Всем известно, что ток в электрической сети течет по замкнутому контуру, питая при этом разнообразную бытовую технику и промышленное оборудование. Сеть подачи электроэнергии в частные дома, квартиры и дачи является одним из направлений распределения электричества в глобальной системе энергоснабжения разнообразных объектов. Все это говорит о том, что для питания бытовых электроприборов необходимы как минимум два электрических проводника, которые создадут замкнутую цепь электропитания домашней техники.
Эти проводники называются фазным (L) и рабочим нулевым (N). «Ноль» не опасен для человека при прикосновении к нему, так как на нем отсутствует напряжение сети. Но это не значит, что через него не протекает электрический ток. В идеальном случае, в однофазной сети, величина тока, проходящего через фазный проводник полностью совпадает со значением этого параметра, протекающего через нейтральный провод. В этой статье мы рассмотрим вопрос, причины обрывы или обгорания нулевого проводника, что происходит в случае такой аварийной ситуации, последствия этой аварии и какая защита от обрыва «нуля» способна исключить такое негативное явление.
Внимание! Обгорание нейтрального проводника в трехфазной магистральной линии электроснабжения способен вызвать изменение величины напряжения от минимального до максимального значения в 380 В, а обрыв «нуля» внутренней электропроводки обесточит сеть с появлением фазы на нулевом контакте розетки.
Как выполняется зануление электрооборудования
Далее расскажем о том, откуда защитное зануление попадает в наш дом, и рассмотрим его путь от трансформаторной подстанции и безопасно ли выполнять зануление в квартире. Начинается такое зануление с глухозаземлённой нейтрали — соединенной с заземляющим устройством нейтрали силового трансформатора.
Нейтраль вместе с трехфазной линией сначала попадает во вводной шкаф. Оттуда же она распределяется по находящимся на этажах электрическим щиткам.
От нее берется рабочий ноль, образующий вместе с фазой привычное для нас фазное напряжение. Название «рабочий ноль» связано с тем, что он используется для работы электроустановок или электроприборов.
Взятым с электрощитка защитным отдельным нулем, имеющим электрическое соединение с глухозаземлённой нейтралью, и образуется защитное зануление. Необходимо обязательно знать, что в цепи защитных зануляющих проводников никаких коммутационных аппаратов (автоматов, рубильников и т.п.), а также предохранителей быть не должно.
Отгорание нуля: случайность или неизбежность
Правильно справиться с проблемами электричества можно, если ознакомиться с отгоранием нуля Если вы слышали от знакомых фразу, что от перепада напряжения в квартире сгорели электроприборы и дорогая аппаратура, это означает, что у них в электросети появляется не 220В, а 380В. Откуда берется напряжение 380 Вольт в электросети? Зачастую, в этом виноват обрыв нуля, или, как принято в лексиконе электриков, отгорание нуля. Почему же отгорает ноль? Чтобы в этом разобраться, рассмотрим в общих чертах, что из себя представляет электрическая сеть. Электрическая сеть – это совокупность электрических установок, благодаря которым происходит передача и распределение электричества от электростанции к конечному потребителю.
Подведем итоги
Безусловно, что вероятности аварий носят случайный характер, максимум, что можно сделать в таких ситуациях, — принять необходимые меры для обеспечения защиты. Но помимо этого не будет лишним вовремя определить аварийную ситуацию по характерным признакам. В первую очередь отгорание нулевого магистрального провода приводит к перенапряжению сети. Обнаружив первые признаки этого явления, следует отключить все электроприборы.
Сделать это оперативно и самостоятельно практически нереально. Временной промежуток для этого слишком коротким, поэтому следует установить на электрическом щитке специальные приборы, реагирующие на обрыв нуля. Как только напряжение выйдет за установленные пределы, реле контроля напряжения произведет защитное отключение.
Полностью доверять системе защиты не стоит. Может случиться так, что при наличии характерных признаков перепадов напряжения, отключение питания не произойдет. Поэтому имеет смысл перечислить наиболее вероятные проявления для данного явления:
- Мерцание ламп накаливания. Они наиболее чувствительны к перепаду уровня напряжения, возникающего при обрыве нуля. Энергосберегающие осветительные приборы и светодиодные лампы не настолько реагируют на изменения.
- Электронные приборы, имеющие встроенную защиту, как правило, отключаются от сети питания. Или не запускаются. Такие действия предусмотрены реакцией защиты импульсных БП на броски напряжения. Характерно, что такая реакция может сработать раньше, чем реле напряжения. Но это, во многом зависит от производителя и схемы реализации защиты электросетей, а также надежности электрического соединения.
- Еще один характерный признак – повышение температуры выключателя. Даже если Вы не обратили внимания на мерцание ламп, то данное проявление должно вызвать опасения.
- Искрение, при попытке подключения электроприбора, может говорить об обрыве нуля на вводе однофазного потребителя. Даже, если оно вызвано другим фактором, а не обрывом нуля, это очень нехороший признак.
- Самопроизвольные срабатывания вводных автоматов, также могут указывать на перенапряжение. Такая реакция на обрыв нуля характерна при включении электронагревательных приборов, например электропечи, бойлера, чайника и т.д.
- Характерные звуки во вводном электрическом щите также могут указывать на перепады напряжения. В такой ситуации рекомендуется отключить ввод питания и дождаться приезда аварийной бригады. Велика вероятность, что авария обрыва нуля имела место в электросети поставщика.
- Обязательно установите на вводе электрической сети реле напряжения. В идеале желательно продублировать данную систему стабилизатором напряжения для дома или квартиры. Такое устройство, работая в паре с реле, позволит поддерживать заданный уровень напряжения, не отключая питание.
Собственно, только многоуровневая защита может обеспечить максимальную безопасность.
К чему приводит отгорание нуля в трехфазной сети
Что изменится, если произойдёт обрыв нулевого провода N ДО места соединения нулевых проводов в одной точке? Будет обрыв нуля в трехфазной сети:
Обрыв нуля в трехфазной сети
Если смотреть по схеме, правее места обрыва напряжение теперь будет не нулевым, а “гулять” в произвольных пределах.
Что будет, если ноль отсоединить (случайно или намеренно)? Какие напряжения будут подаваться потребителям вместо 220В? Это как повезёт.
Картинка в другом виде, возможно, так будет легче понять:
Перекос фаз в результате обрыва нуля.
Потребители условно показаны в виде сопротивлений R1, R2, R3. Напряжения, указанные в предыдущем рисунке, как
220B, обозначены как
0…380B. Объясняю, почему.
Итак, что будет, если ноль пропадёт (крест в нижнем правом углу)? В идеальном случае, когда электрическое сопротивление всех потребителей одинаково, ничего вообще не изменится. То есть, перекоса фаз не будет. Так происходит в случае включения трехфазных потребителей, например, электродвигателей или мощных калориферов.
Но в реале так никогда не бывает. В одной квартире никого нет, и включен только телевизор в дежурном режиме и зарядка телефона. А соседи по площадке устроили стирку, включили сплит-систему и электрический чайник. И вот -БАХ!- отгорает ноль.
Начинается перекос фаз. А насколько он зверский, зависит от реальной ситуации.
У соседей, которые дома, чайник перестанет греть, стиралка и сплит потухнут, напряжение уменьшится до 50…100В. Поскольку “сопротивление” этих соседей гораздо ниже, чем тех у тех, которых нет дома. И вот, эти люди спокойно работают на работе, а в это время в пустой квартире у них дымятся телевизор и китайская зарядка. Потому, что напряжение в розетках подскочило до 300…350В.
Это реальные факты и цифры, такое иногда бывает, состояние электрических щитков на лестничных площадках часто бывает аварийным. Даже, когда в доме проводится капитальный ремонт, щитки не трогают, поскольку менять электрику гораздо сложнее, чем покрасить дом и вставить новые окна.
Расследовать такое возгорание надо не с вызова экстрасенсов (мало ли, полтергейст со спичками играется;) ), а с вызова электрика.
Чем опасно зануление в квартире
Зануление значительно отличается от заземления. Попробуем рассмотреть это отличие более подробно. В соответствии с ПУЭ, использование на бытовом уровне такой преднамеренной защиты, как зануление, запрещено из-за ее небезопасности.
Но, несмотря на то, что практиковаться такая система должна только в промышленном производстве, многие ставят ее и в своих квартирах. Прибегают к этой далекой от совершенства защите, в частности, в связи с отсутствием иного варианта или вследствие недостатка знаний в данной сфере.
Действительно, зануление в квартире сделать можно, но последствия от этого будут далеко не наилучшими. Далее на примерах рассмотрим некоторые ситуации, которые могут возникать в случае выполнения в квартире зануления.
1) Зануление в розетках
Иногда предлагается выполнить «заземление» электрических приборов посредством перемычки клеммы рабочего нуля в розетке на защитный контакт. Такой метод «заземления» не соответствует требованиям пункта 1.7.132 ПУЭ, ведь он подразумевает использование нулевого проводника двухпроводной сети в качестве защитного и рабочего нуля одновременно.
Помимо того, на вводе в квартиру обычно имеется аппарат, предназначенный для коммутации как фазы, так и нуля, к примеру, пакетник или двухполюсный аппарат. Но коммутировать нулевой проводник, который используется в качестве защитного, запрещено. То есть, нельзя использовать в качестве защитного проводник, цепь которого имеет коммутационный аппарат.
Опасность «заземления» перемычкой в розетке заключается в том, что корпуса электроприборов при нарушении целостности нуля в любом месте окажутся под фазным напряжением. При обрыве же нулевого провода работа электроприемника прерывается, и тогда такой провод имеет вид обесточенного, то есть безопасного, что, конечно же, усугубляет ситуацию.
Можно только представить, сколько беды наделает такая розетка, если в нее включить стиральную машину. В данном случае можно увидеть перемычку, которая соединяет «нулевой» контакт с защитным. И, если бы отгорел «ноль», то такая стиральная машина превратилась бы в «убийцу».
Если же во время принятия человеком душа вывалится нулевая «сопля» в розетке, к которой подключен бойлер, такого человека просто «прошьет» током. Поэтому такое зануление в квартире крайне опасно и его запрещено выполнять.
2) Перепутаны местами фаза и ноль
Рассмотрев следующий пример, можно наглядно увидеть наиболее вероятную опасность в двухпроводном стояке. Нередко при осуществлении каких-либо ремонтных работ в домовом электрохозяйстве ноль «N» ошибочно меняют местами с фазой «L».
Отличительной окраски жилы проводов в электрощитке в домах с двухпроводкой не имеют, и при выполнении каких-либо работ в щитке любой электрик может переключить ноль и фазу местами – корпуса электроприборов в таком случае тоже окажутся под фазным напряжением.
Необходимо обязательно помнить о высокой опасности выполнения защитного зануления в двухпроводной системе. Поэтому, в соответствии с правилами, это делать запрещено!
3) Отгорания нуля
Что такое «отгорание нуля», или обрыв нуля, знает каждый электрик, но далеко не каждый потребитель электроэнергии. Попробуем разобраться в значении данной фразы, и выяснить, какова опасность отгорания нуля?
Очень часто обрыв «нуля» фиксируется в домах со старыми проводками, основанием для проектирования которых являлся расчет примерно 2 кВт на квартиру. Конечно, нынешняя оснащенность квартир всевозможными электрическими приборами на порядок увеличивает данные цифры.
В случае обрыва «нуля» перекос фаз может происходить на трансформаторной подстанции, от которой запитан многоэтажный дом, в общем электрощите или в щитке на лестничной площадке этого дома, в расположенной после этого обрыва электролинии. Результатом может стать поступление в одну часть квартир пониженного напряжения, а в другую – повышенного.
Пониженное напряжение опасно для холодильников, кондиционеров, сплит — систем, вытяжек, вентиляторов и другой техники с электродвигателями. Что касается повышенного напряжения, то при нем может выйти из строя любой прибор бытовой техники.
Похожие материалы на сайте:
- Наклейка знак заземления
- Как рассчитать заземляющий контур
- Схема контура заземления
Способы защиты от обрыва ноля
Для уменьшения потенциала на нулевом проводнике и соответственно, ради увеличения эффективной разницы между штатным фазным напряжением сети и нулем применяют многократное повторное заземление совмещенного ноля. Эта мера также предназначена для уменьшения негативных последствий для потребителей вследствие обрыва нулевого проводника в сети электроснабжения.
Стрелкой указано повторное заземление ноля (PEN) на опоре воздушной линии
К сожалению, во многих провинциальных регионах, особенно в сельской местности, сопротивление повторного заземления оказывается недостаточным для надежной защиты от превышения напряжения, возникающего при обрыве нулевого провода. К тому же, на воздушных линиях сети энергоснабжения, преобладающих в сельской местности, обрыв нуля происходит гораздо чаще, чем в городских подземных или скрытых (защищенных) линиях электросети.
Обычный потребитель может влиять на качество электропитания на вводе лишь при помощи юридических инструментов – жалоб, петиций, судовых исков, и т д. Но в домашней сети, сохранить приемлемый уровень качества электроэнергии можно при помощи стабилизаторов. а обезопаситься при аварийных ситуациях получиться, применив реле напряжения или обладающие дополнительными функциями дифавтоматы.
Закон Джоуля — Ленца
Токи Фуко. Вихревые токи и их применение
Особенности защиты домашней электропроводки
Организация защиты от возникающего высокого напряжения – один из ключевых вопросов при прокладке электросети в жилом доме. Осуществляется она с помощью особых трансформаторов и фильтров сети. Во многих домах на этажных щитках устанавливаются автоматические выключатели, которые защищают от электротоков при коротком замыкании и временных перегрузок.
Когда возможна высокая нагрузка, все устройства, защищающие сети от повышенного напряжения, должны иметь приспособления для автоотключения и выключатели, реагирующие на изменения показателей тока. Как правило, самая надежная защита от подобных скачков ставится на входном силовом проводе, поскольку именно он испытывает наибольшее воздействие во время пиков нагрузки.
Схема защиты от перенапряжения домашней электросети бывает простой и многоуровневой. Простая – представлена в основном реле перенапряжения в этажных щитках, а многоступенчатая (комбинированная, защищающая как от бытовых скачков напряжения, так и от импульсных, при грозах) – УЗИП, т.е. устройства защиты от импульсных перенапряжений. Такие устройства наиболее часто встречаются в частных домах.
Обратите внимание! Электронные приборы выходят из строя как из-за повышенного, так и из-за пониженного напряжения в сети (например, холодильники тяжело запускаются, что негативно сказывается на их дальнейшей работе). Изоляционные слои домашних электросетей рассчитаны, как правило, на стандартные 220в, поэтому, если напряжение возрастает многократно, в диэлектрическом слое проскакивает искра, которая может спровоцировать электродугу и дальнейшее возгорание
Изоляционные слои домашних электросетей рассчитаны, как правило, на стандартные 220в, поэтому, если напряжение возрастает многократно, в диэлектрическом слое проскакивает искра, которая может спровоцировать электродугу и дальнейшее возгорание.
Чтобы не допустить негативных последствий, применяют следующие защиты, функционирующие по таким принципам:
- при резком внеплановом повышении напряжения происходит отключение электросхемы в доме или в квартире;
- вывода полученного сверхнормативного электрического потенциала от электроприборов путем перевода его в земляной контур.
Если напряжение поднимается незначительно (например, до 380 вольт), на помощь приходят различные стабилизаторы. Однако их защитные возможности довольно ограничены – они больше рассчитаны на поддержание заданных рабочих значений в электросетях.
При проектировании защиты для частного дома рассматривают различные конструкционные решения и их технические характеристики. Необходимо учитывать принципы формирования базы ограничителей перенапряжения (опн). Например, газонаполненные разрядники после того, как импульс прошел, пропускают через себя т.н. сопровождающий ток, напряжение которого сопоставимо с коротким замыканием. По этой причине они сами могут быть источником возгорания, и их нельзя применять для защиты от электрического пробоя.
Для домашних сетей чаще всего применяют варисторное устройство защиты (полупроводниковые резисторы) – реостаты, скомпанованные из варисторных «таблеток» из смеси оксидов цинка, висмута, кобальта и других. При штатном функционировании электросети такой автомат защиты допускает микроскопические утечки, а при проходе импульса повышенной вольтажности – способен мгновенно перестроиться на режим «туннеля» и «спустить» больше тысячи ампер за очень короткий промежуток времени, поскольку сопротивление на этом приспособлении снижается с возрастанием силы тока, после чего происходит быстрое возвращение к штатной «боевой готовности».
Обрыв нуля в однофазной сети
Тут картина будет следующей:
Обрыв нуля в однофазной сети
Для нагрузки, которая работает на других фазах, вообще ничего не изменится. Это всё равно, как если в своей квартире выключить вводные автоматы – соседям будет по барабану.
Но если обрыв произошел, например, в щитке, то вся квартира, в том числе и оборванный конец нулевого провода, окажется под напряжением 220В!
Обрыв (отгорание) бывает вот из-за таких ржавых болтов, как вверху этого фото:
Плохой ноль. Пропадание нуля в квартире
Повторюсь – если заземление сделано правильно, либо его вообще нет – эта авария ничем не опасна. Ну и, конечно, не нужно трогать провода, не дожидаясь электрика – все они под смертельным потенциалом!
Хорошо, кто виноват – мы поняли. Что делать?
Чем опасно явление
Перенапряжение в электросети выглядит следующим образом:
Изоляция электрических кабелей и проводов, а также любых электроприборов способна выдержать только определенный уровень напряжения, указанный в эксплуатационных документах на них. Ниже приведена таблица, в которой приведены ориентировочные величины электрической прочности изоляции электропроводок и электрического оборудования.
Однако, в домашнем электрохозяйстве главное не это (изоляцию не заменить), а нарушения изоляции, вызванные механическими причинами (в том числе в результате крепления электропроводок со сдавливанием и скручиванием), климатическими (сырость, попадание воды) и сугубо хозяйственными (накопление пыли, грязи, насекомых и пр.). Так вот на все эти нарушения накладываются ещё и перенапряжения.
Всё это приводит, как показывают печальные случаи, к выходу из строя электрической проводки и электроприборов, к трагическим пожарам. Если в доме нарушена ещё и электрозащита (неисправна или загрублена при частых срабатываниях), то вероятность возгораний в результате перегрузки электропроводки или короткого замыкания резко возрастает. Если поврежденный электроприбор можно просто отключить от розетки и заменить исправным, то электропроводку быстро не заменить. На фото изображено повреждение изоляции в розетке, которое часто возникает из-за неплотного контакта и перегрева, или в результате грозового явления, которое может привести к перегрузке электропроводки и короткому замыканию.
Таким образом, перенапряжения в домашней электросети особенно опасны для старых электропроводок, которые не подвергаются профилактическому осмотру (вместе с розетками) и не обновляются, где небрежно обращаются с розетками, допуская их перегрев. Особо опасными в этом плане следует считать старые электропроводки в домах, часто подвергающихся грозовым явлениям и нашествию насекомых (деревенские и поселковые).
Последствия обрыва нуля в трехфазной сети
Расскажу случаи из жизни.
- Электрики ремонтировали ввод в подъезд. И во время ремонта на несколько секунд был отключен рабочий ноль. Произошло очень неприятное: вернувшись домой вечером, люди обнаружили, что у них погорели телевизоры, холодильники, зарядки, и т.п. – то, что у нас постоянно включено в розетки. Хорошо, что ещё не произошел пожар.
- Пришёл по вызову, жалоба – плавает напряжение. Меряю напряжение (всё выключено) – почти 300 вольт. Затем при включении лампы накаливания напряжение падает до 70В… Оказалось, в этажном щитке выгорел болт, на который приходит ноль. Произошел обрыв нуля, перекос фаз, напряжения пошли вразнос. Заменил болт, восстановил контакт, напряжение нормализовалось.
Болт нуля. Ржавый, периодически не контачит. Если его менять без отключения, 100% в подъезде погорит техника!
Статья, как я менял там электрощиток – тут.
Меня вызывали в рекламно-издательскую фирму. По предварительным оценкам, ущерб более 100 тыс.руб., а всё из-за плохого контакта на нулевой шине:
Отгорание нуля от нулевой шины
Нулевой провод отгорел от второго болта. Видно, как он отвалился под натяжением. Прежде, чем отвалиться, он ПОЧТИ переплавил изоляцию фазных проводов (вертикальные, красный и белый).
Сервер ещё не включали, возможно, интеллектуальный ущерб будет больше…
Как видно, такие проблемы происходят из-за неправильных действий “электриков” либо из-за самопроизвольного обрыва (отгорания) нулевого провода в старом жилом фонде.
В этой статье подробно расскажу, почему такое бывает и как с этим бороться.
Причины возникновения обрыва нуля
Причин достаточно много — это обрыв нейтрали на подстанции, в домовых и подъездных щитах, неопытность электриков, отсутствие обслуживания электросетей и далее. Основной причиной обрыва нейтрали — это некачественное крепление провода.
При слабом креплении нейтрали провод нагревается, окисляется (что увеличивает сопротивление перехода нейтраль — корпус) и перегорает. Также возможно обгорание нейтрали при использовании больших номиналов предохранителей.
Нередко обрывается нейтраль при сильных порывах ветра, обледенений, ремонтных работах и т. д. Как видно имеется масса причин обрыва нейтрали. Чтобы избежать последствий от этой неисправности нужно выбрать правильный вариант защиты.
Причины и последствия обрыва нуля
С понятием обрыв нуля люди столкнулись относительно недавно – в 90-х годах. Тогда на рынке появилось огромное количество современной бытовой техники и аппаратуры, отличающейся от классической тем, что при включении таких приборов с различными величинами сопротивлений, выбрасывались дополнительные импульсные токи в электрическую сеть, которые не компенсировались в средней точке. Это приводило к накоплению превышающего или равного тока одной из фаз на нулевом проводнике, что способствовало перегрузке нулевого провода.
Ноль отгорает, в основном, в плохо обжатом контакте – так называемом слабом месте.
Обрыв нуля может произойти, если в доме есть старая проводка
Основные причины обрыва нуля:
- Скачек напряжения или короткое замыкание;
- Плохое качество подключения проводов или слабый контакт;
- Стихийное повреждение линий электропередач;
- Халатность при проведении ремонтных работ;
- Старая проводка, которая, вдобавок, сильно греется при современных нагрузках.
Для установки местоположения поврежденного проводника, вы можете воспользоваться специальным прибором-тестером, при помощи которого можно определить точное положение разрыва даже под слоем штукатурки, либо применить метод визуального осмотра разводного щитка в квартире. Возможно, причина кроется именно там и легко устраняется. Если же обрыв нуля произошел вне зоны вашей квартиры, здесь не стоит проявлять самодеятельность и самому устранять неполадку. Следует незамедлительно обратиться в соответствующие службы, которые быстро, квалифицированно и без последствий устранят причину и уберегут жителей от нежелательных последствий.
Допустимые параметры электроэнергии
Номинал напряжения, обозначенный на всей бытовой электротехнике, составляет 220В, однако в реальной жизни это значение стабильно далеко не всегда. Это учитывается при изготовлении современных приборов, и они могут устойчиво работать при колебании напряжения от 209 до 231В, а также переносить разброс от 198 до 242В. Если бы небольшие перепады разности потенциалов не были предусмотрены конструкцией бытовой техники, она ломалась бы постоянно. Более значительные отклонения приводят к перегрузке сети, и это снижает эксплуатационный ресурс аппаратуры.
Чтобы сгладить колебания напряжения и обеспечить безопасность приборов, достаточно установить стабилизатор. Гораздо опаснее для электротехники перенапряжение (так называется резкий скачок разности потенциалов).
Обрыв нулевого провода в трехфазной и однофазной сетях
Как известно, электрический ток течет по замкнутой цепи, выполняя при этом работу. Домашняя электросеть является одним из множества ответвлений глобальной сети энергоснабжения. Это означает, что для работы домашних электроприборов необходимо, чтобы было подведено минимум два проводника, по которым будет течь ток.
По рациональным причинам, описанным ниже, их называют фазным и нулевым рабочим проводом (N). В данной статье разъясняется функция рабочего нулевого проводника, и описываются проблемы, возникающие, если происходит аварийный обрыв нуля .
Практически все взрослые люди знают, что нулевой проводник сети, работающий в штатном режиме, не представляет угрозы при прикосновении, так как на нем нет опасного для здоровья напряжения. Но, это не означает, что через провод ноля не течет ток – нужно четко различать эти понятия. В идеальной цепи ток фазного и нулевого проводника идентичен.
Откуда в розетке 380в при обрыве нуля — наглядно, доступно, без формул.
Наверняка у каждого из вас, хотя бы раз в жизни сгорали бытовые приборы от перенапряжения. При этом многие слышали, что подобное не редко случается из-за обрыва ноля.
Давайте наглядно без формул, векторных диаграмм, смещений нулевых точек и т.п., с точки зрения обывателя попытаемся разобраться, каким же образом напряжение 380в, вместо привычных 220в, может оказаться в ваших розетках.
Ведь действительно возникает логичный вопрос, как это так, оборвался или отгорел один из проводов, а напряжение ни то что не пропадает, а становится даже больше.
Понимание этого процесса будет полезно каждому потребителю, дабы потом не возникало вопросов, зачем электрики пытаются «всунуть» в электрощиток, непонятные реле, стоимостью несколько тысяч рублей.
Чтобы доступно разобраться в сути этого явления, давайте вспомним разницу между последовательной и параллельной схемой подключения электроприемников.
При параллельном подключении, фазный и нулевой проводники одновременно приходят ко всем потребителям в цепи. Нарисуем такую схемку, где этими потребителями будут обыкновенные лампочки накаливания.
На входе напряжение составляет 220в. При таком подключении, на каждой лампочке напряжение будет одинаковым, и при достаточном сечении проводников и малой нагрузке, не будет сильно отличаться от вводного.
При этом отключение или включение каждой лампочки по очередности, не сильно скажется на его значениях. Именно по такой схеме и подключены все розетки в ваших квартирах.
Однако если напряжение будет одинаковым, ток в цепи будет разным. Общее его значение складывается из суммы токов проходящих через лампочку №1 и №2.
Вы можете включать и более мощные приборы (лампы 200Вт, чайник), и все будет прекрасно работать.
Схема последовательного подключения несет в себе уже существенные изменения. Здесь питающий проводник (это может быть фаза или ноль), сначала приходит на первую лампочку, а далее от нее уходит на следующую.
Только после этого он возвращается на вводной автомат или в общую сеть.
Не важно количество токоприемников, их может быть 2,3,4 и более. Главное, чтобы они были строго подключены один после другого
Что же изменится, если вы включите последовательно две лампы по 100Вт? А случится то, что напряжение на них упадет примерно в два раза.
При этом общее вводное напряжение будет складываться из суммы падений напряжений на лампе №1 и лампе №2. То есть, 110в на одной и 110в на другой. Кстати, такой казалось бы недостаток, можно очень хитро использовать несколькими способами.
Напомню, что в параллельной схеме, U везде было одинаковым, не важно в какой точке. Здесь же одинаковым будет ток, при том в любой части электрической цепи I=I1=I2
Однако такая ситуация с равномерным падением напряжения, будет наблюдаться только в том случае, если все эл.приемники будут одинаковой мощности. Стоит вместо одной 100Вт лампы вкрутить 200 ваттную, и вы сразу же увидите разницу.
На лампочке 100Вт будет напряжение 146В и она будет гореть довольно ярко. В то же время более мощная 200 ваттная будет еле светиться.
Связано это с тем, что падение напряжения напрямую зависит от сопротивления потребителя. На более мощных приборах сопротивление маленькое.
Вот примерные данные по стандартным лампочкам, предназначенным для работы в сети 220В:
{SOURCE}
Область применения защитного зануления
Защитное заземление используется в электрических установках напряжением до 1 кВ:
- — в сетях постоянного электрического тока с заземленной средней точкой источника;
- — в однофазных электросетях переменного тока с заземленным выводом;
- — в трехфазных электросетях переменного тока с заземленным нулем (система TN – S; как правило, это сети 660/380, 380/220, 220/127 В);
Предназначено защитное зануление для защиты от возможного поражения электрическим током. Например возникла ситуация когда внутри электроустановки произошло повреждение изоляции и корпус установки (например стиральной машины или холодильника) оказался под напряжением. В этом случае возникает ток короткого замыкания на который реагирует защита (автомат или пробки) и мгновенно отключает электроустановку от сети. |
Образование цепи тока однофазного короткого замыкания (т.е. замыкания между нулевым и фазным защитными проводниками) происходит в случае замыкания фазного провода на зануленный корпус электропотребителя. Поврежденная электроустановка отключается от питающей сети вследствие срабатывания защиты, вызывающейся током однофазного короткого замыкания.
Для быстрого отключения находящейся электроустановки могут использоваться автоматические выключатели и плавкие предохранители, устанавливаемые для защиты от токов короткого замыкания. Также для этой цели применяются магнитные пускатели с тепловой защитой встроенного типа, контакторы с тепловыми реле, с помощью которых обеспечивается защита от перегрузки и др.
Где купить устройства защиты
Максимально быстро закрыть вопрос можно в ближайшем специализированном магазине. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:
Реле максимального и минимального напряжения, 230В, 40А, 63А | Универсальное защитное устройство | УЗО от 16 до 63 А, 10мА-300мА |
Диф. автомат TOB3L-32F 20А | Автоматический выключатель остаточного тока типа B | Реле защиты от перенапряжения, 40-60А, 230В |
Что такое обрыв нуля?
Для полноценного ответа на этот вопрос необходимо привести примеры штатной работы трехфазной схемы ввода электроснабжения. В качестве примера приведем упрощенный вариант с вводом для этажного распределительного щита.
Схема 1. Штатная работа системы
Как видно из рисунка, каждая из квартир на этаже запитана от отдельной фазы (L1 – L3) и общего нуля. Что формирует в бытовой сети каждой квартиры фазное напряжение 220 вольт (L1N=L2N=L3=220 В.). В данном случае используется схема питания TN-C-S, где задействована шина заземления PE, соединяемая в РУ здания с нулем. Приведенная система сбалансированная, поскольку ток нагрузки в фазных проводах суммируется через нулевую линию, что снижает вероятность перекоса фазных напряжений.
Заметим, что полностью исключить данное явление довольно сложно, поскольку сопротивление нагрузок на каждой фазе может различаться. К примеру, в квартире_1 включен кондиционер и стиральная машина, в квартире_2 хозяин запустил бойлер и электропечку, а в квартире_3 жильцы отсутствуют и все бытовые приборы отключены от сети. По итогу, в трехфазной системе питания возникнет несимметрия напряжений.
Теперь рассмотрим работу сети в нештатном режиме, когда происходит отгорание нуля.
Как защититься?
Узнав об опасности, представляемой потерей нуля, предлагаем рассмотреть варианты защиты от данного явления:
- Начать необходимо с грамотного монтажа электропроводки. Если для питания объекта планируется задействовать трехфазную схему электроснабжения, то ее расчет должен быть произведен таким образом, чтобы минимизировать вероятность перекоса фаз. То есть, необходимо планомерно распределить нагрузку на каждую линию.
- Следует задействовать в управлении сетью приборы, выравнивающие нагрузку на каждую из фаз. Причем, в идеале, эта работа должна осуществляться без привлечения операторов, то есть, выполняться автоматически при обрыве нуля.
- Должна иметься возможность оперативного изменения схемы подключения потребителей. Это позволяет внести корректировки, если на этапе проектирования не была должным образом учтена нагрузка на каждый участок или увеличилась мощность потребления в связи с вводом новых объектов. То есть, при возникновении критической ситуации должна иметься возможность изменения мощности. В качестве примера можно привести вариант, когда многоквартирный дом переводится на линию с большей нагрузкой для «разбавления» перекоса фаз, возникающего при обрыве нуля.
В приведенных выше вариантах мы рассматривали защиту от перекосов в глобальных масштабах, конечный потребитель может обеспечить должный уровень защиты значительно проще. Для этого достаточно установить реле контроля напряжения, в котором указать допустимый минимальный и максимальный уровень. Как правило, это ±10% от нормы.
Особенности нулевого провода трехфазной сети
В промышленности электросеть может собираться по схеме “треугольник” или “звезда”. Для нужд населения используется сеть по схеме “звезда” с нулевым проводником. Как известно три фазы трехфазной сети сдвинуты относительно друг друга на 120. В нулевом проводнике токи, сдвинутые на 120, взаимно компенсируются.
Схема соединений нагрузок звезда
При одинаковой нагрузке в каждой фазе, общий ток нулевого провода будет равен нулю. Это в идеале. В действительности нагрузка каждой фазы разные, ведь все потребители нагрузок в многоквартирном доме включаются не согласовано, в разное время и разной мощностью.
Поэтому токи в трехфазной сети в нулевом проводе будут отличаться от нуля. Но всё равно для сети 50 Гц ток в нулевом проводе будет ниже, чем токи в фазных проводах. Поэтому для трехфазных сетей 50 Гц сечение нулевого провода берется в 2 раза ниже фазного. Такие особенности сети можно отнести к прошедшим годам.
Перекос фаз в трехфазной сети, ток нулевого провода не равен нулю
Что же изменилось в современной электросети? С появлением техники на импульсных источниках питания, в сети кроме частоты 50 Гц стали присутствовать и высшие гармоники. Если раньше к сети подключалась только линейная нагрузка (тэны, двигатели, лампы накаливания), то сейчас еще добавились и нелинейные нагрузки с импульсным характером питания.
Все импульсные источники имеют диодные мосты с конденсаторами, которые периодически меняют свое сопротивление (включаясь и отключаясь), с частотой импульсного генератора. Таким образом, при работе импульсного источника появляются короткие импульсы в сети. Присутствие этих коротких импульсов вызывает ряд негативных последствий.
Ветреным и дождливым вечером особенно приятно сидеть в квартире, ничего не делая и наслаждаясь теплом и уютом. К сожалению, эта идиллия иногда неожиданно прерывается – лампочки внезапно раскаляются до невыносимой белизны, холодильник гудит и трясется, а телевизор показывает черный экран, да еще с дымком. В электрической сети резко повысилось напряжение! Почему такое происходит и как с этим бороться?
Первое, что приходит в голову – ошибка электрика. Но зажимы фазных и нулевого проводов по внешнему виду, цвету проводов, способу крепления здорово отличаются друг от друга, и перепутать их профессиональный электрик может разве что в бессознательном состоянии. Более вероятной причиной появления в квартире 380 вольт является обрыв нулевого провода. На профессиональном жаргоне это называется отгоранием нуля.
Почему отгорает ноль?
В последнее время такие ситуации происходят все чаще. Это связано как с общим износом электрических сетей, так и с техническими решениями, применявшимися при массовом строительстве домов в 50-70 годы ХХ века. При использовании трехфазной сети все квартиры в доме разбивались на три группы, присоединенные к трем разным фазам.
Тогда мало кто мог представить какую-нибудь электрическую нагрузку в квартире, кроме лампочек освещения и пары маломощных электрических приборов. Нагрузка в многоквартирном доме была практически полностью активной, линейной и симметричной. При этом токи в фазных проводах компенсировали друг друга, а ток в нулевом проводе был сравнительно небольшим. Это привело к очевидному решению – нечего на столь мало работающий провод тратить много материала. Нулевой провод решили делать тоньше фазных.
Современная жизнь внесла значительные коррективы. Не редки ситуации, когда в одной квартире установлены пара лампочек и телевизор, а в соседней – электрические теплые полы, электрический котел, несколько кондиционеров и джакузи. Кроме того, почти вся современная техника имеет импульсные блоки питания, сильно искажающие форму тока в сети. Нагрузка в домах перестала быть симметричной и линейной – компенсации фазных токов не происходит. Подчас ток в нулевом проводе даже больше токов в фазных проводах. Естественно, что более тонкий провод перегревается и не выдерживает.
Почему происходит перенапряжение?
Надо сказать, что при обрыве нуля «везет» далеко не всему дому. Перенапряжение может произойти только на одной или двух фазах. Остальным повезло и на этот раз без кавычек. Проще всего это понять на примере дома из трех квартир.
Каждая квартира питается от своей отдельной фазы А, В или С и нулевого провода N. Напряжение между фазой и нулем 220 вольт – это именно то напряжение, которое нужно в квартире. Напряжение между любыми двумя фазными проводами – 380 вольт. Это неотъемлемое свойство трехфазной электрической сети переменного тока. Такое напряжение в квартире совершенно не требуется, и в исправной сети оно туда и не попадает.
Представим, что в квартире 3 все потребители выключены – это позволит временно исключить ее из рассмотрения вместе с питающей ее фазой С.
И вот в такой ситуации нулевой провод на питающей линии обрывается. Очевидно, что обе квартиры становятся подключенными последовательно, но между двумя фазными проводами. А напряжение между фазами — те самые 380 вольт!
Если представить всех потребителей в квартирах в виде двух сопротивлений, то получится классический делитель напряжения.
Обе квартиры поделят 380 вольт между собой, но отнюдь не по-братски. Напряжения распределятся обратно пропорционально мощности электрических приборов. Чем больше электроприборов включено в одной квартире по сравнению с другой, тем ниже в ней будет напряжение.
Если в одной квартире включена одна лампочка на 40 Вт, а в другой — один электрический котел на 3 кВт, то лампочка получит 375 вольт, а котел — оставшиеся 5 вольт.
Естественно, что лампочка мгновенно перегорит и обесточит последовательную цепочку потребителей. В данном случае лампочка будет играть роль предохранителя для электрического котла. И это — самый благоприятный вариант.
В реальности в каждой квартире включено множество потребителей. И с точки зрения электротехники включены они параллельно. Поэтому выход из строя одного прибора не спасет остальные. Более того, выход из строя каждого прибора будет уменьшать общую нагрузку в квартире, и увеличивать приходящееся на нее напряжение, выводя из строя все новые и новые приборы.
А если сложнее? Углубимся в теорию…
Если потребители имеются во всех трех квартирах, то ситуация сложнее. В этом случае для понимания придется углубиться в теоретические основы электротехники. Но совсем немного – вы увидите, что такой путь даже проще и нагляднее, чем рисунки с квартирами.
Три напряжения в трехфазной сети имеют одинаковую частоту 50 Гц, равны по амплитуде и различаются по фазе (сдвигу колебаний друг относительно друга) на 120 градусов.
Такие напряжения принято условно отображать в виде векторной диаграммы. Каждое напряжение выражается отрезком, длина которого пропорциональна величине напряжения, а угол поворота относительно вертикали равен фазе.
При соединении потребителей звездой – каждая квартира между фазой и нулем — напряжения изображают выходящими из одной центральной точки. Это точка нулевого потенциала, она соответствует нулевому проводу. Концы векторов соответствуют фазным проводам.
Векторы эти непрерывно крутятся вокруг нейтральной точки, делая 50 оборотов в секунду, так как частота переменного тока 50 герц. Но взаимное расположение остается неизменным, что и позволяет рассматривать их условно неподвижными.
Напряжения между фазными проводами можно найти геометрически по теореме Пифагора. Эти напряжения называются линейными, они равны фазному напряжению, умноженному на квадратный корень из 3.
Нетрудно подсчитать, что для фазного напряжения 220 вольт линейное равно 380 вольтам. Подаваемое в квартиру напряжение 220 вольт зафиксировано между фазным и нулевым проводом. Если нагрузка в трех квартирах одинакова, то токи в фазных проводах одинаковы и компенсируют друг друга.
Нулевой провод вступает в игру лишь при разбалансе мощностей по фазам. В этом случае он необходим для отвода имеющейся разницы фазных токов. Если нулевой провод обрывается, то напряжения на фазах распределяются таким образом, чтобы фазные токи могли компенсировать друг друга сами. Фазы начинают напоминать крыловских лебедя, рака и щуку, тянущих точку нулевого потенциала каждый на себя.
Потенциал точки соединения потребителей (остаток нулевого провода) перестает фиксироваться и уходит в сторону от точки нулевого потенциала.
В зависимости от усилий животных (мощности на фазах) изменяется и фазное напряжение — от 0 до 380 вольт. Только в данном случае проигравший получает больше и его это не радует. Перенапряжение может происходить на одной или двух фазах из трех, это очевидно из рисунка.
Что делать, если в сети 380 вольт?
Если в электрической сети внезапно повысилось напряжение, то раздумывать нечего. Чем скорее вы выключите электрические приборы, тем больше шансов сохранить их в работоспособном состоянии. Обратите внимание, что у современных электронных приборов нужно именно физически вытащить шнур питания из розетки. Дело в том, что даже в выключенном состоянии часть схемы остается под напряжением, чтобы обеспечить возможность включения от кнопок управления или пульта. Конечно, выключать приборы по отдельности долго, лучше выключать сразу все в квартирном электрическом щитке.
Иногда встречаются советы при перенапряжении быстрее включить мощную технику – электрический чайник, обогреватель, утюг. Смысла в этом никакого нет. Во-первых, неизвестно какая нагрузка включена на других фазах поврежденного участка. Очень может быть, что конкурировать вы будете с десятком квартир и максимум, чего добьетесь – снизите напряжение на 5-10 вольт. А телевизору абсолютно безразлично, от какого напряжения сгореть – 350 или 340 вольт. Во-вторых, время, затрачиваемое на включение чайника, а тем более – поиски утюга, гораздо больше, чем на щелчок автоматических выключателей. Поэтому самым правильным будет отключение в квартирном щитке. Это быстрее и намного надежнее.
После отключения электроприборов лучше всего скооперироваться с соседями и вызвать электрика управляющей компании или аварийную бригаду. Работы по устранению таких аварий производятся бесплатно, за счет платежей на содержание и текущий ремонт общего имущества в многоквартирном доме или платежей за электроэнергию (в зависимости от места повреждения).
Самостоятельно исправлять повреждения даже в этажном щитке, а тем более – в вводно-распределительном устройстве многоквартирного дома или воздушной линии электропередач смертельно опасно.
Тут-тук, я переменный ток! Есть кто дома?
Ситуация с повышением напряжения может возникнуть и тогда, когда дома никого нет. А постоянно работающего оборудования в современных квартирах более чем достаточно – холодильники, кондиционеры, водонагреватели, работающие в дежурном режиме телевизоры и музыкальные центры, компьютерная техника. Здесь нужно надеяться только на автоматику. Для защиты в квартирном щитке устанавливается специальное устройство – реле защиты от перенапряжения.
При выходе напряжения за допустимые пределы реле отключит подачу электроэнергии в квартиру, а при восстановлении нормальных значений – автоматически подключит снова. Стоимость такого устройства 1200-3000 рублей в зависимости от мощности и сервисных функций.
Рекомендуем прочитать
- Что такое УЗО?
- Как сделать простейший искатель скрытой проводки?
- Как сделать управление освещением из нескольких мест?
- Как чистить серебро в домашних условиях?
- Как найти хорошего электрика?
- Типичные ошибки непрофессиональных электриков. Часть 1
- Установка стальной ванны. Как сделать правильно?
- Какую ванну лучше купить?
- Как правильно соединять провода? Электропроводка в квартире
- Десять заповедей правильного электрика