Расчёт электрических цепей онлайн по методу контурных токов

В каждой электрической цепи имеются так называемые Р – ребра (они же ветви, звенья, участки) и У – узлы. Для ее описания существует система уравнений, в которых используются два правила Кирхгофа. В них, в качестве независимых переменных, выступают токи ребер. Поэтому количество независимых переменных будет равно количеству уравнений, что дает возможность нормального разрешения данной системы. На практике используются методы, направленные на сокращение числа уравнений. Среди них очень часто используется метод контурных токов, позволяющий выполнять расчеты и получать точные результаты.

Основные принципы

Любая электротехническая цепь состоит из участков (ветвей), образующих узлы и контуры. Для определения значений тока через любой элемент используют два закона Кирхгофа. Прямое составление уравнений дает систему с их максимальным количеством, равным количеству ветвей. В результате, если множество узлов цепи равно У, а число ветвей Р, то уравнения распределяются следующим образом:

  • Для узлов У-1 по закону Кирхгофа для токов;
  • Для ветвей Р-У+1 по закону Кирхгофа для напряжений.

Данное количество избыточно и приводит к образованию громоздкой системы уравнений большой размерности.

Для упрощения расчетов разработаны методики, которые позволяют сократить количество уравнений до приемлемых значений без снижения точности результатов. Наиболее простым является метод контурных токов.

Дополнительные методы расчета цепей

Подключение светодиода через резистор и его расчет

В зависимости от сложности устройства (электрической схемы), выбирают оптимальную технологию вычислений.

Метод узлового напряжения

Основные принципы этого способа базируются на законе Ома и постулатах Кирхгофа. На первом этапе определяют потенциалы в каждом узле. Далее вычисляют токи в отдельных ветвях с учетом соответствующих электрических сопротивлений (отдельных компонентов или эквивалентных значений). Проверку делают по рассмотренным правилам.

Метод эквивалентного генератора

Эта технология подходит для быстрого расчета тока в одной или нескольких контрольных ветвях.


Графическое пояснение

В данной методике общую цепь представляют в виде источника тока с определенным напряжением и внутренним сопротивлением. Далее выполняют вычисления по контрольной ветви с применением стандартного алгоритма.

Оптимизированная процедура составления системы

По упрощенной методике поступают следующим образом:

  • В уравнениях в левой части записывают произведение суммы всех входящих в контур сопротивлений на контурный ток;
  • От полученного выражения вычитаются умноженные на сумму сопротивлений общей ветви соседние контурные токи;
  • Справа записывается сумма источников ЭДС контура.

Формальный подход

Система уравнений для МКТ, записанная в матричном представлении, называется формальным подходом. Для расчётов необходимы следующие матрицы:

  • С — состоит из i строк и j столбцов, где i — число строк, j — число столбцов;
  • Z — диагональная матрица сопротивлений, число строк и столбцов равно числу ветвей;
  • Сt — транспонированная С-матрица. В транспонированной матрице строки и столбцы меняются местами;
  • I — матрица КТ (состоит из одного столбца);
  • J — матрица-столбец — источники тока;
  • E — матрица-столбец, содержащая ЭДС-источники с тем или иным знаком.

Окончательное уравнение для расчётов в матричном представлении имеет следующий вид:

С * Z * Сt * I = С * (E + Z * J)

Пример системы уравнений

Ниже рассмотрен пример расчета конкретной схемы без учета номиналов элементов.

Пример решения

В заданной цепи выделяют три контура. Как выразить токи в ветвях через контурные:

  • i1=I1;
  • i2=I2;
  • i3=I3;
  • i4=I2+I3;
  • i5=I1+I2;
  • i6=I1-I3.

Как составить систему уравнений:

  • i1R1+i5R5+i6R6=E1;
  • i2R2+i4R4+i5R5=E2;
  • i3R3+i4R4-i6R6=0

Как подставитьконтурныезначения:

  • I1R1+( I1+I2)R5+( I1-I3)R6=E1;
  • I2R2+( I2+I3)R4+( I1+I2)R5=E2;
  • I3R3+( I2+I3)R4-( I1-I3)R6=0

После преобразования получается необходимая система уравнений:

  • (R1+R5+R6)I1+R5I2+R6I3=E1;
  • R5I1+(R2+R4+R5)I2+R4I3=E2;
  • -R6I1+R4I2+(R3+R4+R6)I3=0.

Система из трех уравнений легко решается после подстановки известных параметров. Из полученных значений контурных токов затем можно найти искомые величины.

Данный пример решения задач по методу контурных токов показывает, что любую достаточно сложную схему можно существенно упростить для решения, руководствуясь указаниями.

Важно! Метод неприменим, если нет возможности преобразовать цепь без взаимного пересечения ветвей.

В некоторых случаях упростить схему можно путем преобразования ветвей, соединенных по схеме «звезда» в треугольник.

Точно такие же результаты получаются при использовании метода узловых потенциалов. В основе расчетов – поиск потенциала каждого узла (так называемый узловой потенциал). Существуют программы, позволяющие произвести онлайн расчет параметров по рассмотренным методам.

Расчёт электрических цепей с помощью законов Кирхгофа

Существует несколько методов расчёта электрических цепей, которые различаются между собой параметрами, которые необходимо найти, а так же количеством необходимых расчётов.

Вначале я расскажу, как произвести расчёт цепи в общем виде, но в результате размеры вычислений будут неоправданно большими. Данный метод расчёта основан на законах Ома и Кирхгофа и используется при расчётах небольших цепей с малым количеством контуров. Для этого составляют систему уравнений из (q — 1) уравнений для узлов цепи и n уравнений для независимых контуров. Независимые контуры характеризуются тем, что при составлении уравнений для каждого нового контура входит хотя бы одна новая ветвь, не вошедшая в предыдущий контур. Таким образом, количество уравнений в системе уравнений по данному методу расчёта цепи будет определяться следующим выражением

В качестве примера рассчитаем электрическую цепь, приведённую на рисунке ниже

Пример электрической цепи для расчёта по законам Ома и Кирхгофа.

В качестве примера возьмём следующие параметры схемы: E1 = 50 B, E2 = 30 B, R1 = R3 = 10 Ом, R2 = R5 = 20 Ом, R4 = 25 Ом.

  1. Составим уравнение по первому закону Кирхгофа. Так как узла у нас два, то выберем узел А и составим для него уравнение. Я выбрал условно, что токи I1 и I2 втекают в узел, а I3 – вытекает, тогда уравнение будет иметь вид
  2. Составим недостающие уравнения по второму закону Кирхгофа. В схеме у нас два независимых контура: E1R1R2R4E2R3 и E2R4R5, поэтому выбирая произвольное направление контуров составим недостающие два уравнения. Я выбрал обход по ходу часовой стрелке, поэтому уравнения имеют вид

Таким образом, получившаяся система уравнений будет иметь следующий вид

Решив данную систему, получим следующие результаты: I1 ≈ 0,564 А, I2 ≈ 0,103 А, I2 ≈ 0,667 А.

В результате решения системы уравнений по данному методу может оказаться, что токи получились отрицательными. Это значит, что действительное направление токов противоположно по направлению выбранному.

Метод расчета по законам Ома и Кирхгофа

До изучения технологий вычислений необходимо уточнить особенности типовых элементов при подключении к разным источникам питания. При постоянном токе сопротивлением индуктивности можно пренебречь. Конденсатор эквивалентен разрыву цепи. Также следует учитывать следующие различия разных видов соединений резисторов:

  • последовательное – увеличивает общее сопротивление;
  • параллельное – распределяет токи по нескольким ветвям, что улучшает проводимость.

Закон Ома для участка цепи

Дифференциальный автомат надежная защита электрических цепей и человека

Типовая аккумуляторная батарея легкового автомобиля вырабатывает напряжение U = 12 V. Бортовой или внешний амперметр покажет соответствующее значение при измерении. Соединение клемм проводом недопустимо, так как это провоцирует короткое замыкание. Если жила тонкая (< 1 мм), высокая плотность тока в соответствующем поперечном сечении быстро увеличит температуру вплоть до теплового разрушения материала с разрывом цепи. Этот пример демонстрирует функциональность обычного плавкого предохранителя.

Подключив нагрузку, можно мультиметром проверить напряжение. Значение этого параметра остается неизменным. Если известно сопротивление (пример – R = 50 Ом), применение закона Ома (I = U/ R) поможет рассчитать ток:

I = 12/ 50 = 0,24 А.

По вычисленному значению с использованием формулы быстро определяется мощность:

P = I2 *R = U2/ R = 0,0576 * 50 = 2,88 Вт.

К сведению. Результат показанного расчета пригодится для поиска подходящего резистора. Следует делать запас в сторону увеличения. По стандарту серийных изделий подойдет элемент с паспортной номинальной мощностью 5 Вт.

На практике приходится решать более сложные задачи. Так, при значительной длине линии нужно учесть влияние соединительных ветвей цепи. Через стальной проводник ток будет протекать хуже, по сравнению с медным аналогом. Следовательно, надо в расчете учитывать удельное сопротивление материала. Короткий провод можно исключить из расчета. Однако в нагрузке может быть два элемента. В любом случае общий показатель эквивалентен определенному сопротивлению цепи. При последовательном соединении Rэкв = R1 + R2 +…+ Rn. Данный метод пригоден, если применяется постоянный ток.

Закон Ома для полной цепи

Для вычисления такой схемы следует добавить внутреннее сопротивление (Rвн) источника. Как найти ток, показывает следующая формула:

I = U/ (Rэкв + Rвн).

Вместо напряжения (U) при расчетах часто используют типовое обозначение электродвижущей силы (ЭДС) – E.

Первый закон Кирхгофа

По классической формулировке этого постулата алгебраическая сумма токов, которые входят и выходят из одного узла, равна нулю:

I1 + I2 + … + In = 0.

Это правило действительно для любой точки соединения ветвей электрической схемы. Следует подчеркнуть, что в данном случае не учитывают характеристики отдельных элементов (пассивные, реактивные). Можно не обращать внимания на полярность источников питания, включенных в отдельные контуры.

Чтобы исключить путаницу при работе с крупными схемами, предполагается следующее использование знаков отдельных токов:

  • входящие – положительные (+I);
  • выходящие – отрицательные (-I).

Второй закон Кирхгофа

Этим правилом установлено суммарное равенство источников тока (ЭДС), которые включены в рассматриваемый контур. Для наглядности можно посмотреть, как происходит распределение контрольных параметров при последовательном подключении двух резисторов (R1 = 50 Ом, R2 = 10 Ом) к аккумуляторной батарее (Uакб = 12 V). Для проверки измеряют разницу потенциалов на выводах пассивных элементов:

  • UR1 = 10 V;
  • UR1 = 2 V;
  • Uакб = 12 V = UR1 + UR2 = 10 + 2;
  • ток в цепи определяют по закону Ома: I = 12/(50+10) = 0,2 А;
  • при необходимости вычисляют мощность: P = I2 *R = 0,04 * (50+10) = 2,4 Вт.

Второе правило Кирхгофа действительно для любых комбинаций пассивных компонентов в отдельных ветвях. Его часто применяют для итоговой проверки. Чтобы уточнить корректность выполненных действий, складывают падения напряжений на отдельных элементах. Следует не забывать о том, что дополнительные источники ЭДС делают результат отличным от нуля.

Построение системы уравнений

Резонанс в электрической цепи
Построение системы уравнений по рассматриваемой методике выполняется по следующим правилам:

  • Для каждого выбранного контура задается направление обхода;
  • С левой стороны равенств записывается сумма всех произведений искомых токов в ветвях на сопротивление веток. В правую часть записывается сумма источников напряжений, присутствующих в контуре;
  • Если направление искомой величины или источника напряжения такое же, как у заданного направления обхода, то слагаемые пишутся со знаком «плюс», в ином случае они имеют отрицательное значение;
  • Значение токов в ветвях заменяют на их выражение через токи контура.

После выполнения арифметических действий (раскрытие скобок, приведение подобных слагаемых) получается система уравнений, в которых неизвестными величинами являются виртуальные контурные токи.

Решая систему уравнений, получают значения контурных, а затем искомых величин.

Категории элементов и устройств электрической цепи

Для условного изображения определенной цепи применяют специальную схему. Кроме отдельных физических компонентов, она содержит сведения о направлении (силе) токов, уровнях напряжения и другую информацию. Качественная модель показывает реальные процессы с высокой точностью.

Компоненты электрической цепи:

  • источник постоянного или переменного тока (Е) – аккумулятор или генератор, соответственно;
  • пассивные элементы (R) – резисторы;
  • компоненты с индуктивными (L) и емкостными (С) характеристиками;
  • соединительные провода.


Типовые названия

На рисунке обозначены:

  • ветви – участки цепи с одним током;
  • узлы – точки соединения нескольких ветвей;
  • контур – замкнутый путь прохождения тока.

При решении практических задач выясняют, как узнать силу тока в отдельных ветвях. Полученные значения используют для анализа электрических параметров. В частности, можно определять падение напряжения на резисторе, мощность потребления подключенной нагрузки. При расчете цепей переменного тока приходится учитывать переходные энергетические процессы, влияние частоты.

Способы построения контуров

Тщательное обозначение контуров позволяет задать минимальный набор КТ. Любой элемент схемы должен быть представлен хотя в одном контуре. При построении используются два основных метода:

  • планарных графов;
  • выделения максимального дерева.

Использование планарных графов

Метод планарных графов применяется при ручном расчете, поскольку он наиболее прост и нагляден. Для построения плоского графа схему рисуют таким образом, чтобы не было взаимного пересечения ветвей. Получается, что схему можно разбить на несколько ограниченных участков, которые образуют контуры.

Рассматриваемая методика неприменима без дополнительных преобразований, если невозможно выразить схему в виде планарного графа.

Выделение максимального дерева

Данный математический метод разработан для компьютерных расчётов с помощью соответствующего программного обеспечения. Основная идея метода состоит в изъятии отдельных ветвей в соответствии с жёстким алгоритмом:

  • На каждом этапе может быть изъято не более одной ветви.
  • Изъятие не должно разбивать граф на отдельные куски или приводить к «зависшим узлам».
  • Число исключённых звеньев должно быть эквивалентно числу независимых контуров.
  • Подключение ранее изъятой ветви формирует соответствующий контур.
Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]