Заряд конденсатора — формула для расчета емкости и тока


Электроемкость конденсатора

Определение
Электрическая емкость — характеристика проводника, мера его способности накапливать электрический заряд.

Электроемкость обозначается как C. Единица измерения электрической емкости — Фарад (Ф).

Электроемкость конденсатора определяется формулой:

C=ε0εSd..

  • ε0 — диэлектрическая постоянная, равная 8,85∙10–12 Кл2/(Н∙м2);
  • ε — диэлектрическая проницаемость среды;
  • S (м2) — площадь каждой пластины.

Внимание! У воздушного конденсатора диэлектрическая проницаемость среды равна 1.

Связь между электроемкостью конденсатора, зарядом и напряжением определяется формулами:

C=QU..=qU..

Важно! Электроемкость конденсатора зависит только от площади его пластин, расстояния между ними и диэлектрической проницаемости среды. От заряда и напряжения эта величина не зависит.

Как вычислить напряжение и вольтаж

Чтобы определить мощность, напряжение и вольтаж двухполюсников, можно использовать мультиметр или специальную формулу для теоретических расчётов. Чтобы проверить мультиметром силу заряда и количество вольт, необходимо вставить щупы в измеряемое оборудование, переключить прибор на режим омметра, нажать на соответствующую клавишу проверки и получить запрашиваемый показатель.

Обратите внимание! Сила заряда при проверке быстро падает, поэтому правильной будет та цифра, которая появилась на индикаторе мультиметра в самом начале измерений.


Вычисление мультиметром

Энергия конденсатора

Формула энергии конденсатора
Энергия конденсатора связана с его электроемкостью и вычисляется по следующим формулам:

Wэ=q22C..=CU22.

Подсказки к задачам

Конденсатор отключен от источникаq = q′
Конденсатор подключен к источникуU = U′
Количество теплоты и энергия конденсатораQ = ∆Wэ

Пример №1. Вычислить электроемкость плоского воздушного конденсатора с квадратными пластинами со стороной 10 см, расположенными на расстоянии 1 мм друг от друга. Ответ округлить до десятых.

10 см = 0,1 м

1 мм = 0,001 м

Так как между обкладками конденсатора находится воздух, примем диэлектрическую проницаемость среды за единицу.

Площадь квадратной пластины равна квадрату ее стороны:

S = a2

Законы последовательного и параллельного соединения проводников

Для детального понимания на практике обоих типов соединений, приведем формулы, объясняющие законы данных типов соединений. Расчет мощности при параллельном и последовательном типе соединения отличается.

При последовательной схеме имеется одинаковая сила тока во всех проводниках:

I = I1 = I2.

Согласно закону Ома, данные типы соединений проводников в разных случаях объясняются иначе. Так, в случае последовательной схемы, напряжения равны друг другу:

U1 = IR1, U2 = IR2.

Помимо этого, общее напряжение равно сумме напряжений отдельно взятых проводников:

U = U1 + U2 = I(R1 + R2) = IR.

Полное сопротивление электроцепи рассчитывается как сумма активных сопротивлений всех проводников, вне зависимости от их числа.

В случае параллельной схемы совокупное напряжение цепи аналогично напряжению отдельных элементов:

U1 = U2 = U.

А совокупная сила электротока рассчитывается как сумма токов, которые имеются по всем проводникам, расположенным параллельно:

I = I1 + I2.

Чтобы обеспечить максимальную эффективность электрических сетей, необходимо понимать суть обоих типов соединений и применять их целесообразно, используя законы и рассчитывая рациональность практической реализации.

Аналоговая и цифровая техника, прикладная электроника

  1. Вопросы аналоговой техники

    разработка аналоговых схем, моделирование схем в SPICE, расчёты и анализ, выбор элементной базы

      Операционные усилители и АЦП
  2. Rf & Microwave Design

    wireless технологии и не только
    Модераторы раздела l1l1l1

  3. Метрология, датчики, измерительная техника

    Все что связано с измерениями: измерительные приборы (осциллографы, анализаторы спектра и пр.), датчики, обработка результатов измерений, калибровка, технологии измерений и др.

      Оптика и оптоэлектроника
  4. АВТО электроника

    особенности электроники любых транспортных средств: автомашин и мотоциклов, поездов, судов и самолетов, космических кораблей и летающих тарелок.
    Модераторы раздела Vasily_

  5. 3D печать

    3D принтеры, наборы, аксессуары, ПО

  6. Робототехника

    Модели, классификация, решения, научные исследования, варианты применения

Метки

  • алгоритм расчет цепей при несинусоидальных периодических воздействиях
  • алгоритм расчета цепей периодического несинусоидального тока
  • баланс мощностей
  • ВАХ нелинейного элемента
  • Векторная диаграмма
  • ветви связи
  • взаимная индуктивность
  • взаимная проводимость
  • вольт-амперная характеристика нелинейного элемента
  • второй закон Кирхгофа
  • второй закон Кирхгофа для магнитных цепей
  • входная проводимость
  • гармоники напряжения
  • гармоники тока
  • Генератор напряжения
  • генератор тока
  • главные контуры
  • графический метод расчета нелинейных электрических цепей
  • динамическое сопротивление
  • дифференциальное сопротивление
  • емкость двухпроводной линии
  • емкость коаксиального кабеля
  • емкость конденсатора
  • емкость однопроводной линии
  • емкость плоского конденсатора
  • емкость цилиндрического конденсатора
  • закон Ампера
  • закон Био Савара Лапласа
  • закон Ома
  • закон полного тока
  • закон электромагнитной индукции
  • Законы Кирхгофа
  • индуктивность
  • индуктивность двухпроводной линии
  • индуктивность однопроводной линии
  • индуктивность соленоида
  • катушка со сталью
  • Конденсатор в цепи постоянного тока
  • контурные токи
  • коэффициент амплитуды
  • коэффициент гармоник
  • коэффициент искажения
  • коэффициент магнитной связи
  • коэффициент мощности трансформатора
  • коэффициент трансформации
  • коэффициент формы
  • кусочно-линейная аппроксимация
  • магнитная постоянная
  • магнитная цепь
  • магнитный поток рассеяния
  • метод активного двухполюсника
  • метод двух узлов
  • метод контурных токов
  • метод наложения
  • метод узловых напряжений
  • метод узловых потенциалов
  • метод эквивалентного генератора
  • метод эквивалентного источника ЭДС
  • Метод эквивалентных преобразований
  • методы расчета магнитных цепей
  • независимые контуры
  • нелинейный элемент
  • несинусоидальный периодический ток
  • обобщенный закон Ома
  • опорный узел
  • основной магнитный поток
  • параллельное соединение конденсаторов
  • первый закон Кирхгофа
  • первый закон Кирхгофа для магнитных цепей
  • последовательное соединение конденсаторов
  • последовательный колебательный контур
  • постоянная составляющая тока
  • потери в меди
  • потери в стали
  • приведенный трансформатор
  • Примеры расчета схем при несинусоидальных периодических воздействиях
  • принцип взаимности
  • принцип компенсации
  • расчет гармоник тока
  • расчет магнитной цепи
  • расчет нелинейных цепей постоянного тока
  • расчет цепей несинусоидального тока
  • Расчет цепи конденсаторов
  • расчет цепи с несинусоидальными периодическими источниками
  • Резонанс в электрической цепи
  • решение задач магнитные цепи
  • сила Ампера
  • сила Лоренца
  • Символический метод
  • собственная проводимость
  • статическое сопротивление
  • сферический конденсатор
  • теорема об эквивалентном источнике
  • теорема Тевенена
  • топографическая диаграмма
  • Трансформаторы
  • трехфазная система
  • удельная энергия магнитного поля
  • уравнения трансформатора
  • Цепи с конденсаторами
  • частичные токи
  • чередование фаз
  • ЭДС самоиндукции
  • эквивалентная схема трансформатора
  • электрическая постоянная
  • электроемкость
  • энергия магнитного поля

Tags: , ампер, бра, вид, генератор, диаграмма, дом, , емкость, зарядка, знак, кабель, как, колебательный, конденсатор, конструкция, контур, , , магнит, магнитный, напряжение, номинал, постоянный, потенциал, правило, принцип, провод, , работа, размер, расчет, резистор, ряд, свет, система, соединение, сопротивление, схема, тен, тип, ток, транзистор, трансформатор, , фильтр, фото, электричество, электронный, эффект

История накопителей заряда

Самое раннее письменное свидетельство получения зарядов с помощью трения принадлежит учёному Фалесу из Милета (635—543 гг. до н. э.), который описал трибоэлектрический эффект от взаимодействия янтаря и сухой шерсти. Для приблизительно 2300 последующих лет любое получение электричества заключалось в трении двух различных материалов друг о друга.

Качественный рывок в знаниях о зарядах произошёл в эпоху Просвещения — период революционного развития научной мысли в образованных кругах. В это время электричество становится популярной темой, а энтузиастами было произведено немало опытов и экспериментов с генераторами на основе трения.

Открытие явления произошло во время опытов у обоих экспериментаторов, но с той разницей, что Мюссенбрук, во-первых, сделал немало усовершенствований первоначально созданного оборудования, а во-вторых, письменно сообщил коллегам о своих достижениях. Прошло совсем немного времени и учёные мира стали создавать накопители зарядов собственных конструкций. Это были первые шаги в эволюции конденсаторов, продолжающейся и в наши дни. Основные даты хронологии появления устройств для хранения зарядов:

  • 1746 г. — изобретение лейденской банки в результате экспериментов по доработке устройства Клейста;
  • 1750 г. — опыты Бенджамина Франклина с батареями конденсаторов;
  • 1837 г. — публикация Майклом Фарадеем теории диэлектрической поляризации — научной основы работы накопителей;
  • конец XIX в. — начало практического применения лейденских банок вместе с первыми устройствами постоянного тока;
  • начало XX в. — изобретение слюдяных и керамических конденсаторов.
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]