Калькулятор расчета емкости рабочего и пускового конденсаторов


Что такое конденсатор?

Конденсатор состоит из двух проводящих пластин, расположенных очень близко друг к другу и разделённых диэлектриком. Применение постоянного напряжения к пластинам вызовет протекание тока и появление на обеих крышках одинаковых по модулю, но противоположных по знаку зарядов: отрицательных – на одной и положительных – на другой. Отключение источника питания приведёт к тому, что заряд не исчезнет моментально, игнорируя явление его постепенной утечки. Затем, если крышки детали подключены к какой-то нагрузке, например, к вспышке, конденсатор разрядится сам и вернёт всю накопленную в нём энергию во вспышку.


Обозначение конденсаторов

Конденсаторы – это пассивные компоненты, которые хранят электрический заряд. Эта простая функция применяется в различных случаях:

  • При переменном токе.
  • При постоянном токе.
  • В аналоговых сетях.
  • В цифровых цепях.

Примеры использования приборов: системы синхронизации, формирование сигнала, связь, фильтрация и сглаживание сигнала, настройка телевизоров и радиоприёмников.

Небольшие замечания и советы по работе с конденсаторами

Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

Tags: бра, вид, двигатель, дом, , емкость, знак, как, конденсатор, конструкция, контур, , , мощность, мультиметр, напряжение, номинал, подключение, потенциал, провод, пуск, , работа, размер, расчет, резистор, реле, ряд, соединение, сопротивление, срок, схема, тен, тип, ток, трехфазный, , фильтр, эквивалентный, эффект

Характеристики конденсатора

Основной характеристикой данного элемента является емкость, или С. Она определяет способность устройства собирать электрический заряд, зависит от геометрической конфигурации крышек и от электрической проницаемости диэлектрика между крышками.

Важно! Емкость зависит от типа используемого диэлектрика, а также от геометрических размеров элемента.

Для того, чтобы описать принцип работы устройства формулой, необходимо понять, что это постоянная пропорциональность в уравнении, представляющая собой взаимную зависимость накопленного заряда q от площади пластинок и от разности потенциалов V между ними.

Вам это будет интересно Требуемая освещенность в помещении

Мощность выражается в единицах, называемых фарадами F. Но на практике используются и более мелкие единицы, такие как микрофарады и пикофарады.


Внешний вид устройств

Таким образом, если напряжение U приложено к конденсатору, электрический заряд накапливается на крышках детали. Значение накопленного заряда на каждой пластинке одинаково, они отличаются только знаком. Этот процесс накопления электрического показателя на называется зарядкой.

Другим параметром детали является номинальное напряжение, а именно, его максимальное значение, которое может подаваться на конденсатор. При подключении более высокого напряжения возникает пробой диэлектрика. Это приводит к короткому замыканию элемента. Каким будет номинальное значение напряжения, зависит от типа диэлектрика и его толщины.

Важно! Чем толще диэлектрик, тем выше номинальное напряжение, которое он выдерживает.


Условные обозначения

Ещё одним параметром является ток утечки -значение проводящего показателя, возникающее при подаче постоянного напряжения на концы элемента.

Зависимость

Благодаря приведенному ранее описанию, мы узнали — что такое емкость. Далее попытаемся разобраться, от чего зависит эта характеристика. Емкость конденсатора зависит от расстояния между обкладками, их площади, а так же от самого материала диэлектрика. Благодаря этому можно сказать, от чего зависит емкость устройства: она прямопропорциональна площади пластины конденсатора и обратно пропорциональна расстоянию между пластинами.

Рассмотрим, как найти данную величину. Для плоского конденсатора формула расчета емкости выглядит следующим образом:

Зависимость способности устройства накапливать заряд от площади его обкладок и толщины диэлектрической прослойки так же указывает на то, что на данную величину оказывают влияние и общие размеры элемента.

Для чего используются конденсаторы?

Электростанции

Почти все электронные устройства имеют блок питания, который преобразует переменный ток, присутствующий в доме, в постоянный ток. Конденсаторы играют важную роль в преобразовании переменного тока в постоянный, устраняя электрические помехи. В источниках энергии используются электролитические конденсаторы различных размеров – от нескольких миллиметров до нескольких дюймов (или сантиметров).

Звуковые покрытия

Конденсаторы имеют множество применений в аудио оборудовании. Они блокируют постоянный ток на входе вс усилитель, предотвращая внезапные звуки или шумы, которые могут повредить колонки и наушники. Данные детали, используемые в аудиофильтрах, позволяют контролировать басы.

Компьютеры

Цифровые схемы в компьютерах передают электронные импульсы на высоких скоростях. Эти потоки в сети могут создавать помехи сигналам от соседней цепи, поэтому разработчики высокотехнологичного оборудования применяют конденсаторы для минимизации помех.


Высокотехнологичный конденсатор

Как правильно рассчитать ёмкость конденсатора?

Самый простой пример конденсатора – плоская модель. Она имеет форму двух параллельных крышек из проводника, между которыми находится слой диэлектрика. Для того, чтобы знать, как посчитать ёмкость конденсаторов, необходимо применить следующую формулу:

Вам это будет интересно Особенности пайки

С = e x e0 x s / d,

где S – площадь поверхности пластинок и d – расстояние между ними. В свою очередь, это относительная электрическая проницаемость данного диэлектрика.

Как правило, конденсаторы применяются не по отдельности, а подключаются в более крупные системы. Они могут быть соединены последовательно, параллельно или смешанным способом.


Формула ёмкости

Важно! В последовательно соединённых элементах абсолютное значение заряда на каждой пластине идентично.

Таким образом, результирующее напряжение равно сумме данных показателей на отдельных компонентах прибора.

Общая ёмкость системы будет определяться по формуле:

1/С = 1/С1 + 1/С2 + 1/С3 + …

При параллельном подключении разность потенциалов на каждом из деталей одинакова. Таким образом, суммарный заряд будет равен сумме зарядов на компонентах конденсатора, а результирующая ёмкость – сумме отдельных единичных величин:

C = c1 + c2 + c3 + …

Конденсаторы с переменной емкостью

Энергия конденсатора

Изначально людям хватало описанных выше конденсаторов из пары пластин. Затем этот прибор получил своё развитие. Начали появляться устройства в виде шаров, дисков и цилиндров. Это было необходимо для того, чтобы повысить ёмкость конденсатора C, ведь она в первую очередь связана с площадью обкладок S и расстоянием между ними d. Это наглядно видно из формулы. По ней выполняется расчёт ёмкости конденсатора.

Ёмкость конденсатора

Эти нестандартные геометрические формы со временем перестали удовлетворять потребностям экспериментаторов. Поэтому были разработаны новые приборы с переменной ёмкостью. Они имеют подвижные пластины. Это позволяет легко менять площадь их взаимного пересечения, тем самым влияя на величину ёмкости конденсатора. Самый распространённый и всем знакомый пример данного электронного прибора – это колебательный контур в радио. Все люди хотя бы раз подстраивали приёмник. Именно эта «крутилка» есть переменный конденсатор. При ее вращении изменяется ёмкость, соответственно, резонансная частота колебательного контура радиоприёмника. Это, в свою очередь, настраивает радио на другую станцию.


Внешний вид переменного конденсатора

Основные формулы ёмкости

Базовый расчёт конденсатора предполагает выявление зависимости емкости и заряда, удерживаемого на элементе, а также напряжением на пластинах.

C=QVC=QV

C – емкость, или объём в Фарадах Q – заряд, удерживаемый на пластинах в кулонах V – разность потенциалов между пластинами в вольтах

Это уравнение используется для расчета работы, необходимой для зарядки конденсатора и энергии, хранящейся в нем.


Формула энергии

W=∫Q0V dQW=∫0QV dQ

W=∫Q0qC dQW=∫0QqC dQ

W=12CV2

Важно! Необходимо знать, какое влияние конденсатор будет оказывать на любую цепь, в которой он работает. Он не только предотвращает прохождение постоянной составляющей тока сигнала, но и оказывает влияние на любой переменный сигнал.

Реактивное сопротивление

В цепи постоянного тока помимо батареи может присутствовать резистор, который оказывает сопротивление току в цепи. То же справедливо и для схемы переменного тока с элементом, накапливающим заряд. Конденсатор с небольшой площадью пластины позволяет хранить только небольшое количество заряда, и это будет препятствовать протеканию тока. Конденсатор имеет определенное реактивное сопротивление, и оно зависит от его величины, а также от частоты срабатывания. Чем выше частота, тем меньше реактивное сопротивление.

Вам это будет интересно Особенности проводимости меди

Фактическое реактивное сопротивление можно вычислить по формуле:

Xc = 1 / (2 pi f C)

где

Xc – ёмкостное реактивное сопротивление в Омах. f – частота в Герцах. C – ёмкость в Фарадах.

Текущий расчет

Реактивное сопротивление конденсатора, рассчитанное по приведенной выше формуле, измеряется в Омах. Затем ток, протекающий в цепи, может быть рассчитан обычным способом с использованием закона Ома:

V = I Xc


Главный показатель конденсатора

Последовательно-параллельное (смешанное) соединение конденсаторов

Последовательно-параллельным соединением конденсаторов называется цепь имеющая в своем составе участки, как с параллельным, так и с последовательным соединением конденсаторов.

На рисунке 4 приведен пример участка цепи со смешанным соединением конденсаторов.

Рисунок 4. Последовательно-параллельное соединение конденсаторов.

При расчете общей емкости такого участка цепи с последовательно-параллельным соединением конденсаторов этот участок разбивают на простейшие участки, состоящие только из групп с последовательным или параллельным соединением конденсаторов. Дальше алгоритм расчета имеет вид:

1. Определяют эквивалентную емкость участков с последовательным соединением конденсаторов.

2. Если эти участки содержат последовательно соединенные конденсаторы, то сначала вычисляют их емкость.

3. После расчета эквивалентных емкостей конденсаторов перерисовывают схему. Обычно получается цепь из последовательно соединенных эквивалентных конденсаторов.

4. Рассчитывают емкость полученной схемы.

Один из примеров расчета емкости при смешанном соединении конденсаторов приведен на рисунке 5.

Рисунок 5. Пример расчета последовательно-параллельного соединения конденсаторов.

Подробнее о расчетах соединения конденсаторов можно узнать в мультимедийном учебнике по основам электротехники и электроники:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

  • Электрическая емкость
  • Емкость конденсатора
  • Энергия поля конденсатора
  • Виды конденсаторов
  • Обозначение конденсаторов

Комментарии

#20 Владимир Николаевич 06.10.2019 09:48 На самом деле если подключить последовательно 3 конденсатора и каждый будет по 3 микро фарада, а напряжение в сети 100 вольт, то на выходе будет такая цифра 1 микрофорад и 300 вольт. Если параллельно, то ёмкость будет 9 микро фарад, а напряжение 100 вольт

Цитировать

#19 АлексейДу 19.09.2019 07:03 На практике, как правило на обоих концах не ровно по 110В, а примерно на одном конце 120В и на другом 100В, соответственно лучше заземлить и принять за ноль конец с меньшим напряжением. Определить конец с меньшим напряжем можно простой индикаторной отверткой с наконечником замыкающим большим пальцем, т.е. тот конец который будет светится с меньшей яркостью и нужно принять за ноль. Если разницу в свечении индикатора определить не сможете, то у вас идеальный генератор и можете заземлять любой конец розетки. Надеюсь я вам помог.

Цитировать

#18 АлексейДу 19.09.2019 07:02 Цитирую володя ж:

купил бензогенератор,а лампочка моргает! и стабилизатор не помогает. Может конденсаторы помогут проблеме? Спасибо

Если бензогенератор однофазный и переменного напряжения, то он работает по принципу двух полупериодов, т.е. на каждом конце (фаза и ноль) присутствует напряжение 110В, соответственно в сумме они дают 220В в розетке (с частотой 50 Гц, которую вы и наблюдаете как моргание лампочки). Что бы избавится от эффекта моргания, необходимо корпус генератора и один конец розетки присоединить к заземляющему контуру, тогда на заземленном конце напряжение станет равным нулю (0В), а на другом станет равным 220 (220В) чистой синусоиды и соответственно заземленный конец станет нулем, а незазаемленный фазой. Цитировать
#17 Денис25 09.10.2018 17:20 Цитирую володя ж:

купил бензогенератор,а лампочка моргает! и стабилизатор не помогает. Может конденсаторы помогут проблеме? Спасибо

Только онлайн типа инвертор поможет. Цитировать
#16 Трамвай 26.03.2018 14:42 отличная статья! Всё по полочкам, с наглядными примерами. Спасибо огромное)

Цитировать

#15 Тёма 10.01.2017 18:23 Чему будет равно общая (эквивалентная) электрическая ёмкость, если в электрической цепи соединить два конденсатора по 10Ф паралельно: 5Ф? 10Ф? 15Ф? 20Ф?

Цитировать

#14 иван 25.07.2016 16:19 При последовательно м соединении ёмкость конденсатора не растёт, и в данном случае последовательно 1+1+1=1 так как растёт напряжение подаваемое на эту сборку!!!!

Цитировать

#13 Administrator 30.09.2015 15:05 Цитирую Гуманоид:

Класс. сколько будет, если подключить параллельно три кондютера по 1мкф = 3мкф , а сколько будет, если подключить их последовательно 1/общ=1/1+1/1+1/1=1+1+1= = 3мкф лапша какая то

Интересная арифметика, я конечно извиняюсь, но где такому учат? Можно я посчитаю вспоминая математику третьего класса: 1/Собщ = 1/1+1/1+1/1=1+1+1= = 3 то есть 1/Собщ = 3 Теперь выразим Собщ = 1/3 = 0,3333333333 и т. д. По моему проще некуда. Думаю виновата не электротехника а математика. Вот придумали же делить… умножать… Так где же лапша…? А извиняюсь не прочитал имя Вы же ГУМАНОИД тогда все понятно! Цитировать
#12 Гуманоид 29.09.2015 22:44 Класс. сколько будет, если подключить параллельно три кондютера по 1мкф = 3мкф , а сколько будет, если подключить их последовательно 1/общ=1/1+1/1+1/1=1+1+1= = 3мкф лапша какая то

Цитировать

#11 Андей 14.12.2014 11:32 Нормальное объяснение

Цитировать

#10 Administrator 11.12.2014 19:59 Я понимаю генератор переменного тока? Если да то конденсаторы здесь ни при чем Лампочка может моргать из-за того, что вы не установили номинальные обороты двигателя, по-этому частота тока меньше 50 ГЦ, то есть для глаза это будет заметно как моргание. Думаю нужно добавить оборотов

Цитировать

володя ж 11.12.2014 19:02 купил бензогенератор, а лампочка моргает! и стабилизатор не помогает. Может конденсаторы помогут проблеме? Спасибо

Цитировать

Лариса 02.04.2014 16:48 спасибо!!!класс но разъяснили!!!

Цитировать

Сергей 19.02.2014 07:20 3я формула со 2й как-то не клеется. По 2й получается гораздо больше. Или я что-то путаю?

Цитировать

Просто Дмитрий 11.02.2014 17:47 спасибо за инфу мне как раз это и было нужно а то в моем городе нету радио магазинов,а мне надо было из 470 микрофарад получить 400 и по идее по формуле по формуле это возможно! автор респект тебе

Цитировать

Кратер-2 12.12.2013 11:12 просто доходчиво лучше чем в инситутсиких учебниках

Цитировать

Виталик 09.12.2013 18:16 а по моему все формулы одинаковы кроме самих символов, что C1, что R1 и так далее.

Цитировать

xXx 05.12.2013 07:05 если подумать, то не так уж то и сложно

Цитировать

Власть 04.12.2013 05:59 какой то слабый у вас технарь

Цитировать

Данилп 04.12.2013 05:35 Статья классная прочитал понял и в технаре получил 10

Цитировать

Обновить список комментариев

Активное и реактивное сопротивления

Хотя активное и реактивное сопротивления очень похожи. Даже значения обоих параметров измеряются в Омах, но они не совсем одинаковы. В результате этого невозможно сложить их вместе непосредственно. Вместо этого их нужно суммировать «векторно». Другими словами, необходимо округлить каждое значение, а затем сложить их вместе и выделить квадратный корень из этого числа:

Xtot2 = Xc2 + R2

В данной статье были подробно описаны основные компоненты, устройство и принцип работы конденсаторов, а также приведены базовые формулы, предназначенные для того, чтобы посчитать полезный объём прибора. Для более глубокого ознакомления необходимо внимательно рассмотреть типы данных деталей и их практические особенности в различных схемах и устройствах.

Единицы измерения

Физическая величина, определяемая отношением заряда q одной из пластин конденсатора к напряжению между обкладками конденсатора, называется электроемкостью конденсатора:

При неизменном расположении пластин электроемкость конденсатора является постоянной величиной при любом заряде на пластинах. Единица электроемкости в международной системе – фарад (Ф). Электроемкостью 1 Ф обладает такой конденсатор, напряжение между обкладками которого равно 1 В при сообщении обкладкам разноименных зарядов по 1 Кл. . В практике широко используются дольные единицы электроемкости – микрофарад (мкФ), нанофарад (нФ) и пикофарад (пФ):

  • 1 мкФ = 10-6Ф;
  • 1 нФ = 10-9Ф;
  • 1 пФ = 10-12Ф.


Электроемкость конденсатора прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между обкладками. При введении диэлектрика между обкладками конденсатора его электроемкость увеличивается в e раз. Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.

Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U. Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.

Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними. Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства.

Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками. Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.


Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами (рисунок 1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.

В целом ряде задач можно приближенно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рисунок 2). Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля.

Будет интересно➡ Постоянный ток — определение и параметры

Согласно принципу суперпозиции, напряженность поля, создаваемого обеими пластинами, равна сумме напряженностей и полей каждой из пластин. Вне пластин вектора и направлены в разные стороны, и поэтому E = 0. Поверхностная плотность σ заряда пластин равна q/S, где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз. Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы.

Электроемкость – характеристика проводника, количественная мера его способности удерживать электрический заряд. В электростатическом поле все точки поверхности проводника имеют один и тот же потенциал.

Потенциал φ (отсчитываемый от нулевого уровня на бесконечности) пропорционален заряду q проводника, т.е. отношение q к φ не зависит от q. Это позволяет ввести понятие электроемкости. С уединенного проводника, которая равна отношению заряда проводника к потенциалу:

С = q/ φ

Таким образом, чем больше электроемкость, тем больший заряд может накопить проводник при данном φ. Электроемкость определяется геометрическими размерами проводника, его формой и электрическими свойства окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. В частности, электроемкость проводящего шара в вакууме равна его радиусу. Наличие вблизи проводника других тел изменяет его электроемкость, так как потенциал проводника зависит и от электрических полей, создаваемых зарядами, наведенными в окружающих телах вследствие электростатической индукции.

В системе ед. СГСЭ электроемкость измеряется в сантиметрах, в СИ – в фарадах: 1Ф = 9*1011 см. Понятие электроемкости относится также к системе проводников, в частности двух проводников, разделённых тонким слоем диэлектрика, – электрическому конденсатору. Электроемкость конденсатора (взаимная ёмкость его обкладок)

С = q/ (φ1 – φ2),

где q – заряд одной из обкладок (заряды обкладок по абсолютной величине равны), φ1 – φ2 – разность потенциалов между обкладками. Электроемкость конденсатора практически не зависит от наличия окружающих тел и может достигать очень большой величины при малых геометрических размерах конденсаторов.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]