Применяются следующие соединения резисторов: параллельное, последовательное и смешанное.
Последовательное соединение резисторов
— это такое взаимное расположение компонентов, при котором ток движется в одном направлении и имеет общее значение для каждого резистора. При таком соединении напряжение на каждом участке будет пропорционально сопротивлению конкретного резистора в цепи.
Принципиальная схема последовательного соединения:
Как видно в цепи последовательно соединено три резистора (их может быть и больше). Сопротивление первого резистора R1 = 20 Ом. Второго R2 = 70 Ом. Третьего R3 = 10 Ом.
Как видно в цепи последовательно соединено три резистора (их может быть и больше). Сопротивление первого резистора R1 = 20 Ом. Второго R2 = 70 Ом. Третьего R3 = 10 Ом.
Для подсчета общего (эквивалентного) сопротивление при последовательном соединении нужно сложить все номинальные сопротивления резисторов входящих в цепь:
В представленной схеме для наглядности приведены напряжения на каждом из трех участков. И падение напряжения происходит в зависимости от сопротивления конкретного резистора. Сила тока в цепи общая для всех резисторов ( I = I1 = I2 = I3
).
Поэтому согласнозакону Омасила тока при известном напряжении источника питания (в данном случае U = 220 В) определяется по формуле:
Формулы нахождения напряжения на участке цепи при известной силе тока (в данном случае I = I1 = I2 = I3 = 2,2 A):
Соответственно U1 = 2,2 × 20 = 44 В; U2 = 2,2 × 70 = 154 В; U3 = 2,2 × 10 = 22 В. В итоге сумма разностей потенциалов на резисторах равна общей разности потенциалов всей цепи (220 В).
Какое освещение Вы предпочитаете
ВстроенноеЛюстра
Рассмотренные три резистора в последовательной цепи можно заменить одним с сопротивлением 100 Ом:
Если можно несколько резисторов заменить одним, то возникает логичный вопрос, зачем применяется такое комбинирование. Простыми словами можно ответить, что иногда невозможно подобрать резистор с требуемыми параметрами или необходимо создать более сложные электронные схемы. В этом случае прибегают к последовательному, параллельному или смешанному соединению в цепи.
Последовательное и параллельное соединение |
Однако у этого способа компоновки электросхемы есть и серьезные недостатки. Главным из них является ненадежность цепи из последовательно соединенных проводников. При выходе из строя любого из подключенных приборов, происходит отключение всей цепи.
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
Последовательное и параллельное соединение сопротивлений От выбранного способа соединения источников и потребителей в значительной мере зависят рабочие параметры подключенного оборудования. Спрашивайте, я на связи!
Параллельное соединение резисторов
Параллельное соединение резисторов
— это такое взаимное соединение компонентов, при котором оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов.
1 / R = 1 / R1 + 1 / R2 + 1 / R3 + . + 1 / Rn
. Величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.
Рассчитаем общее сопротивление для приведенного выше примера с параллельным соединением резисторов:
Для наглядности смоделируем в программе Electronics Workbench замену трех параллельно соединенных резисторов одним (R = 6,097 Ом): Как видно, расчет был произведен правильно, так как сила тока в цепи с резистором 6,097 Ом равна силе тока в цепи с параллельным соединением (36,08 A ≈ 36,14 A).
Для наглядности смоделируем в программе Electronics Workbench замену трех параллельно соединенных резисторов одним (R = 6,097 Ом): Как видно, расчет был произведен правильно, так как сила тока в цепи с резистором 6,097 Ом равна силе тока в цепи с параллельным соединением (36,08 A ≈ 36,14 A).
Выделим основные особенности параллельного соединения резисторов:
- Общее сопротивление всегда меньше сопротивления любого параллельно включенного резистора.
- Увеличение числа параллельно соединенных резисторов ведет к уменьшению общего сопротивления и увеличению общей силы тока в цепи.
- Если параллельно соединены два резистора с одинаковым сопротивлением, то общее сопротивление этих резисторов будет ровно в два раза меньше, чем сопротивление каждого из резисторов, входящих в эту цепочку.
- Если в цепи используются резисторы одного номинала, то формула общего сопротивления упрощается и принимает вид R = R1 / N
(R1 – номинальное сопротивление резистора; N – количество резисторов с одинаковым номинальным сопротивлением).
Примеры расчетов
В качестве практических примеров можно рассмотреть несколько вариантов расчетов параметров цепи в разных схемах соединения.
Для резисторов
Самым простым примером расчета будет цепь из двух сопротивлений – 10 Ом и 100 Ом, соединенных в цепочку. К цепи приложено 12 вольт.
Последовательная цепь из двух резисторов.
Сначала надо найти Rобщ, оно равно сумме R1 и R2. Rобщ=100+10=110 Ом. Отсюда ток в цепи I=U/R=12/110=0,109 ампер. Падение на каждом элементе можно вычислить исходя из равенств U1=I*R1 и U2=I*R2. Отсюда U1=1,1 В, а U2=10,9 В. Очевидно, что U1/U2=R1/R2. На первом элементе будет рассеиваться мощность P1=U1*I=1,1*0,109=0,12 ватт (для практики подойдет стандартный компонент на 0,125 ватт), а на втором – P2=U2*I=10,9*0,109=1,19 ватт (для практической реализации понадобится двухваттник).
Если соединить эти же два резистора параллельно и подать то же самое напряжение, то параметры распределятся по-другому.
Соединение элементов в параллель.
Сначала надо определить Rобщ=R1*R2/(R1+R2)=110*10/(110+10)=1100/120=9,17 Ом (меньше наименьшего значения в 10 Ом). Общий ток составит I=U/Rобщ=12/9,17=1,31 ампер. Через первый элемент потечет I1=U/R1=12/10=1,2 ампер, через второй I2=U/R2=12/100=0,12. Очевидно, что I1+I2=I (с учетом погрешностей округления). Мощности потребуются такие:
- P1=I1*U=1,2*12=14,2 ватт;
- P2=I2*U=0,12*12=1,42 ватт.
Если имеется смешанное соединение элементов, надо сначала преобразовать схему к однотипному виду – параллельному или последовательному. Пусть имеется схема следующего вида.
Преобразование смешанной схемы.
В данном случае удобно заменить параллельную сборку R1 и R2 на резистор с эквивалентным сопротивлением R12, а R3 и R4 – на R34. Сначала находится R12=R1*R2/(R1+R2)=9,17 Ом. Тем же способом рассчитывается R34=150*5/(150+5)=4,8 Ом. Тогда общее сопротивление эквивалентной цепи будет равно R12+R34=9,17+4,8=13,97 Ом.
Отсюда I=U/R=12/13,97=0,86 ампер. На “гирлянде» R1R2 падает U12=I*R12=0,86*9,17=7,87 вольт, а на R3R4 падение составит U34= I*R34=0,86*4,8=4,13 вольт. Дальше надо вернуться к исходной схеме и рассмотреть отдельно участок схемы R1R2 с найденными параметрами.
Участок цепи, содержащий R1 и R2.
Отсюда I1=U/R1=7,87/10=0,787 ампер, I2=U/R2=7,87/100=0,0787 ампер. По мощностям – P1=U*I1=7,87*0,787=6,2 ватт, P2= U*I2=7,87*0,0787=0,62 ватт.
Аналогично рассчитывается и участок, содержащий элементы R3R4.
Основные законы
- при последовательном соединении через каждый участок цепи протекает ток одинаковой силы;
- общее сопротивление схемы при последовательном подключении равно сумме сопротивления всех проводников;
- напряжение в электросети при параллельном подключении одинаково для каждого участка;
В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в узле всегда равна нулю. Благодаря этому, можно получить формулу для нахождения эквивалентного сопротивления цепи, если известно сопротивление каждой нагрузки. Она имеет следующий вид: Ro =R1*R2 / R1+R2.
Для последовательного соединения нагрузок применим второй закон Кирхгофа. Согласно ему, сумма ЭДС в замкнутом электрическом контуре равна сумме падений напряжений на каждой нагрузке. В результате общее сопротивление можно определить с помощью следующей формулы: Ro = R1 + R2.
Также можно рассчитать и индуктивность при различных видах соединения катушек. В случае с последовательным все довольно просто, достаточно использовать следующую формулу: Lo = L1 + L2. По сути, вместо двух элементов можно установить один с соответствующим показателем индуктивности.
При параллельном подсоединении катушек ситуация усложняется, так как возможны три варианта:
- магнитные поля катушек не пересекаются: Lo = L1 * L2 / L1 + L2;
- катушки подсоединены в одном направлении и их поля пересекаются: Lo = L1 * L2-М 2 / L1 + L2 — 2 М;
- пересечение полей наблюдается при встречном подсоединении: Lo = L1 * L2-М 2 / L1 + L2 + 2 М.
Сегодня часто для расчета этих и других показателей, например, емкости конденсатора, можно использовать онлайн-калькулятор.
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
Последовательное и параллельное соединение проводников ℹ️ формулы Напомним, что положительная клемма источника обозначается более длинной чертой, так что ток в данной схеме течёт по часовой стрелке. Спрашивайте, я на связи!
Типы разводки электропроводки
Информация о соединениях электрической цепи тесно переплетается с темой разводки проводки и дополняет методику электромонтажных работ. Существует несколько типов разводки. Однако, прежде чем перейти к ним, стоит рассмотреть, как формируется разводка в частном доме:
- Питающий кабель входит в распределительный щит здания.
- В щите располагаются группы автоматических устройств защиты.
- Посредством автоматики и распределительных шин кабель далее разводится на зоны (группы потребителей).
- Зоны делятся на две группы: одна предназначена для розеток, другая — для освещения.
- Питающие кабели отдельной зоны заходят в помещение, где для них используются свои варианты расключения. Так, силовая кабельная линия, идущая к розетке, может подключается к другим розеткам данного помещения методом «шлейфа», а осветительная линия может расключаться через распределительную коробку.
Типы расключения электрической проводки:
Тип расключения «звезда» (другие названия бескоробочное, или европейское) схематично выглядит следующим образом: одна розетка — одна линия кабеля до щитка. То есть, каждая розетка и точка освещения имеют отдельную кабельную линию, которая заходит прямо в щиток и подключается к отдельному автоматическому выключателю. Преимущество данной методики — безопасность и возможность контролировать каждую электрическую точку. Также, при такой разводке не требуется устанавливать распределительные коробки. Недостатком бескоробочного подключения является увеличенный расход провода и, соответственно, увеличение трудовых затрат на монтаж системы. |
«Шлейф» по сравнению со «звездой» отличается экономичностью. Изобразить шлейфовое расключение можно следующим образом: электрощит или распределительная коробка — розетка — розетка — розетка. Другими словами, несколько электрических точек последовательно подключаются, и от них общий питающий проводник идет либо к электрощиту, либо к распаечной коробке. Как видно, данный тип расключения проводки — не что иное, как последовательное соединение в разрезе электрической цепи. |
Самый распространенный тип разводки — с использованием распределительных коробок. В этом случае от электрического щита питающий кабель конкретной группы разветвляется между потребителями через распределительные коробки, которые обычно располагаются над выключателем около входа в комнату. |
Смешанное расключение предполагает одновременное применение в одной системе типов «звезда», «шлейф» с использованием распределительных (распаечных) коробок. |
В чистом виде перечисленные типы расключения применяются редко. Как правило, выбирают смешанный вариант. При этом, нужно соблюдать правила соединения электрической цепи.
Параллельное соединение
Параллельным называют такое соединение участков цепи, при котором начала проводников соединяются вместе в одной точке и концы всех проводников соединяются вместе в другой точке.
При параллельном соединении напряжение в каждой отдельной ветви цепи будет равно общему напряжению в цепи:
Сила тока в неразветвленной цепи будет равна сумме токов всех отдельных ветвей.
При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.
При параллельном соединении справедливо соотношение:
т.е. силы токов в ветвях параллельно соединенной цепи обратно пропорциональны сопротивлениям ветвей.
Достоинством параллельного подключения является то, что при выходе из строя одного из элементов, остальная цепь продолжает нормально функционировать.
Мнение эксперта
It-Technology, Cпециалист по электроэнергетике и электронике
Задавайте вопросы «Специалисту по модернизации систем энергогенерации»
Параллельное и последовательное соединение проводников в электрической цепи. Также схема хорошо подходит в тех случаях, когда необходимо сформировать электроцепь из потребителей с малым значением номинального напряжения. Спрашивайте, я на связи!
Электрическая цепь и схемы возможных видов электрических соединений ее элементов
Простейшую электрическую цепь можно определить, как совокупность элементов (устройств) и проводников, предназначением которой является прохождение электротока. Схема ЭС в такой цепи приведена на рисунке.
В целом же в любой электрической цепи присутствуют следующие элементы:
- источник тока (электроэнергии) — аккумулятор, генератор и т. д.;
- потребители электроэнергии (ее приемники) — различные бытовые приборы, электрические двигатели, станки, обогреватели и пр.;
- проводники электрические (линии электропередач) — провода, кабеля, шнуры;
Поскольку на нашем сайте уже шла речь об электрических проводах и кабелях, остановимся несколько подробнее на соединителях для электрических проводов.
2.1. Соединители проводов
Элементы, с помощью которых устанавливается ЭС, принято называть соединителями проводов. Не будем погружаться вглубь данной проблемы, а остановимся на обычной электропроводке в доме или квартире. Кто в доме «сам себе мастер» с проблемой соединения проводов знаком не понаслышке. Соединить провода можно самыми разнообразными методами — начиная от обычной их скрутки до использования клеммников (клеммных колодок). Сразу оговоримся, что неважно, каким способом будут соединены провода. Главное — надежность этого соединения!
Рассмотрим все же, какое соединение проводов — традиционное (сварка проводов, пайка проводов, опрессовка проводов, обжим проводов) или же современное (с использованием разнообразных зажимов) является более надежным и прочным. При этом немаловажно помнить, что от этого зависит безопасность проживания в вашем жилище.
2.1.1. Скрутка по-прежнему популярна
Несмотря на наличие на рынке современных, безопасных и эстетичных заводских соединителей, электрики по-прежнему продолжают пользоваться этим методом соединения проводов.
Основными его недостатками являются:
- соединение не относится ни к разъемному, ни к неразъемному типу, посколькужилы проводов также подвергаются износу;
- не имея опыта и практических навыков, прочную скрутку не выполнишь.
А вот у опытных электриков такое соединение проводов выходит не только прочным, но и довольно эстетичным (хотя изолента все равно его вид испортит).
2.1.2. Колпачки СИЗ
Это сокращенное название соединительных изолирующих зажимов. Они имеют внешний пластиковый корпус, который:
- не поддерживает горение;
- может применяться при напряжении до 600 В;
- имеет неплохие изоляционные характеристики и одновременно служит защитой от механических повреждений.
Колпачки изготавливаются в виде конуса со стальной обжимной пружиной внутри. Применение довольно простое — скрутка проводов вставляется в колпачок, а пружина ее при этом еще и обжимает. Но все же для успешного их использования требуются определенные навыки. И конечно же, для оголения кончиков проводов лучше пользоваться не ножом, а специальным съемником изоляции.
Важно также правильно скрутить жилы, особенно, если их несколько. А вставив скрутку в колпачок, его вращение следует выполнять исключительно по часовой стрелке, но ни в коем случае наоборот.
Необходимо также знать об их маркировке:
- серым и синим цветом маркируются колпачки соответственно для 2-х и 3-х жил сечением до ;
- оранжевые, желтые и красные колпачки предназначены для соединения соответственно 2-х, 4-х и 8-ми жил сечением до 2,5 .
2.1.3. Клеммники (клеммные зажимы)
Их основное преимущество заключается в возможности соединения жил, изготовленных из разных металлов (например, из меди и алюминия, которые скручивать нельзя!!!). На практике чаще всего пользуются клеммными колодками из полиэтилена, простыми по устройству и, что немаловажно, не дорогими.
Они состоят из ряда ячеек с гильзами (трубками из латуни) внутри каждой. Жилы соединяемых проводов вставляются с двух сторон в эту гильзу и зажимаются соответственно двумя винтами. При этом следует помнить, что с помощью таких клеммников можно соединять исключительно одножильные (не многожильные!!!) провода. И второе, клеммные колодки требуют периодической ревизии (особенно с алюминиевыми жилами — их следует своевременно подтягивать).
2.1.4. Скотч-лок
Эти разовые соединительные муфты используются при работе с проводами, рассчитанными на небольшой рабочий ток — в телефонии, в маломощных светодиодных светильниках и т. д. Соединение выполняется т.н. врезным контактом и, следовательно, предварительное оголение жил проводов не требуется.
Кроме того такие универсальные муфты:
- относительно дешевы;
- не требуют специальных инструментов для обжима (можно использовать обычные плоскогубцы);
- не пропускают влагу;
- легко заменяются.
2.1.5. Гильзы
Использование этих мощных зажимов целесообразно при необходимости соединения нескольких проводов. Это, по сути, луженая медная трубка, в которую вставляются провода, после чего трубка обжимается специальными клещами (кримпером).
Таким образом, соединить провода можно пользуясь самыми различными зажимами. Поэтому при их выборе следует учитывать вид и количество проводов, требующих соединения, а также место расположения будущего соединения. Но еще раз повторим — главное, чтобы оно было надежным и безопасным!
Последовательное соединение приемников энергии
Приемники электрической энергии можно соединить между собой тремя различными способами: последовательно, параллельно или смешано (последовательно — параллельно). Вначале рассмотрим последовательный способ соединения, при котором конец одного приемника соединяют с началом второго приемника, а конец второго приемника – с началом третьего и так далее. На рисунке ниже показано последовательное соединение приемников энергии с их подключением к источнику энергии
Пример последовательного подключения приемников энергии.
В данном случае цепь состоит из трёх последовательных приемников энергии с сопротивлением R1, R2, R3 подсоединенных к источнику энергии с напряжением U. Через цепь протекает электрический ток силой I, то есть, напряжение на каждом сопротивлении будет равняться произведению силы тока и сопротивления
Таким образом, падение напряжения на последовательно соединённых сопротивлениях пропорциональны величинам этих сопротивлений.
Из вышесказанного вытекает правило эквивалентного последовательного сопротивления, которое гласит, что последовательно соединённые сопротивления можно представить эквивалентным последовательным сопротивлением величина, которого равна сумме последовательно соединённых сопротивлений. Это зависимость представлена следующими соотношениями
где R – эквивалентное последовательное сопротивление.
Пути вычисления электрических схем
Расчет электрических цепей разветвляется на множество методов, используемых на практике, а именно: метод эквивалентных преобразований, прием, основанный на постулатах Ома и Кирхгофа, способ наложения, способ контурных токов, метод узловых потенциалов, метод идентичного генератора.
Процесс расчета электрической цепи состоит из нескольких обязательных этапов, позволяющих довольно быстро и точно произвести все расчеты.
Перед тем, как узнать или вычислить необходимые параметры, рассчитываемая электрическая цепь переносится схематически на бумагу, где содержатся символические обозначения входящих в ее состав элементов и порядок их соединения.
Все элементы и устройства подразделяются на три категории:
- Источники электропитания. Основным признаком данного элемента является превращение неэлектрической энергии в электрическую. Эти источники энергии именуются первичными источниками энергии. Вторичные источники энергии представляют собой такие устройства, на входах и выходах которых присутствует электрическая энергия. К ним относятся выпрямительные приборы или трансформаторы напряжения;
- Устройства, потребляющие электрическую энергию. Такие элементы преобразовывают электрическую энергию в любую другую, будь то свет, звук, тепло и тому подобные виды;
- Вспомогательные элементы цепи, к которым относятся провода соединений, аппаратура коммутации, защиты и другие подобные элементы.
Также к основным понятиям электрической схемы относятся:
- Ветвь электрической схемы – участок цепи с одним и тем же током. В состав такой ветви могут входить один или несколько последовательно соединенных элементов;
- Узел электрической схемы – точка соединения трех и более ветвей схемы;
- Контур электрической схемы, представляющий собой любой замкнутый путь, проходящий по нескольким ветвям.
Обозначение ветвей, узлов и контуров на схеме
Смешанное соединение приемников энергии
Наиболее широко распространено смешанное соединение приемников электрической энергии. Данной соединение представляет собой сочетание последовательно и параллельно соединенных элементов. Общей формулы для расчёта данного вида соединений не существует, поэтому в каждом отдельном случае необходимо выделять участки цепи, где присутствует только лишь один вид соединения приемников – последовательное или параллельное. Затем по формулам эквивалентных сопротивлений постепенно упрощать данные участи и в конечном итоге приводить их к простейшему виду с одним сопротивлением, при этом токи и напряжения вычислять по закону Ома. На рисунке ниже представлен пример смешанного соединения приемников энергии
Пример смешанного соединения приемников энергии.
В качестве примера рассчитаем токи и напряжения на всех участках цепи. Для начала определим эквивалентное сопротивление цепи. Выделим два участка с параллельным соединением приемников энергии. Это R1||R2 и R3||R4||R5. Тогда их эквивалентное сопротивление будет иметь вид
В результате получили цепь из двух последовательных приемников энергии R12R345 эквивалентное сопротивление и ток, протекающий через них, составит
Тогда падение напряжения по участкам составит
Тогда токи, протекающие через каждый приемник энергии, составят