Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля. Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.
Что такое электрическое поле?
В физике под этим понятием принято понимать векторное поле, которое формируется вокруг частиц или тел, обладающих определенным зарядом. Электрическое поле считается одной из двух неотъемлемых составляющих электромагнитного поля.
Чтобы лучше разобраться в природе этого явления, нужно вспомнить, что такое кулоновская сила. Закон Кулона служит для определения степени взаимодействия между каждым из пары точечных электрических зарядов. При этом он учитывает сведения об интервале между ними.
Чтобы разобраться в напряженности явления, стоит обратиться к такому примеру:
- Есть 2 тела, которые обладают зарядом. При этом одно из них является неподвижным, а второе – перемещается вокруг первого.
- Кулоновская сила в этом случае равняется произведению заряда и напряженности.
- Напряженность будет включать параметр центрального заряда и квадрат расстояния от центра до второго тела.
Примечательно, что для каждой точки электрического поля параметр кулоновской силы и направление будут отличаться. В силу разницы направлений в разных точках понятие считается векторным.
Что такое магнитное поле?
Под этим термином в физике понимают силовое поле, которое оказывает влияние исключительно на движущиеся тела, частицы или заряды. Каждый из элементов характеризуется магнитным моментом. Сила в таком случае меньше зависит от движения заряда. В качестве заряженных частиц в этом случае выступают электроны. Что касается напряженности этого вида поля, величина будет находиться в прямой пропорции от скорости заряда и его параметров.
В качестве лучшего примера стоит привести планету Земля. Ее центральная часть состоит из раскаленного железа. Как и другие металлические объекты, он может перемещать по себе электроны. Именно поэтому наибольшее магнитное поле на Земле формируется самой планетой, или ее центром, если сказать точнее. Если это поле исчезнет, высока вероятность катастроф и даже гибели живых организмов.
Мнение эксперта Карнаух Екатерина Владимировна Закончила Национальный университет кораблестроения, специальность «Экономика предприятия» В качестве более стандартного примера такого понятия стоит привести электромагниты. Они, как правило, включают провода, которые обмотаны вокруг ферромагнетиков. Эти элементы представляют собой ряд веществ, которые приобретают магнитные характеристики лишь в том случае, если их температура ниже конкретного уровня. Последний параметр называют в физике температурой Кюре. По сути, ферромагнетики считаются уникальными элементами. Они вступают во взаимодействие с магнитным полем, но при этом не несут движущихся зарядов.
В чем разница между электрическим полем и магнитным полем?
Оба рассматриваемых понятия считаются силовыми. Это означает, что в каждой точке пространства, в которой действует поле, на заряд влияет конкретная сила. В другой точке ее значение будет отличаться. Электромагнитное поле оказывает воздействие на заряженные тела и частицы. При этом оно действует на все заряды, тогда как магнитное поле – исключительно на движущиеся.
Существуют вещества, которые взаимодействуют с магнитным полем, но не включают движущиеся заряды. К ним, в частности, относятся ферромагнетики. Этим понятие отличается от электрического поля, поскольку аналогичных веществ для него не существует. У магнитов, естественных или намагниченных тел существует 2 полюса. Их называют южным и северным.
Мнение эксперта Карнаух Екатерина Владимировна Закончила Национальный университет кораблестроения, специальность «Экономика предприятия» Обычные электрические заряды считаются сравнительно однородными. Они не включают полюсов. При этом для таких зарядов характерно 2 типа – положительные и отрицательные. Знак оказывает воздействие на направление кулоновской силы. Как следствие, это влияет на взаимодействие двух заряженных частиц. Знак не будет оказывать влияния на взаимодействие других заряженных частиц с магнитным полем. Он только поменяет местами полюса.
Отличается и графическое изображение рассматриваемых физических явлений. Линии напряженности электрического поля обладают началом и концом. Их можно визуализировать. В качестве примера стоит привести кристаллы хинина в масле. Линии индукции замкнуты. Их тоже можно визуализировать. Примером этого служат металлические опилки.
Отдельно стоит упомянуть электромагнитное поле, которое обладает характеристиками как электрического, так и магнитного поля. Это означает, что оно способно в определенных условиях поворачивать стрелку компаса и перемещать электрически заряженные частицы. Обе составляющие имеют тесную взаимосвязь друг с другом. Каждая из них отличается своим энергетическим запасом. Именно он влияет на энергию всего электромагнитного поля.
Мнение эксперта Карнаух Екатерина Владимировна Закончила Национальный университет кораблестроения, специальность «Экономика предприятия» Возникновение электромагнитного поля возможно при любом, даже небольшом изменении тока в проводниках. При этом оно оказывает влияние на прилегающие зоны пространства, передает им собственную энергию. В результате в этих местах тоже появляется электромагнитное поле.
Характеристики
Основными характеристиками являются:
- потенциал;
- напряжённость;
- напряжение.
Потенциал
Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ =W/q′. называется потенциалом электрического поля в этой точке.
Другими словами: количество накопленной энергии, которая потенциально может быть потрачена на выполнение работы, направленной на перемещение единичного заряда в бесконечность, или в другую точку с условно нулевой энергией, называется потенциалом рассматриваемого электрического поля в данной точке.
Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.
Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ∞=0.
Напряжённость поля
Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.
Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.
Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.
Рис. 5. Электрическое поле положительного и отрицательного вектора напряжённости
Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε0⋅Qr2. Такие поля называют кулоновскими.
Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.
Рис. 6. Направление линий напряжённости положительных и отрицательных зарядов
Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.
Для общего случая распределения зарядов имеем:
Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:
- электростатического;
- дипольного;
- системы и одноимённых зарядов;
- однородного поля.
Рис. 7. Линии напряжённости различных полей
Напряжение
Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.
Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.
Что такое магнитное поле, его свойства
Многие видели и держали в руках магниты. Легко заметить ту силу, которая возникает между ними.
Каждый магнит обладает двумя полюсами: противоположные притягиваются, а одинаковые отталкиваются. Кроме того, магниты всегда окружены областью, где эта сила возникает. Магнитные поля как раз и описывают такую силу.
Таким образом, магнитное поле — это концепция, которую используют, чтобы описать то, как сила распределяется в пространстве вокруг магнита и в нем самом. Впервые на это явление обратил внимание французский ученый Перегрин, а затем исследовали Ампер и Фарадей.
Явление магнетизма и магнитных полей — одна из составляющих электромагнитных сил, которые для природы базовые. Появляется магнитное поле там, где происходит движение зарядов. Когда большие заряды двигаются с высокими скоростями, то сила магнитного поля возрастает.
Магнитное поле вокруг магнита
Какова природа магнитного поля? Существуют способы, которые организовывают движение зарядов так, чтобы они такое поле порождали. Например:
- Можно пустить ток по проводнику, присоединенному к батарее. Если силу тока увеличивать (то есть наращивать количество движущихся зарядов), то пропорционально усилится и магнитное поле. Его сила будет уменьшаться пропорционально расстоянию от проводника. Данное явление называют закон Ампера.
- Можно использовать свойства электронов. Они имеют отрицательный заряд и совершают движение вокруг ядра атомов, что и есть основой принципа работы постоянного магнита. Не все материалы получится намагнитить. Для этого необходимы один или несколько так называемых непарных электронов (обычно электроны всегда образуют пары). Например, у атома железа есть четыре непарных электрона, поэтому из такого материала получится хороший магнит.
Каждый кусочек любого материала состоит из миллиардов атомов. Когда они ориентируются в пространстве произвольно, то их поле угасает, даже при наличии непарных электронов. Только в стабильных веществах можно получить постоянную ориентацию электронов, то есть постоянный магнит или ферромагнетик.
Некоторым материалам для этой цели необходим внешний источник магнитного поля. Оно способно сориентировать вращение электронов и задать им нужное направление, но стоит исчезнуть внешнему полю, и общая ориентация тоже пропадет. Такие материалы получили название парамагнетиков.
Хороший пример парамагнетика — металлическая дверца холодильников. Сама по себе она не магнит, но может притягивать приложенные к ней магниты. Это свойство многие используют, когда с помощью магнита крепят к дверце холодильника список покупок или записку.
Экспериментально подтвержденные свойства магнитного поля таковы:
- оно материальное, то есть существует в объективной реальности, даже если о нем не знаем;
- его порождают лишь движущиеся электрические заряды, то есть любое движущееся заряженное тело окружено таким полем. Магнитные поля создаются и магнитами, но и в этом случае причина появления кроется в движении электронов. Переменные электрические поля также создают их;
- обнаруживают данные поля, действуя некоторой силой на движущиеся электрические заряды или проводники с током;
- в пространстве его распространение происходит со скоростью, которая равна скорости света в условиях вакуума.
Таким образом, магнитное поле, определение которому дали выше, — это явление загадочное и невидимое, но в то же время вполне объяснимое.
Постоянные магниты. Магнитное поле Земли
На прошлом уроке мы с вами изучали магнитное поле катушки с током:
Катушку с сердечником называют электромагнитом.
Многочисленные опыты по усовершенствованию электромагнитов показали, что если вставить в катушку с током сердечник из закалённой стали, то в отличии от железного стержня, он не размагничивается даже после выключения тока и способен долгое время сохранять намагниченность.
Тела, способные длительное время сохранять намагниченность, называются постоянными магнитами или просто магнитами.
История магнетизма уходит корнями в глубокую древность, к античным цивилизациям Малой Азии. Ещё за 600 лет до н. э. в древнем городе Магнесия на территории Малой Азии была обнаружена горная порода, образцы которой притягивали друг друга. По названию города их стали называть магнитами.
А впервые свойства магнитных материалов использовали в Китае: именно там более 4 000 лет назад был сконструирован первый компас.
И лишь в начале XII в. магнитные компасы стали использовать в Европе.
Магниты могут иметь разнообразные форму и размеры. Но наиболее распространены полосовой и подковообразный магниты, которые есть в любом кабинете физики.
Также принято различать естественные
и
искусственные
магниты.
Естественные магниты представляют собой некоторые железные руды, которые обладают способностью притягивать к себе находящиеся поблизости небольшие железные предметы и оказывают влияние на компас.
Кусок железа или его сплава можно намагнитить, то есть сделать его искусственным магнитом.
Например, если к металлу достаточно близко поднести магнит, то он приобретёт магнитные свойства и будет притягивать к себе другие железные предметы. Однако после удаления магнита он может потерять свою намагниченность.
А одинаковы ли свойства магнита в разных его точках? Чтобы ответить на этот вопрос, проделаем такой опыт. Возьмём полосовой магнит и будем дотрагиваться до него железным шариком, закреплённым на динамометре. По показаниям динамометра в момент отрыва шарика от магнита можно судить о силе притяжения шарика к какой-либо его точке.
Опыт показывает, что притяжение шарика к концам магнита самое сильное, а к середине магнита он практически не притягивается.
Те места магнита, в которых магнитное действие проявляется наиболее сильно, называют магнитными полюсами.
У всякого магнита есть два полюса:
северный и южный
. Для обозначения полюсов магнита, принято южный полюс окрашивать красным цветом, а северный — синим.
Середину магнита, то есть там, где нет притяжения, называют нейтральной зоной.
Заметим, что очень сильным нагреванием или другими воздействиями любой магнит можно размагнитить.
Теперь изучим взаимодействие двух магнитов. Для этого проделаем такой опыт. Закрепим один магнит жёстко к штативу, а другой прикрепим к пружине динамометра.
Поднеся магниты разными полюсами друг к другу, нетрудно заметить, что они начинают притягиваться.
Если же поднести магниты друг к другу одноимёнными полюсами, то они начнут отталкиваться.
При этом сила взаимодействия будет зависеть от расстояния между полюсами и может быть даже больше или равной силе тяжести магнита.
Таким образом, взаимодействие магнитов имеет значительное сходство с взаимодействием электрически заряженных тел. В обоих случаях одноименные полюсы (или заряды) отталкиваются, а разноимённые полюсы (или заряды) притягиваются.
Взаимосвязь магнитных полей и движущихся электрических зарядов впервые попытался объяснить А. Ампер. Он предположил, что внутри каждой молекулы вещества, подобного железу или его сплавам, циркулируют электрические токи.
Вокруг этих токов существуют магнитные поля, которые и приводят к возникновению магнитных свойств вещества. Гипотеза Ампера была очень прогрессивна для начала XIX в., поскольку ещё не было известно ни о строении атома, ни о движении заряженных частиц — электронов вокруг ядра.
Но у электрических и магнитных взаимодействий есть одно очень большое различие. Электрические заряды можно отделить друг от друга. Вспомните электризацию трением или электризацию через влияние. А полюсы магнита неразделимы. Разрезая магнит на части (неважно, равные или неравные), вы не отделите его полюса друг от друга, а будете получать новые магниты. Каждый из них будет иметь нейтральную зону и два полюса: северный и южный.
Взаимодействие магнитов объясняется тем, что вокруг любого магнита существует магнитное поле.
Убедимся в его существовании, для чего воспользуемся маленькими магнитными стрелками. Расположим их вокруг полосового магнита. Стрелки мгновенно придут в движение и расположатся в строго определённом порядке.
Это означает, что магнитное поле, существующее вокруг магнита, подействовало с определённой силой на магнитные стрелки и совершило работу. Действие магнитного поля и является подтверждением его существования.
С помощью железных опилок можно получить представление о виде магнитного поля постоянного магнита.
Не трудно заметить, что опилки располагаются в виде цепочек, причём с разной плотностью вокруг полосового магнита. Это говорит о том, что действия, которые оказывает магнит на опилки, в разных точках поля различны. Наиболее сильно это действие проявляется возле полюсов магнита. Чем дальше от полюсов, тем слабее подобное действие, следовательно, тем слабее магнитное поле.
Взаимодействием магнитов объясняется принцип работы компаса.
Стрелка компаса — это лёгкий сильный магнит, который может поворачиваться вокруг вертикальной оси.
А с каким вторым магнитом взаимодействует стрелка компаса? Таким гигантским магнитом является наша Земля. Впервые это доказал английский исследователь У. Гильберт. Он изготовил из магнитного железняка шар большого диаметра — «магнитный глобус». Обходя шар с компасом, он показал, что ориентация стрелки во всех изучаемых точках полностью копирует её ориентацию в различных точках Земли.
Очень упрощённо магнитное поле Земли можно представить в виде магнитного поля полосового магнита, расположенного между Северным и Южным географическими полюсами.
Магнитные полюсы Земли расположены не слишком далеко от географических полюсов нашей планеты. Именно поэтому полюсы всех магнитов получили свои названия — северный и южный, и обозначения — N
и
S
, от голландского «
норд
» и «
сюд
».
Многочисленные наблюдения показали, что географические и магнитные полюсы не совпадают.
Строго говоря, стрелка компаса указывает направление магнитного меридиана.
Её северный конец ориентирован не на Северный географический полюс планеты, а на Южный магнитный полюс Земли.
Кроме того, положение магнитных полюсов нашей планеты непрерывно меняется. Так, например, со второй половины ХХ в. южный магнитный полюс довольно быстро движется в сторону Таймырского полуострова со скоростью около 60 км/год.
А зачем Земле нужно магнитное поле? Оно нужно для того, чтобы защищать нас от нежелательного космического излучения, в частности, излучение Солнца. Оно постоянно испускает потоки различного рода заряженных частиц. Их попадание на Землю в таком количестве вредит живым организмам. Магнитное поле Земли отклоняет эти частицы, и те, подчиняясь магнитным линиям, направляются к полюсам. Именно тогда мы и видим северные и южные сияния.
Но, вторжение такого количества частиц не может пройти бесследно: это вызывает нагревание атмосферы и изменение силы некоторых электромагнитных полей. Такие явления называют магнитными бурями.
Магнитная буря — это быстрые и сильные изменения в магнитном поле Земли, возникающие под действием сильного солнечного излучения.
Они часто вызывают неполадки в работе электроприборов (например, помехи в радиоэфире).
И ещё один интересный факт: на нашей планете существуют области, в которых стрелка компаса очень сильно отклоняется от направления линии магнитного поля Земли — это области магнитных аномалий
.
Курская магнитная аномалия
Причиной их, в большинстве случаев, являются залежи железной руды в недрах Земли. Одной из крупнейших магнитных аномалий в нашей стране и в мире является Курская магнитная аномалия.
В чём измеряется магнитное поле?
Магнитное поле является векторной величиной и для его измерения/определения нужно знать его направление и силу.
Для определения направления можно положить рядом с магнитным предметом магнитный компас. Таким образом, стрелка компаса остановится вдоль силовой линии.
Сила магнитного поля измеряется:
1. Либо в СИ в единицах Тесла (Тл) или микротесла (мкТл)
2. Либо в единицах Гаусс (Гс) или миллигаусс (мГс), до сих пор используется экспериментально.
Где:
- 1 Тл = 10 000 Гс
- 1 Гс = Тл
- 1 мГс = 0,1 мкТл
Как создаётся магнитное поле?
Магнитные поля создаются движущимися электрически заряженными частицами, т.е. поле появляется там, где движутся электрические заряды. Например, пропуская электрический ток по проводнику.
Другой способ — комбинировать собственные магнитные поля электронов, что случается в некоторых материалах. Их называют постоянными магнитами (например, магнитики на наших холодильниках).
Если очень больший заряд будет двигаться с ещё большей скоростью, то и сила его магнитного поля тоже возрастёт.
Формулы
Формула вычисления магнитной индукции:
Где:
- B — индукция магнитного поля (в Тл)
- — максимальный крутящий момент магнитных сил, приложенных к рамке (в Нм)
- l — длина проводника (в м)
- S — площадь рамки (в м²)
Формула магнитной индукции, которая создаётся бесконечно длинным проводником с током:
Где:
- B — индукция магнитного поля (в Тл)
- — магнитная проницаемость вакуума (это постоянная) = (в Гн/м — Генри на метр)
- I — сила текущего по проводнику тока (в А — ампер)
- r — расстояние от проводника до рассматриваемой точки (в см)
Характеристики магнитного поля
Основные характеристики:
- магнитная индукция
- магнитный поток
- магнитная проницаемость
Магнитная индукция (B)
Это интенсивность магнитного поля. Чем сильнее магнит или электромагнит создаёт магнитное поле, тем больше индукция.
Формула: B = Ф / S.cos ()
Где:
- B — магнитная индукция (в Тл — Тесла)
- Ф — магнитный поток (в Вб — вебер)
- S — площадь поверхности (в м²)
- cos — угол (образованный угол между линиями B с вектором n, перпендикулярен плоскости S)
Магнитный поток (Ф)
Магнитная индукция (B) проходит через определённую поверхность (с площадью S), и индукция внутри неё будет значиться как магнитный поток (Ф). Формула: Ф = BS.
Это общее число магнитных силовых линий, которые пронизывают определённую ограниченную поверхность.
Магнитная проницаемость
Ещё магнитная индукция зависит и от среды, где создано магнитное поле. Эту величину характеризует магнитная проницаемость. Среда с большей магнитной проницаемостью создаст магнитное поле с большей индукцией.
Изображение линий магнитного поля для некоторых видов магнитов
Начнем с изображения силовых линий магнитного поля. Они используются для визуализации магнитного поля. Вне магнита линии поля всегда идут от северного полюса к южному. Поскольку магнитное поле является замкнутым полем, они должны двигаться с юга на север внутри магнита. Плотность линий поля дает информацию о силе магнитного поля; чем плотнее линии поля, тем больше напряженность магнитного поля.
Магнитное поле стержневого магнита
На рисунке 2 ниже показано магнитное поле стержневого магнита. Стержневой магнит является постоянным, и имеет северный и южный полюсы.
Рис. 2. Магнитное поле стержневого магнита
Если сравнить магнитное поле с электрическим, то вместо плюсового и минусового полюса есть северный и южный. На этом рисунке показан ход линий поля от северного до южного полюса. Здесь также видно, что плотность линий поля не является постоянной для стержневого магнита. На полюсах она выше, чем между полюсами. Это говорит о том, что магнитное поле сильнее непосредственно у полюсов, чем между полюсами.
Магнитное поле подковообразного магнита
Кроме стержневого магнита, существуют и другие формы постоянных магнитов. Одной из важных форм является подковообразный магнит, который может быть круглым или квадратным.
Рис. 3. Магнитное поле подковообразного магнита
Как видите, магнитное поле внутри подковы однородно (см. рисунок 3). Однородность означает, что магнитное поле постоянно и не зависит от местоположения. Однородное магнитное поле на диаграмме линий поля можно распознать по параллельным линиям поля, расположенным на одинаковом расстоянии. Поэтому напряженность магнитного поля в однородном магнитном поле одинакова в каждой точке.
Магнитное поле двух стержневых магнитов
Давайте посмотрим на другой пример магнитного поля (см. рисунок 4 ниже):
Рис. 4. Магнитное поле двух стержневых магнитов
Эти линии поля показывают, что два магнита с одинаковой полярностью отталкиваются друг от друга. Из этого можно сделать вывод, что одинаковые полюса отталкиваются, а разные полюса притягиваются.
Магнитное поле планеты Земля
Но какое отношение имеют полюса магнита к северу и югу Земли? Вы можете приблизиться к ответу, если спросите себя, как работает компас.
Рис. 5. Компас выравнивается по магнитному полю
Земля также имеет магнитное поле (см. рисунок 5), начало которого лежит на полюсах, т.е. на северном и южном полюсах. Стрелка компаса представляет собой постоянный стержневой магнит и выравнивается по этому полю. При этом северная часть стрелки компаса притягивается к южному полюсу магнитного поля Земли. Поэтому географический юг лежит на магнитном севере.
Распространение магнитного поля
Магнитным полем называют одну из форм проявления электромагнетизма: поле, оказывающее воздействие на заряды, которые перемещаются, а также на намагниченные тела в разных состояниях.
Магнитное поле создают источники в виде:
- проводников, по которым протекает электрический ток;
- зарядов и заряженных тел, находящихся в движении;
- тел, которые намагничены;
- переменных электрических тел.
Интенсивность магнитного поля определяют с помощью магнитной индукцией. Эта величина соответствует приложенной силе, с которой она оказывает воздействие на проводник длиной один метр с протекающим по нему током в 1 А. Единица измерения магнитной индукции является 1 Тл (тесла).
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
В формуле:
- F – является наибольшей силой, которая оказывает действие на проводник;
- L – представляет собой длину проводника;
- I – определяет силу тока заряженных частиц в металле.
Магнитная индукция кольца
Индукция прямого провода имеет небольшое значение и уменьшается при удалении от проводника, поэтому в практических устройствах практически не применяется. Наиболее широко используются магнитные поля созданные проводом, намотанным на какой либо каркас. Поэтому такие поля называются магнитными полями кругового тока. Простейшим таким магнитным поле обладает электрический ток, протекающий по проводнику, который имеет форму окружности радиуса R.
В данном случае практический интерес представляет два случая: магнитное поле в центре окружности и магнитное поле в точке Р, которое лежит на оси окружности. Рассмотрим первый случай.
Магнитная индукция в центре кругового тока.
В данном случае каждый элемент тока dl создаёт в центре окружности элементарную магнитную индукцию dB, которая перпендикулярна к плоскости контура, тогда закон Био-Савара-Лапласа будет иметь вид
Остается только проинтегрировать полученное выражение по всей длине окружности
где μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м,
I – сила тока в проводнике,
R – радиус окружности, в которое свернут проводник.
Рассмотрим второй случай, когда точка, в которой вычисляется магнитная индукция, лежит на прямой х, которая перпендикулярна плоскости ограниченной круговым током.
Магнитная индукция в точке, лежащей на оси окружности.
В данном случае индукция в точке Р будет представлять собой сумму элементарных индукций dBX, которые в свою очередь представляет собой проекцию на ось х элементарной индукции dB
Применив закон Био-Савара-Лапласа вычислим величину магнитной индукции
Теперь проинтегрируем данное выражение по всей длине окружности
где μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м,
I – сила тока в проводнике,
R – радиус окружности, в которое свернут проводник,
х – расстояние от точки, в которой вычисляется магнитная индукция, до центра окружности.
Как видно из формулы при х = 0, получившееся выражение переходит в формулу для магнитной индукции в центре кругового тока.
Эмпирический способ нахождения скорости электромагнитных волн
Скорость, с которой распространяются электромагнитные волны, можно определить эмпирическим методом. При этом изучают неподвижные волны, полученные в цепи. К примеру, такую картину можно наблюдать, когда выход генератора подсоединен к проводам линии через конденсаторы. Во время работы генератора между проводами возникают колебания напряжения, что свидетельствует о наличии колебаний электрического поля. Таким образом образуется электромагнитная волна.
Понять интенсивность колебаний в разных точках линии можно, если включить лампы накаливания. Благодаря подобному опыту, удается выяснить, что возникновение стоячих волн в линии обусловлено определенной частотой генератора, совпадающей с частотой собственных колебаний линий.
Проводя измерения расстояния (△x), на которое удалены соседние узлы в стоячей волне, можно сделать вывод о том, что данная величина равна 1/2 длины волны (λ). Если измерить ν, то есть частоту колебаний генератора, то можно определить скорость распространения электромагнитной волны по формуле:
V = λ * v
Классификация
Электрические поля бывают двух видов: однородные и неоднородные.
Однородное электрическое поле
Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.
В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).
Рис. 2. Пример однородности
Неоднородное электрическое поле
Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию. Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3). Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4). Их неоднородность очевидна.
Рис. 3. Электрический диполь
Рис. 4. Вихревые поля
Опыт Эрстеда
Самое главное экспериментальное доказательство того, что магнитное поле возникает из-за движения зарядов — это опыт Эрстеда. В1820 году Эрстед опытным путём связал электричество и магнетизм с помощью эксперимента с отклонением стрелки компаса.
Это явление использовали, когда создавали первые амперметры, так как отклонение стрелки пропорционально величине тока. Оно лежит в основе любого электромагнита.
А вот и видео эксперимента:
Что такое однородное и неоднородное магнитное поле
Однородное магнитное поле — это магнитное поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению.
В однородном магнитном поле заряженная частица, движущаяся со скоростью \( \overrightarrow v\) перпендикулярно линиям индукции, подвергается воздействию силы \(\overrightarrow{F_л}\), постоянной по модулю и направленной перпендикулярно вектору скорости \(\overrightarrow v\). В таком поле магнитная индукция B во всех точках одинакова по модулю и направлению.
Благодаря силе Лоренца в однородном поле частицы движутся равномерно по окружности с центростремительным ускорением.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Сила Лоренца \(\overrightarrow{F_л}\) — электромагнитная сила со стороны магнитного поля, действующая на движущийся заряд q:
\(F=qE+q\left[vB\right]\)
Неизменность по модулю центростремительного ускорения частицы, движущейся с постоянной по модулю скоростью, означает, что частица равномерно движется по окружности с радиусом r.
Радиус r окружности определяется как частное произведения массы m со скоростью v и произведения электрического заряда q с индукцией B.
Радиус траектории движения частицы с постоянной массой и ее скорость не влияют на период ее обращения в однородном поле.
В однородном магнитном поле максимальный вращающий момент \(M_{max}\) при воздействии замкнутых проводников, изготовленных из очень тонкой проволоки разных размеров и форм, с током приобретает свойства:
- Он пропорционален силе тока в контуре I.
- Пропорционален площади контура.
- Для контуров с одинаковой площадью не зависит от их формы.
Таким образом, максимальный вращающий момент становится пропорциональным магнитному моменту \(P_{m}\) контура с током:
\(P_m=I\ast S.\)
Величина магнитного момента \(P_{m}\) характеризует действие магнитного поля на плоский контур с током.
В данном случае значение вращающего момента \(M_{max}\), действующего на контур с магнитным моментом \(P_{m}\), принимают равным единице.
Следовательно, формула для определения индукции B в однородном магнитном поле приобретает вид:
\(B=\frac{M_{max}}{P_m}.\)
Примеры однородных магнитных полей:
- Магнитное поле внутри соленоида. Соленоид — длинная цилиндрическая катушка, состоящая из нескольких витков плотно намотанной по винтовой лестнице проволоки. Каждый виток создает свое магнитное поле, которое складывается с другими в общее поле. Оно является однородным при условии, что длина катушки значительно превосходит ее диаметр. Тогда внутри соленоида линии поля будут параллельными его оси и прямыми.
- Магнитное поле внутри тороидальной катушки. Здесь линии замыкаются внутри самой катушки. Представлены в виде окружностей, параллельных оси тора. Токи в обмотке тороидальной катушки текут равномерно по часовой стрелке.
Неоднородное магнитное поле — это магнитное поле, в котором сила, действующая на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению.
В неоднородном магнитном поле магнитная индукция в разных местах имеет различные модули и направления. Для вычисления значения вектора \(\overrightarrow B\) в неоднородном поле необходимо определить вращающий момент, действующий на него. Для этого в некую точку помещают контур размеров, меньших в сравнении с расстояниями, на которых поле заметно меняется.
Примеры неоднородных магнитных полей:
- Снаружи соленоида. Линии на концах катушки соленоида не являются параллельными друг другу и тянутся от одного конца к другому. А снаружи вблизи боковой поверхности катушки поле практически отсутствует.
- Снаружи полосового магнита. Магнитное поле полосового магнита подобно полю вокруг соленоида. Магнитные линии тянутся от одного конца магнита к другому по направлению от северного полюса к южному. Имеется нейтральная зона.
Отличия однородного и неоднородного магнитных полей
- Однородное поле находится внутри проводника или магнита, неоднородное — снаружи.
- В однородном поле сила, действующая в разных точках, одинакова. В неоднородном — различна.
- Линии однородного магнитного поля являются одинаковыми по густоте и параллельными друг другу. В неоднородном поле линии отличаются по густоте и искривлены.
- Линии магнитной индукции однородного поля находятся на равном расстоянии друг от друга.
Физика 10_Приложение 1_тесты с ответами
«Электромагнитная индукция»
Вариант 1
А1.
Чем объясняется взаимодействие двух параллельных проводников с постоянным током?
- взаимодействие электрических зарядов;
- действие электрического поля одного проводника с током на ток в другом проводнике;
- действие магнитного поля одного проводника на ток в другом проводнике.
А2.
На какую частицу действует магнитное поле?
- на движущуюся заряженную; 2. на движущуюся незаряженную;
3. на покоящуюся заряженную; 4. на покоящуюся незаряженную.
А3 . На каком из рисунков правильно показано направление индукции магнитного поля, созданного прямым проводником с током. 1) А; 2) Б; 3) В. |
А4.
Прямолинейный проводник длиной 10 см находится в однородном магнитном поле с индукцией 4 Тл и расположен под углом 300 к вектору магнитной индукции. Чему равна сила, действующая на проводник со стороны магнитного поля, если сила тока в проводнике 3 А?
1)1,2 Н; 2) 0,6 Н; 3) 2,4 Н.
А5. В магнитном поле находится проводник с током. Каково направление силы Ампера, действующей на проводник? 1) от нас; 2) к нам; 3) равна нулю. |
А6.
Электромагнитная индукция – это:
- явление, характеризующее действие магнитного поля на движущийся заряд;
- явление возникновения в замкнутом контуре электрического тока при изменении магнитного потока;
- явление, характеризующее действие магнитного поля на проводник с током.
А7.
На квадратную рамку площадью 1 м2 в однородном магнитном поле с индукцией 2 Тл действует максимальный вращающий момент, равный 4 Н∙м. чему равна сила тока в рамке?
1) 1,2А 2) 0,6А 3) 2А
В1.
Установите соответствие между физическими величинами и единицами их измерения
ВЕЛИЧИНЫ | ЕДИНИЦЫ ИЗМЕРЕНИЯ | ||
А) | индуктивность | 1) | Тесла (Тл) |
Б) | магнитный поток | 2) | Генри (Гн) |
В) | индукция магнитного поля | 3) | Вебер (Вб) |
4) | Вольт (В) |
В2.
Частица массой
m
, несущая заряд q, движется в однородном магнитном поле с индукцией
B
по окружности радиуса
R
со скоростью
v
. Что произойдет с радиусом орбиты, периодом обращения и кинетической энергией частицы при увеличении скорости движения? К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ | ИХ ИЗМЕНЕНИЯ | ||
А) | радиус орбиты | 1) | увеличится |
Б) | период обращения | 2) | уменьшится |
В) | кинетическая энергия | 3) | не изменится |
С1.
В катушке, индуктивность которой равна 0,4 Гн, возникла ЭДС самоиндукции, равная 20 В. Рассчитайте изменение силы тока и энергии магнитного поля катушки, если это произошло за 0,2 с .
« Электромагнитная индукция»
Вариант 2
А1.
Поворот магнитной стрелки вблизи проводника с током объясняется тем, что на нее действует:
- магнитное поле, созданное движущимися в проводнике зарядами;
- электрическое поле, созданное зарядами проводника;
- электрическое поле, созданное движущимися зарядами проводника.
А2.
Движущийся электрический заряд создает:
- только электрическое поле;
- как электрическое поле, так и магнитное поле;
- только магнитное поле.
А3 . На каком из рисунков правильно показано направление индукции магнитного поля, созданного прямым проводником с током. 1)А; 2) Б; 3) В. |
А4.
Прямолинейный проводник длиной 5 см находится в однородном магнитном поле с индукцией 5 Тл и расположен под углом 300 к вектору магнитной индукции. Чему равна сила, действующая на проводник со стороны магнитного поля, если сила тока в проводнике 2 А?
1)0,25 Н; 2) 0,5 Н; 3) 1,5 Н.
А5. В магнитном поле находится проводник с током. Каково направление силы Ампера, действующей на проводник? 1)от нас; 2) к нам; 3) равна нулю. |
А6.
Сила Лоренца действует
- на незаряженную частицу в магнитном поле;
- на заряженную частицу, покоящуюся в магнитном поле;
- на заряженную частицу, движущуюся вдоль линий магнитной индукции поля.
А7.
На квадратную рамку площадью 2 м2 при силе тока в 2 А действует максимальный вращающий момент, равный 4 Н∙м. Какова индукция магнитного поля в исследуемом пространстве ? 1)1 Тл; 2) 2 Тл; 3) 3Тл.
В1.
Установите соответствие между физическими величинами и формулами, по которым эти величины определяются
ВЕЛИЧИНЫ | ЕДИНИЦЫ ИЗМЕРЕНИЯ | ||
А) | Сила, действующая на проводник с током со стороны магнитного поля | 1) | |
Б) | Энергия магнитного поля | 2) | |
В) | Сила, действующая на электрический заряд, движущийся в магнитном поле. | 3) | |
4) |
В2.
Частица массой
m
, несущая заряд
q
, движется в однородном магнитном поле с индукцией
B
по окружности радиуса
R
со скоростью
v.
Что произойдет с радиусом орбиты, периодом обращения и кинетической энергией частицы при увеличении заряда частицы? К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ | ИХ ИЗМЕНЕНИЯ | ||
А) | радиус орбиты | 1) | увеличится |
Б) | период обращения | 2) | уменьшится |
В) | кинетическая энергия | 3) | не изменится |
С1.
Под каким углом к силовым линиям магнитного поля с индукцией 0,5 Тл должен двигаться медный проводник сечением 0,85 мм2 и сопротивлением 0,04 Ом, чтобы при скорости 0,5 м/с на его концах возбуждалась ЭДС индукции, равная 0,35 В? ( удельное сопротивление меди ρ= 0,017 Ом∙мм2/м)
« Электромагнитная индукция»
Вариант 3
А1.
Магнитные поля создаются:
- как неподвижными, так и движущимися электрическими зарядами;
- неподвижными электрическими зарядами;
- движущимися электрическими зарядами.
А2.
Магнитное поле оказывает воздействие:
- только на покоящиеся электрические заряды;
- только на движущиеся электрические заряды;
- как на движущиеся, так и на покоящиеся электрические заряды.
А3 . На каком из рисунков правильно показано направление индукции магнитного поля, созданного прямым проводником с током. 1)А; 2) Б; 3) В. |
А4.
Какая сила действует со стороны однородного магнитного поля с индукцией 30 мТл на находящийся в поле прямолинейный проводник длиной 50 см, по которому идет ток 12 А? Провод образует прямой угол с направлением вектора магнитной индукции поля.
1)18 Н; 2) 1,8 Н; 3) 0,18 Н; 4) 0,018 Н.
А5. В магнитном поле находится проводник с током. Каково направление силы Ампера, действующей на проводник? 1)вверх; 2) вниз; 3) влево; 4) вправо. |
А6.
Что показывают четыре вытянутых пальца левой руки при определении силы Ампера
- направление силы индукции поля;
- направление тока;
- направление силы Ампера.
А7.
Магнитное поле индукцией 10 мТл действует на проводник, в котором сила тока равна 50 А, с силой 50 мН. Найдите длину проводника, если линии индукции поля и ток взаимно перпендикулярны.
1)1 м; 2) 0,1 м; 3) 0,01 м; 4) 0,001 м.
В1.
Установите соответствие между физическими величинами и единицами их измерения
ВЕЛИЧИНЫ | ЕДИНИЦЫ ИЗМЕРЕНИЯ | ||
А) | сила тока | 1) | вебер (Вб) |
Б) | магнитный поток | 2) | ампер (А) |
В) | ЭДС индукции | 3) | тесла (Тл) |
4) | вольт (В) |
В2.
Частица массой
m
, несущая заряд
q
, движется в однородном магнитном поле с индукцией
B
по окружности радиуса
R
со скоростью
v.
Что произойдет с радиусом орбиты, периодом обращения и кинетической энергией частицы при увеличении индукции магнитного поля? К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ | ИХ ИЗМЕНЕНИЯ | ||
А) | радиус орбиты | 1) | увеличится |
Б) | период обращения | 2) | уменьшится |
В) | кинетическая энергия | 3) | не изменится |
С1.
В катушке, состоящей из 75 витков, магнитный поток равен 4,8∙10-3 Вб. За какое время должен исчезнуть этот поток, чтобы в катушке возникла средняя ЭДС индукции 0,74 В?
Электромагнитная индукция»
Вариант 4
А1.
Что наблюдается в опыте Эрстеда?
- проводник с током действует на электрические заряды;
- магнитная стрелка поворачивается вблизи проводника с током;
- магнитная стрелка поворачивается заряженного проводника
А2.
Движущийся электрический заряд создает:
- только электрическое поле;
- как электрическое поле, так и магнитное поле;
- только магнитное поле.
А3 . На каком из рисунков правильно показано направление индукции магнитного поля, созданного прямым проводником с током. 1)А; 2) Б; 3) В. |
А4.
В однородном магнитном поле с индукцией 0,82 Тл перпендикулярно линиям магнитной индукции расположен проводник длиной 1,28 м. Определителе силу, действующую на проводник, если сила тока в нем равна 18 А.
1)18,89 Н; 2) 188,9 Н; 3) 1,899Н; 4) 0,1889 Н.
А5. В магнитном поле находится проводник с током. Каково направление силы Ампера, действующей на проводник? 1)вправо; 2)влево; 3)вверх; 4) вниз. |
А6.
Индукционный ток возникает в любом замкнутом проводящем контуре, если:
- Контур находится в однородном магнитном поле;
- Контур движется поступательно в однородном магнитном поле;
- Изменяется магнитный поток, пронизывающий контур.
А7.
На прямой проводник длиной 0,5 м, расположенный перпендикулярно силовым линиям поля с индукцией 0,02 Тл, действует сила 0,15 Н. Найдите силу тока, протекающего по проводнику.
1)0,15 А; 2)1,5 А; 3) 15 А; 4) 150 А.
В1.
Установите соответствие между физическими величинами и формулами, по которым эти величины определяются
ВЕЛИЧИНЫ | ЕДИНИЦЫ ИЗМЕРЕНИЯ | ||
А) | ЭДС индукции в движущихся проводниках | 1) | |
Б) | сила, действующая на электрический заряд, движущийся в магнитном поле | 2) | |
В) | магнитный поток | 3) | |
4) |
В2.
Частица массой
m
, несущая заряд
q
, движется в однородном магнитном поле с индукцией
B
по окружности радиуса
R
со скоростью
v U.
Что произойдет с радиусом орбиты, периодом обращения и кинетической энергией частицы при уменьшении массы частицы? К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ | ИХ ИЗМЕНЕНИЯ | ||
А) | радиус орбиты | 1) | увеличится |
Б) | период обращения | 2) | уменьшится |
В) | кинетическая энергия | 3) | не изменится |
С1.
Катушка диаметром 4 см находится в переменном магнитном поле, силовые линии которого параллельны оси катушки. При изменении индукции поля на 1 Тл в течении 6,28 с в катушке возникла ЭДС 2 В. Сколько витков имеет катушка.
Оценивание заданий частей А и В
За выполнение задания А
учащийся получает
1 балл
, если выбранный им ответ совпадает с указанным в таблице ответом. За выполнение
задания В
учащийся получает
2 балла
, если записанный им набор цифр совпадает с указанным в таблице;
1 балл
, если в ответе имеется хотя бы одна ошибка;
0 баллов,
если ошибок более одной.
Общие правила оценивания заданий С
- За выполнение задания С учащийся получает 3 балла, если в решении присутствуют правильно выполненные следующие элементы:
— правильно записаны необходимые для решения уравнения (законы); — правильно выполнены алгебраические преобразования и вычисления, записан верный ответ.
задание оценивается 2 баллами, если
-сделана ошибка в преобразованиях или в вычислениях — при верно записанных исходных уравнениях отсутствуют преобразования или вычисления.
задание оценивается 1 баллом, если
— сделана ошибка в одном из исходных уравнений -одно из необходимых исходных уравнений отсутствует.
Во всех остальных случаях ставится оценка 0 баллов.
Таблица ответов к заданиям частей А, В и С
А1 | А2 | А3 | А4 | А5 | А6 | А7 | В1 | В2 | С1 | |
В 1 | 3 | 1 | 3 | 2 | 2 | 2 | 3 | 231 | 131 | 10 А;20 В |
В 2 | 1 | 2 | 3 | 1 | 1 | 3 | 4 | 143 | 223 | 300 |
В 3 | 3 | 2 | 3 | 3 | 1 | 2 | 2 | 214 | 223 | 0,48 |
В 4 | 2 | 2 | 3 | 1 | 1 | 3 | 3 | 312 | 222 | 1000 |
Решение заданий части С
Вариант 1
Используя закон электромагнитной индукции получаем =
10 А.
Энергия магнитного поля =
20 ВВариант 2
ЭДС индукции в движущихся проводниках →
(1)
(2) = 2 м; совместное решение (1) и (2) получим ;
α= 300Вариант 3
По закону электромагнитной индукции: ;
t= 0,48 с
Вариант 4
По закону электромагнитной индукции ; (1)
Магнитный поток (2); (3).
Решая совместно (1), (2) и (3), получим N= 10000 витков
Критерии оценивания
Максимальное количество баллов – 14
Что такое силовые линии, как расположены
Силовые линии магнитного поля или линии магнитной индукции — линии, касательные к которым в каждой точке имеют направление вектора индукции в этой точке. Данные линии аналогичны линиям вектора напряженности электростатического поля.
Если представить, что в некой точке магнитного поля находится маленькая магнитная стрелка, то под его действием она расположится по направлению касательной к линии поля в этой точке. Северный конец стрелки укажет направление линии магнитного поля.
Примечание: Линии магнитной индукции всегда не имеют ни начала, ни конца, то есть они всегда замкнуты. Магнитные линии соответствуют направлению вектора в каждой точки поля. Направления вектора указываются стрелками.
Поля с замкнутыми векторными линиями называют вихревыми.
В однородном магнитном поле все линии параллельны и равны друг другу.
В прямом проводнике линии магнитной индукции расположены в виде окружностей, лежащих в плоскостях, перпендикулярных проводнику. Центры окружностей находятся на оси проводника.
Для того чтобы определить вектор индукции в этом случае, необходимо смотреть вдоль проводника по направлению движения положительных зарядов, то есть по направлению тока. Вектор магнитной индукции будет направлен по ходу часовой стрелки. Если ток направлен к наблюдателю, то вектор индукции направлен против хода часовой стрелки.
1.17. Закон Био–Савара. Теорема о циркуляции
Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Ж. Био и Ф. Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется принципу суперпозиции:
Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности.
Индукцию проводника с током можно представить как векторную сумму элементарных индукций создаваемых отдельными участками проводника. На опыте невозможно выделить отдельный участок проводника с током, так как постоянные токи всегда замкнуты. Можно измерить только суммарную индукцию магнитного поля, создаваемого всеми элементами тока. Закон Био–Савара определяет вклад в магнитную индукцию результирующего магнитного поля, создаваемый малым участком Δl проводника с током I.
Здесь r – расстояние от данного участка Δl до точки наблюдения, α – угол между направлением на точку наблюдения и направлением тока на данном участке, μ0 – магнитная постоянная. Направление вектора определяется правилом буравчика: оно совпадает с направлением вращения рукоятки буравчика при его поступательном перемещении вдоль тока. Рис. 1.17.1 иллюстрирует закон Био–Савара на примере магнитного поля прямолинейного проводника с током. Если просуммировать (проинтегрировать) вклады в магнитное поле всех отдельных участков прямолинейного проводника с током, то получится формула для магнитной индукции поля прямого тока:
которая уже приводилась в § 1.16.
Рисунок 1.17.1. Иллюстрация закона Био–Савара |
Закон Био–Савара позволяет рассчитывать магнитные поля токов различных конфигураций. Нетрудно, например, выполнить расчет магнитного поля в центре кругового витка с током. Этот расчет приводит к формуле
где R – радиус кругового проводника. Для определения направления вектора также можно использовать правило буравчика, только теперь его рукоятку нужно вращать в направлении кругового тока, а поступательное перемещение буравчика укажет направление вектора магнитной индукции.
Расчеты магнитного поля часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае можно пользаоваться теоремой о циркуляции вектора магнитной индукции, которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике.
Поясним понятие циркуляции вектора Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление его обхода. На каждом отдельном малом участке Δl этого контура можно определить касательную составляющую вектора в данном месте, то есть определить проекцию вектора на направление касательной к данному участку контура (рис. 1.17.2).
Рисунок 1.17.2. Замкнутый контур (L) с заданным направлением обхода. Изображены токи I1, I2 и I3, создающие магнитное поле |
Циркуляцией вектора называют сумму произведений Δl, взятую по всему контуру L:
Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур L в то время, как другие токи могут находиться в стороне от контура.
Теорема о циркуляции утверждает, что циркуляция вектора магнитного поля постоянных токов по любому контуру L всегда равна произведению магнитной постоянной μ0 на сумму всех токов, пронизывающих контур:
В качестве примера на рис. 1.17.2 изображены несколько проводников с токами, создающими магнитное поле. Токи I2 и I3 пронизывают контур L в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, I3 > 0, а I2 <� 0. Ток I1 не пронизывает контур L.
Теорема о циркуляции в данном примере выражается соотношением:
Теорема о циркуляции в общем виде следует из закона Био–Савара и принципа суперпозиции.
Простейшим примером применения теоремы о циркуляции является вывод формулы для магнитной индукции поля прямолинейного проводника с током. Учитывая симметрию в данной задаче, контур L целесообразно выбрать в виде окружности некоторого радиуса R, лежащей в перпендикулярной проводнику плоскости. Центр окружности находится в некоторой точке проводника. В силу симметрии вектор направлен по касательной , а его модуль одинаков во всех точках окружности. Применение теоремы о циркуляции приводит к соотношению:
откуда следует формула для модуля магнитной индукции поля прямолинейного проводника с током, приведенная ранее.
Этот пример показывает, что теорема о циркуляции вектора магнитной индукции может быть использована для расчета магнитных полей, создаваемых симметричным распределением токов, когда из соображений симметрии можно «угадать» общую структуру поля.
Имеется немало практически важных примеров расчета магнитных полей с помощью теоремы о циркуляции. Одним из таких примеров является задача вычисления поля тороидальной катушки (рис. 1.17.3).
Рисунок 1.17.3. Применение теоремы о циркуляции к тороидальной катушке |
Предполагается, что катушка плотно, то есть виток к витку, намотана на немагнитный тороидальный сердечник. В такой катушке линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса r1 ≤ r <� r2 изображена на рис. 1.17.3. Применим теорему о циркуляции к контуру L в виде окружности, совпадающей с изображенной на рис. 1.17.3 линией индукции магнитного поля. Из соображений симметрии ясно, что модуль вектора одинаков вдоль всей этой линии. По теореме о циркуляции можно записать:
B ∙ 2πr = μ0IN, |
где N – полное число витков, а I – ток, текущий по виткам катушки. Следовательно,
Таким образом, модуль вектора магнитной индукции в тороидальной катушке зависит от радиуса r. Если сердечник катушки тонкий, то есть r2 – r1 <<� r, то магнитное поле внутри катушки практически однородно. Величина n = N / 2πr представляет собой число витков на единицу длины катушки. В этом случае
B = μ 0I n. |
В это выражение не входит радиус тора, поэтому оно справедливо и в предельном случае r → ∞. Но в пределе каждую часть тороидальной катушки можно рассматривать как длинную прямолинейную катушку. Такие катушки называют соленоидами. Вдали от торцов соленоида модуль магнитной индукции выражается тем же соотношением, что и в случае тороидальной катушки.
На рис. 1.17.4 изображено магнитное поле катушки конечной длины. Следует обратить внимание на то, что в центральной части катушки магнитное поле практически однородно и значительно сильнее, чем вне катушки. На это указывает густота линий магнитной индукции. В предельном случае бесконечно длинного соленоида однородное магнитное поле целиком сосредоточено внутри него.
Рисунок 1.17.4. Магнитное поле катушки конечной длины. В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки |
В случае бесконечно длинного соленоида выражение для модуля магнитной индукции можно получить непосредственно с помощью теоремы о циркуляции, применив ее к прямоугольному контуру, показанному на рис. 1.17.5.
Рисунок 1.17.5. Применение теоремы о циркуляции к расчету магнитного поля бесконечно длинного соленоида |
Вектор магнитной индукции имеет отличную от нуля проекцию на направление обхода контура abcd только на стороне ab. Следовательно, циркуляция вектора по контуру равна Bl, где l – длина стороны ab. Число витков соленоида, пронизывающих контур abcd, равно n · l, где n – число витков на единицу длины соленоида, а полный ток, пронизывающий контур, равен I n l. Согласно теореме о циркуляции,
B l = μ0I n l, |
откуда
B = μ0 I n. |
Это выражение совпадает с полученной ранее формулой для магнитного поля тонкой тороидальной катушки.
Модель. Магнитное поле кругового витка с током |
Модель. Магнитное поле прямого тока |
Модель. Магнитное поле соленоида |
Способы обнаружения магнитного поля
Схема опыта для обнаружения магнитного поля:
- Закрепить параллельно и вертикально два гибких проводника. Для опыта можно взять проводники, состоящие из проволоки различной толщины и изготовленных из разных видов метала. Можно применить стальную, медную, алюминиевую, нихромовую проволоку.
- Присоединить полюса источников тока к их нижним концам. Проводники при этом не должны отталкиваться или приближаться друг к другу, поскольку кулоновские силы не проявляются при незначительной разности потенциалов зарядов проводников.
- Необходимо соединить проводники так, чтобы по ним пошел электрический ток.
- В первом варианте необходимо замкнуть концы проводников для возникновения в них токов противоположного направления. Проводники должны отталкиваться друг от друга.
- Во втором варианте необходимо замкнуть концы проводников для создания токов одного направления. Они должны притягиваться друг к другу.
Опыт позволяет обнаружить магнитное взаимодействие, то есть взаимодействие между электрическими зарядами, движущимися направленно.
Магнитное поле можно обнаружить по действию на электрический ток, то есть по действию на движущиеся заряды.
Опыт для определения характера действия магнитного поля на контур с током:
- Подвесить маленькую плоскую рамку, состоящую из нескольких витков проволоки, на сплетенные друг с другом тонкие гибкие проводники.
- Расположить вертикально провод на значительно большем расстоянии, чем размеры рамки.
- Рамку необходимо расположить так, чтобы при пропускании электрического тока через нее провод оказался в плоскости рамки.
- При изменении направления тока рамка должна поворачиваться на 180⁰.
Опыт показывает, что магнитное поле создается не только токами в проводниках, но так же его создает и любое направленное движение электрических зарядов.
Магнитное поле можно обнаружить по отклонению рядом находящейся магнитной стрелки на компасе, при пропускании через проводник электрического тока.
Магнитное поле также создается постоянными магнитами. Для его обнаружения необходимо на гибких проводниках подвесить между полюсами магнита плоскую рамку с током. Рамка должна поворачиваться до тех пор, пока ее плоскость не станет перпендикулярной линии, соединяющей полюсы магнита. Опыты позволяют увидеть ориентирующее действие магнитного поля на рамку с током.
Магнитное поле проводника с током
Оказывается, если через какой-либо проводник пропустить электрический ток, то вокруг проводника образуется магнитное поле.
Здесь можно вспомнить знаменитое правило буравчика, но для наглядности я лучше буду использовать правило самореза, так как почти все хоть раз в жизни ввинчивали либо болт, либо саморез.
Ввинчиваем по часовой стрелке — саморез идет вниз. В нашем случае он показывает направление электрического тока. Движение наших рук показывает направление линий магнитного поля. Все то же самое, когда мы начинаем откручивать саморез. Он начинает вылазить вверх, то есть в нашем случае показывает направление электрического тока, а наша рука в этом время рисует в воздухе направление линий магнитного поля.
Также часто в учебниках физики можно увидеть, что направление электрического тока от нас рисуют кружочком с крестиком, а к нам — кружочком с точкой. В этом случае опять представляем себе саморез и уже в голове увидим направление магнитного поля.
Как думаете, что будет если мы сделаем вот такую петельку из провода? Что изменится в этом случае?
Давайте же рассмотрим этот случай более подробно. Так в этой плоскости оба проводника создают магнитное поле, то по идее они должны отталкиваться друг от друга. Но если они хорошо закреплены, то начинается самое интересное. Давайте рассмотрим вид сверху, как это выглядит.
Как вы можете заметить, в области, где суммируются магнитные силовые линии плотность магнитного потока прям зашкаливает.
Магнитный поток
Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.
Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.
Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.
Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).
Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.
Магнитным потоком через площадь S контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции B, площади поверхности S, пронизываемой данным потоком, и косинуса угла α между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):
Магнитный поток Ф — магнитный поток [Вб] B — магнитная индукция [Тл] S — площадь пронизываемой поверхности [м^2] n — вектор нормали (перпендикуляр к поверхности) [-] |
Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.
В зависимости от угла α магнитный поток может быть положительным (α < 90°) или отрицательным (α > 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.
Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).
В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность
Магнитное взаимодействие
Еще в древности было замечено, что одни тела притягивают другие тела. Янтарь следует натирать, чтобы он притягивал к себе волосы или обрывки ткани, но магниты всегда притягивают, но только железные предметы. Древние люди также обнаружили, что магнит может заставить другое тело, сделанное из железа, приобрести магнитные свойства, если держать его достаточно близко к магниту. Они также заметили, что две стороны магнита имеют разные свойства — обращенные друг к другу магниты могут притягивать или отталкивать друг друга.
Уже в настоящее время мы знаем, что магнитное поле возникает между полюсами магнитного материала. Полюса бывают северными и южными. Вы, наверное, сами сталкивались с тем, что когда вы сводите два магнита вместе, они либо притягиваются, либо отталкиваются друг от друга. Это происходит потому, что магнитные полюса с разными названиями (север-юг) притягиваются, а полюса с одинаковыми названиями (север-север, юг-юг) отталкиваются.
Магнитное поле тела часто представляют в виде диаграммы линий поля. Если внести ферромагнитное тело в магнитное поле, оно выровняется вдоль линий поля. Ферромагниты — самые известные магниты, создающие постоянное магнитное поле.
Если мы поднесем некоторое количество железных скрепок к магниту, то заметим, что большинство скрепок скопятся на концах магнита (называемых полюсами), потому что магнитная сила там наибольшая. Однако в середине магнита она имеет наименьшее значение. Магнитные силы действуют в пространстве вокруг магнита и создают то самое магнитное поле.
Магнитное поле невидимо, но, используя железные опилки, вы можете наблюдать его эффекты (см. рисунок 1).
Рис. 1. Железные опилки расположены характерным образом — они образуют линии вокруг магнита. Эти линии показывают форму магнитного поля, которое возникло вокруг стержневого магнита.
Большая часть железных опилок скапливается возле полюсов, а остальные располагаются вдоль линий поля. Они представляют собой линии магнитного поля, которые окружают магнит. Железные опилки намагничиваются, т.е. приобретают магнитные свойства и становятся маленькими магнитами, которые притягивают друг друга.
Электромагнитная индукция
Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.
Явление электромагнитной индукции было открыто М. Фарадеем.
Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.
Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.
При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.
Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки
Вот, что показали эти опыты:
- Индукционный ток возникает только при изменении линий магнитной индукции.
- Направление тока будет различно при увеличении числа линий и при их уменьшении.
- Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.
Почему возникает индукционный ток?
Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.
Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.
Закон электромагнитной индукции
Закон электромагнитной индукции (закон Фарадея) звучит так:
ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.
Математически его можно описать формулой:
Закон Фарадея
Ɛi — ЭДС индукции [В]
ΔФ/Δt — скорость изменения магнитного потока [Вб/с]
Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.
Если контур состоит из N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.
Закон Фарадея для контура из N витков
Ɛi — ЭДС индукции [В]
ΔФ/Δt — скорость изменения магнитного потока [Вб/с]
N — количество витков [-]
Сила индукционного тока в замкнутом проводящем контуре с сопротивлением R:
Закон Ома для проводящего контура
Ɛi — ЭДС индукции [В]
I — сила индукционного тока [А]
R — сопротивление контура [Ом]
Если проводник длиной l будет двигаться со скоростью v в постоянном однородном магнитном поле с индукцией B ЭДС электромагнитной индукции равна:
ЭДС индукции для движущегося проводника
Ɛi — ЭДС индукции [В]
B — магнитная индукция [Тл]
v — скорость проводника [м/с]
l — длина проводника [м]
Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.
Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:
- вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
- вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея
Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:
- в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
- в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.
Электромагниты и их применение
Существование магнитного поля вокруг проводника с электрическим током широко используется в технике и промышленности. Часто используются устройства, называемые электромагнитами. Электромагнит состоит из катушки, сердечника и источника напряжения (см. рисунок 8).
Рис. 8. Структура электромагнита
Ферромагнитный сердечник электромагнита играет важную роль. Внутри него создаются магнитные поля, которые усиливают магнитное поле катушки.
Мелкие изделия из ферромагнитных материалов сильнее всего притягиваются полюсами электромагнита. Таким образом, можно сделать вывод, что магнитное поле вокруг электромагнита похоже на магнитное поле стержневого магнита.
Применение электромагнитов.
Рис. 9. Электромагниты — это устройства, имеющие широкое практическое значение. Они используются буквально везде: от дверных замков, звонков и громкоговорителей до промышленного оборудования и высокоскоростных поездов, а также медицинской и исследовательской аппаратуры.
Электромагниты имеют различные применения. Например, на складах металлолома электромагнитные краны перемещают разбитые автомобили.
Также электромагниты используются в электрических замках. Когда электрический ток проходит через электромагнит, создается магнитное поле, которое сильно воздействует на металлическую (стальную) часть замка (ригеля). Это приводит к перемещению заслонки и открыванию двери. Когда дверь закрыта, соответствующим образом расположенная пружина перемещает ригель и блокирует замок. Замок можно открыть после повторного подключения электропитания.
Самые сильные электромагниты используются, в том числе, в ускорителях для управления движением частиц с высокой энергией. До недавнего времени магнитное поле, создаваемое токоведущими проводниками, управляло движением электронов в телевизионных кинескопах и компьютерных мониторах.
Правило Ленца
Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.
Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.
Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.
Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.