерную нагрузку.
Рассмотрим соединение в зигзаг-звезду трехфазного силового трансформатора. Схематично изображение приведено на рисунке.
Первичные обмотки соединяются в звезду. Далее разделяем каждую вторичную обмотку напополам. И далее соединяем, как показано на рисунке.
При соединении в зигзаг-звезду потребуется большее число витков, чем при простой звезде. Также при таком соединении возможно получение трех классов напряжения, например 380-220-127В.
Сохраните в закладки или поделитесь с друзьями
Источник: pomegerim.ru
Тип соединения «звезда-треугольник»
В сложных механизмах, зачастую используется комбинированная схема «звезда-треугольник». При таком переключении резко вырастает мощность, и если двигатель по техническим характеристикам не предназначен для работы по методу «треугольника», то он перегреется и сгорит.
Двигатели с повышенной мощностью обладают большими пусковыми токами, и как следствие при пуске часто вызывают перегорание предохранителей, отключению автоматов. Для снижения линейного напряжения в обмотках статора применяют автотрансформаторы, универсальные дросселя, пусковые реостаты или соединение типа «звезда».
Схемы подключения звездой и треугольником
В этом случае напряжение на соединении каждой обмотки будет в 1,73 раза меньше, следовательно, будет меньше и протекающий в этот период ток. Дальше происходит увеличение частоты и продолжение снижения показания тока. Тогда применяя релейно-контактную схему, произойдет переключение со «звезды» на «треугольник».
В итоге, используя данную комбинацию, получим максимальную надежность и эффективную продуктивность используемого электрического оборудования, не боясь вывести ее из строя.
Переключение «звезда-треугольник» допустимо для электродвигателей с облегченным режимом пуска. Этот метод неприменим, если необходимо понизить ток пуска и одновременно не снижать большой пусковой момент. В этом случае применяют двигатель с фазным ротором с пусковым реостатом.
Основные преимущества комбинации:
- Увеличение срока службы. Плавный пуск позволяет избежать неравномерности нагрузки на механическую часть установки;
- Возможность создания двух уровней мощности.
ВКЛЮЧЕНИЕ ПРИЕМНИКОВ ЭНЕРГИИ В СЕТЬ ТРЕХФАЗНОГО ТОКА
Электрические лампы изготовляются на номинальные напряжения 127 и 220 в, а трехфазные электродвигатели на номинальные фазные напряжения 127, 220 и 380 в
и выше.
Способ включения приемника в сеть трехфазного тока зависит от линейного напряжения сети и от номинального напряжения приемника.
Лампы с номинальным напряжением 127 в
включаются треугольником при линейном напряжении сети 127
в
и звездой с нейтральным проводом при линейном напряжений сета 220
в.
Лампы с номинальным напряжением 220
в
включаются треугольником в сеть с линейным напряжением 220
в
и звездой с нейтральным проводом в сеть с линейным напряжением 380
в.
Трехфазный электродвигатель включается треугольником в сеть, линейное напряжение которой равно номинальному фазному напряжению электродвигателя. Если линейное напряжение сети превышает в √3 раз номинальное фазное напряжение электродвигателя, то он включается звездой.
Статья на тему Соединение приемников энергии треугольником
Блиц-советы
- В момент пуска электродвигателя, его ток пуска в 7 раз больше рабочего тока.
- Мощность в 1,5 раза больше при соединении обмоток методом «треугольника».
- Для создания плавного пуска и защиты от перегрузок двигателя, часто используются частотные провода.
- При использовании метода соединения «звездой», особое внимание уделяют отсутствию «перекоса фаза», иначе оборудование может выйти из строя.
- Линейные и фазные напряжения при соединении «треугольник» – равны между собой, как и линейные и фазные токи в соединении «звездой».
- Для подключения двигателя к бытовой сети зачастую применяют фазосдвигающий конденсатор.
Подключение обмоток электродвигателя по схеме «звезда»
При соединении фаз электродвигателя звездой, три обмотки своими началами соединяются между собой в общей точке. Свободные концы подключаются каждый к своей фазе сети. В некоторых случаях общая точка соединяется с нулевой шиной системы электроснабжения.
Из рисунка видно, что для данного включения к каждой обмотке прикладывается фазное напряжение сети (для сетей 0,4 кВ – 220 вольт).
Фазное напряжение – элементы трехфазной цепи
Трехфазный генератор
В настоящее время электрическая энергия переменного тока вырабатывается, передается и распределяется между отдельными токоприемниками в системе трехфазных цепей.
Системой трехфазных цепей называют такую совокупность электрических цепей, в которой токоприемники получают питание от общего трехфазного генератора.
Рис. 1. Схема трёхфазного генератора
Трехфазным называется такой генератор, который имеет обмотку, состоящую из трех частей. Каждая часть этой обмотки называется фазой. Поэтому эти генераторы и получили название трехфазных.
Следует отметить, что термин «фаза» в электротехнике имеет два значения:
- в смысле определенной стадии периодического колебательного процесса;
- как наименование части электрической цепи переменного тока (например, часть обмотки электрической машины).
Для уяснения принципа действия трехфазного генератора обратимся к модели, схематически изображенной на рисунке 64. Модель состоит из статора, изготовленного в виде стального кольца, и ротора — постоянного магнита. На кольце статора расположена трехфазная обмотка с одинаковым числом витков в каждой фазе. Фазы обмотки смещены в пространстве одна относительно другой на угол 120°.
Представим себе, что ротор модели генератора приведен во вращение с постоянной скоростью против движения часовой стрелки. Тогда, вследствие непрерывного движения полюсов постоянного магнита относительно проводников обмотки статора, в каждой ее фазе будет наводиться ЭДС
Применяя правило правой руки, можно убедиться, что ЭДС, наводимая в фазе обмотки северным полюсом вращающегося магнита, будет действовать в одном направлении, а наводимая южным полюсом — в другом. Следовательно, ЭДС фазы генератора будет переменной.
Крайние точки (зажимы) каждой фазы генератора всегда размечают: одну крайнюю точку фазы называют началом, а другую — концом. Начала фаз обозначают латинскими буквами A
,
B
,
C
, а концы их соответственно —
X
,
Y
,
Z
. Наименования «начало» и «конец» фазы дают, руководствуясь следующим правилом: положительная ЭДС генератора действует в направлении от конца фазы к ее началу.
ЭДС генератора условимся считать положительной, если она наведена северным полюсом вращающегося магнита. Тогда разметка зажимов генератора для случая вращения его ротора против движения часовой стрелки должна быть такой, как показано на рисунке 1.
При постоянной скорости вращения полюсов ротора амплитуда и частота ЭДС, создаваемых в фазах обмотки статора, сохраняются неизменными. Однако в каждое мгновение величина и направление действия ЭДС одной из фаз отличаются от величины и направления действия ЭДС двух других фаз. Это объясняется пространственным смещением фаз. Все явления во второй фазе повторяют явления в первой фазе, но с опозданием. Говорят, что ЭДС второй фазы отстает во времени от ЭДС первой фазы. Они, например, в разное время достигают своих амплитудных значений. Действительно, наибольшее значение ЭДС, – наведенной в какой-либо фазе, будет в тот момент, когда центр полюса ротора проходит середину этой фазы. В частности, для момента времени, соответствующего расположению ротора, показанному на рисунке 1, электродвижущая сила первой фазы генератора будет положительной и максимальной. Положительное максимальное значение ЭДС второй фазы наступит позже, когда ротор повернется на угол 120°. Поскольку за один оборот двухполюсного ротора генератора происходит полный цикл изменения ЭДС, то время T одного оборота является периодом изменения ЭДС Очевидно, что для поворота ротора на 120° необходимо время, равное одной трети периода (T/3).
Следовательно, все стадии изменения ЭДС второй фазы наступают позже соответствующих стадий изменения ЭДС первой фазы на одну треть периода. Такое же отставание в периодическом изменении ЭДС наблюдается в третьей фазе по отношению ко второй. Само собой разумеется, что по отношению к первой фазе периодические изменения ЭДС третьей фазы совершаются с опозданием на две трети периода (2/3 T
).
Путем придания соответствующей формы полюсам магнитов можно добиться изменения ЭДС во времени по закону, близкому к синусоидальному.
Рис. 2. Кривые мгновенных значений трёхфазной системы ЭДС
Следовательно, если изменение ЭДС первой фазы генератора происходит по закону синуса
e1 = Eмsinωt
,
то закон изменения ЭДС второй фазы может быть записан формулой
e2 = Eм sinω (t − T/3)
,
а третьей — формулой
e3 = Eм sinω (t − 2/3 T)
,
Сказанное иллюстрирует график рисунка 2.
Таким образом, можно сделать следующий вывод: при равномерном вращении полюсов ротора во всех трех фазах генератора наводятся переменные ЭДС одинаковой частоты и амплитуды, периодические изменения которых по отношению друг к другу совершаются с запаздыванием на 1/3 периода.
Трехфазные токоприемники
Трехфазный генератор служит источником питания как однофазных, так и трехфазных электрических устройств. Однофазные токоприемники, как известно, имеют два внешних зажима. К ним относятся, например, осветительные лампы, различные бытовые приборы, электросварочные аппараты, индукционные печи, электродвигатели с однофазной обмоткой.
Трехфазные устройства в общем случае имеют шесть внешних зажимов. Каждое такое устройство состоит из трех, обычно одинаковых, электрических цепей, которые называются фазами. Примерами трехфазных токоприемников могут служить электрические дуговые печи с тремя электродами или электродвигатели с трехфазной обмоткой.