Резистивный делитель напряжения
В общем случае устройства этого типа выполняют преобразование по формуле Uвых=Uвх*К, где:
- Uвх (вых) – напряжения на входе и выходе, соответственно;
- К – корректирующий множитель, обозначающий передающие способности узла.
Если взять первый пример из рис. выше, для уточнения сути процессов подойдет второй закон Кирхгофа. В соответствии с этим правилом, общее значение напряжений на последовательно соединенных резисторах будет равно сумме ЭДС на каждом элементе. Так как ток не изменяется в замкнутом контуре, для расчета можно использовать закон Ома:
U (напряжение) = I (ток) * R (электрическое сопротивление)
Нижнюю часть схемы (плечо) используют для получения необходимого изменения входного параметра.
Как работает делитель напряжения на практике
Итак, у нас есть эти два резистора и наш любимый мультиметр:
Замеряем сопротивление маленького резистора R1 = 109,7 Ом.
Замеряем сопротивление большого резистора R2 = 52,8 Ом.
Ставим на блок питания ровно 10 вольт. Измеряем напряжение мультиметром.
Цепляем блок питания на эти два резистора, впаянных последовательно. Напомню, что на колодке ровно 10 вольт. Показания амперметра на блоке питания тоже немного неточны. В будущем мы также будем измерять силу тока с помощью мультиметра.
Мы измеряем падение напряжения на большом резисторе номиналом 52,8 Ом. Мультиметр показал 3,21 вольт.
Измеряем напряжение на небольшом резисторе 109,7 Ом. На него падает напряжение 6,77 вольт.
Ну, с математикой, думаю, у всех все в порядке. Сложите эти два значения напряжения. 3,21 + 6,77 = 9,98 Вольт. А что случилось с 0,02 вольта? Удаляем погрешность щупов и средств измерений. Вот хороший пример того, как нам удалось разделить напряжение на два разных напряжения. Опять же, мы проверили, что сумма падений напряжения на каждом резисторе равна напряжению питания, приложенному к этой цепи.
Сила тока в цепи при последовательном соединении резисторов
Убедимся, что сила тока при последовательном включении резисторов везде одинакова. Как измерить силу тока постоянного напряжения я писал здесь. Как видите, мультиметр показал значение 0,04 А или 40 мА в начале цикла, в середине цикла и даже в конце цикла. Где бы мы ни разорвали нашу цепь, везде одинаковое значение силы тока.
Расчет делителя напряжения на резисторах
Чтобы сделать и рассчитать простейший делитель напряжения, просто соедините последовательно два резистора и подключите их к источнику питания. Эта схема очень распространена и используется более чем в 90% случаев.
Вход схемы имеет два контакта, а выход — три. При одинаковых значениях сопротивлений R1 и R2 выходные напряжения Uout1 и Uout2 равны и составляют половину значения входного Uin. Также вывод U можно снять с любого из резисторов — R1 или R2. Если сопротивления не совпадают, на выходе U будет резистор большего размера.
Точное соотношение между Uout1 и Uout2 рассчитывается со ссылкой на закон Ома. Резисторы вместе с источником питания образуют последовательную цепь, поэтому величина электрического тока, протекающего через R1 и R2, определяется отношением напряжения питания Uin к сумме сопротивлений:
Обратите внимание, что чем больше сумма сопротивлений, тем меньше ток I при том же Uin.
Также по закону Ома, подставляя текущее значение, находим Uout1 и Uout2:
Подставляя значение самой первой формулы в последние две формулы, мы находим значение выхода U как функцию входа и сопротивлений двух резисторов
Формула делителя напряжения
Это несложное упражнение, но очень важное для понимания того, как работает делитель напряжения. Расчет делителя основан на законе Ома.
Чтобы узнать, какое напряжение будет на выходе делителя, выведем формулу, основанную на законе Ома. Предположим, мы знаем значения Uin, R1 и R2. Теперь, основываясь на этих данных, мы выводим формулу для Uout. Начнем с обозначения токов I1 и I2, которые проходят через резисторы R1 и R2 соответственно:
Наша цель — вычислить Uout, что довольно просто с помощью закона Ома:
Паяльная станция 2 в 1 с ЖК-дисплеем Мощность: 800 Вт, температура: 100… 480 градусов, воздушный поток… Подробнее
Хороший. Мы знаем значение R2, но ток I2 еще не известен. Но мы кое-что о ней знаем. Можно считать, что I1 равно I2. В этом случае наша схема будет выглядеть так:
Что мы знаем об Уине? Ну, Uin — это напряжение на R1 и R2. Эти резисторы соединены последовательно, а их сопротивления складываются:
И на время мы можем упростить схему:
Закон Ома в его простейшей форме: Uin = I * R. Имея в виду, что R состоит из R1 + R2, формулу можно записать следующим образом:
А поскольку I1 равно I2, то:
Это уравнение показывает, что выходное напряжение прямо пропорционально входному напряжению и отношению R1 к R2.
Делитель напряжения на переменном резисторе
Схема делителя напряжения с переменным резистором называется схемой потенциометра. Поворачивая ручку регулировки громкости на музыкальном центре или автомобильной стереосистеме, вы плавно изменяете напряжение, подаваемое на усилитель звуковой частоты. Принцип работы и сборка простейшего усилителя мощности уже обсуждалась здесь выше.
По мере того, как вы перемещаете (вращаете) ручку переменного резистора сверху вниз на чертеже, U постепенно изменяется от значения источника питания до нуля.
В звуковой технике используются в основном переменные резисторы с логарифмической зависимостью, поскольку слуховой аппарат человека воспринимает звуки с этой зависимостью. Для контроля уровня звука одновременно по двум каналам используются двойные переменные резисторы.
В качестве делителя напряжения используются переменные резисторы со следующими зависимостями сопротивления от угла поворота ручки: логарифмической, линейной и экспоненциальной. Определенный тип зависимости используется для решения отдельной проблемы.
Переменный резистор в роли делителя напряжения
Для плавной регулировки выходного напряжения у нас есть переменный резистор в качестве делителя напряжения. Его еще называют потенциометром.
Его обозначение на схеме выглядит так:
Принцип работы следующий: постоянное сопротивление между двумя крайними контактами. Сопротивление относительно центрального контакта по отношению к крайнему может варьироваться в зависимости от того, куда мы повернем скрутку этого переменного резистора. Этот резистор рассчитан на 1 Вт и имеет сопротивление 330 Ом. Посмотрим, как он разделит напряжение.
Так как мощность небольшая, всего 1Вт, мы не будем заряжать его высоким напряжением. Мощность, назначенная любому резистору, рассчитывается по формуле P = I2R. Это означает, что этот переменный резистор может делить только небольшое напряжение с небольшим сопротивлением нагрузки и наоборот. Главное, чтобы величина мощности этого резистора не выходила за пределы. Поэтому напряжение разделю на 1 вольт.
Для этого выставляем на колодке напряжение 1 вольт и цепляем наш резистор на двух крайних контактах.
Поворачиваем верх в произвольную сторону и останавливаем. Замеряем напряжение между левым и средним контактом и получаем 0,34 Вольта.
Измеряем напряжение между средним и правым контактом и получаем 0,64 Вольта
Складываем напряжение и получаем 0,34 + 0,64 = 0,98 Вольт. 0,02 Вольта опять где-то теряются. Скорее всего на пробниках, так как у них тоже есть сопротивление. Как видите, мы можем использовать простой переменный резистор в качестве простого делителя напряжения.
Применяя делитель напряжения на резисторах, необходимо понимать и помнить следующее:
- КПД такой схемы довольно низкий, так как только часть мощности блока питания идет на нагрузку, а остальная мощность преобразуется в тепло, выделяемое резисторами. Чем ниже падение напряжения, тем меньше энергии от блока питания уйдет на нагрузку.
- Поскольку нагрузка подключена параллельно одному из разделительных резисторов, т.е отводит его, общее сопротивление цепи уменьшается и перепады напряжения перераспределяются. Следовательно, сопротивление нагрузки должно быть намного больше, чем сопротивление резистора делителя. В противном случае схема будет работать нестабильно при отклонении от заданных параметров.
- Распределение U между R1 и R2 определяется исключительно их относительными значениями, а не абсолютными значениями. В этом случае не имеет значения, равны ли R1 и R2 2 кОм и 1 кОм или 200 кОм и 100 кОм. Однако при более низких значениях сопротивления можно получить больше мощности на нагрузку, но нужно помнить, что больше мощности преобразуется в тепло, то есть будет безвозвратно потрачено впустую.
Кроме того, иногда используются более сложные делители напряжения, состоящие из нескольких последовательно соединенных резисторов.
Потенциометры
Потенциометр — это переменный резистор, который можно использовать для создания регулируемого делителя напряжения.
Внутри потенциометра находится резистор и скользящий контакт, который разделяет резистор на две части и перемещается между ними. Снаружи потенциометр, как правило, имеет три проводника: два контакта подключены к выводам резистора, а третий (в центре) подключен к скользящему контакту.
Если контакты резистора подключены к источнику напряжения (один к минусу, другой к плюсу), центральный вывод потенциометра будет имитировать делитель напряжения.
Переместите ползунок потенциометра вверх, и выходное напряжение будет равно входному. Теперь переместите ползунок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если установить ручку потенциометра в центральное положение, мы получим половину входного напряжения.
Резистивные датчики
Большинство датчиков, используемых в различных устройствах, являются резистивными. Фоторезистор — это переменный резистор, сопротивление которого изменяется пропорционально количеству падающего на него света. Есть также другие датчики, такие как датчики давления, датчики ускорения и термисторы и т.д.
Кроме того, резистивный делитель напряжения помогает измерять напряжение с помощью микроконтроллера (если присутствует АЦП).
Источники
- https://samelectrik.ru/chto-takoe-delitel-napryazheniya.html
- https://neco-desarrollo.es/%D0%B4%D0%B5%D0%BB%D0%B8%D1%82%D0%B5%D0%BB%D1%8C-%D0%BD%D0%B0%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F
- https://odinelectric.ru/equipment/chto-takoe-delitel-napryazheniya
- https://www.RusElectronic.com/djelitjel-naprjazhjenija/
- https://diodov.net/delitel-napryazheniya-na-rezistorah/
- https://www.joyta.ru/7328-delitel-napryazheniya-na-rezistorax-raschet-onlajn/
Виды и принцип действия
В данной публикации подробно рассмотрен резистивный делитель напряжения. Подразумевается линейность характеристики цепи. В таких схемах упрощен расчет сопротивления для понижения напряжения до необходимого уровня. При подключении источника постоянного тока происходит деление напряжений прямо пропорционально значениям электрических сопротивлений нижнего и верхнего плеча.
Если составить аналогичную схему с конденсаторами, то на вход для поддержания нормальной функциональности придется подать синусоиду. В этом случае также будет выполнено распределение напряжений на элементах с емкостными характеристиками. Однако этот процесс надо рассматривать в динамике, с учетом частоты и соответствующего изменения амплитуды. Аналогичную методику применяют при работе с индуктивными компонентами.
Значения реактивных сопротивлений:
По формулам видно, что сопротивление конденсатора/ катушки обратно (прямо) пропорционально емкости/ индуктивности. Соответственно выбирают значения элементов для деления напряжения.
В представленных примерах принимают бесконечно большим внутреннее сопротивление нагрузки. Для реальных расчетов пользуются более сложными формулами с поправочными коэффициентами. Учитывают действительные комплексные характеристики цепей.
К сведению. В стабилизаторах напряжения и некоторых иных устройствах сопротивление плеча делителя обладает нелинейными параметрами.
Как рассчитать падение напряжения по длине кабеля по формуле и таблице
При передаче электрического тока возможна неравномерная работа потребителей на различных участках цепи. Причин такого явления может быть несколько, и основной из них является падение напряжения.
Для расчёта напряжения и сопротивления в цепи используются формулы или готовые онлайн калькуляторы.
Через силу тока и сопротивление
Значение | Формула |
Базовый расчёт напряжения на участке цепи | U=I/R, где I — сила тока в Амперах, а R — сопротивление в Омах |
Определение напряжения в цепи переменного тока | U=I/Z, где Z — сопротивление в Омах, измеренное по всей протяженности цепи |
Закон Ома имеет исключения для применения:
- При прохождении токов высокой частоты происходит быстрое изменение электромагнитных полей. При расчёте высокочастотных цепей следует учитывать инерцию частиц, которые переносят заряд.
- При работе цепей в условиях низких температур (вблизи абсолютного нуля) у веществ может возникать свойство сверхпроводимости.
- Нагретый проходящими токами проводник является причиной возникновения переменного сопротивления.
- При нахождении под воздействием высокого напряжения проводников или диэлектриков.
- Во время процессов, проходящих в устройствах на основе полупроводников.
- При работе светодиодов.
Через мощность и силу тока
При известной мощности потребителей и силе тока напряжение высчитывается по формуле U=P/I, где P — мощность в Ваттах, а I — сила тока в Амперах.
При расчётах в цепях переменного тока используется формула иного вида: U=(P/I)*cosφ, где cosφ — коэффициент мощности, зависит от характера нагрузки.
При использовании приборов с активной нагрузкой (лампы накаливания, приборы с нагревательными спиралями и элементами) коэффициент приближается к единице. При расчётах учитывается возможность наличия реактивного компонента при работе устройств и значение cosφ считается равным 0,95. При использовании устройств с реактивной составляющей (электрические двигатели, трансформаторы) принято считать cosφ равным 0,8.
Для проверки расчётов рекомендуется сравнивать результат со стандартным напряжением, которое равняется 220 Вольт для однофазной сети и 380 Вольт — для трёхфазной.
Через работу и заряд
Методика расчёта используется в лабораторных задачах и на практике не применяется.
Формула имеет аналогичный закону Ома вид: U=A/q, где A — выполненная работа по перемещению заряда в Джоулях, а q — прошедший заряд, измеренный в Кулонах.
Расчёт сопротивления
При работе проводник создает препятствие течению электрического тока, которое называется сопротивлением. При электротехнических расчетах применяется понятие удельного сопротивления, которое измеряется в Ом*м.
Значение | Формула |
Расчет сопротивления одного элемента | R=U/I, где U — напряжение в Вольтах, а I — сила тока в Амперах |
Расчет для однородного проводника | R=(ρ*l)/S, где ρ — значение удельного сопротивления (Ом*м, берётся из таблиц значений), l — длина отрезка проводника (метры), а S — площадь поперечного сечения (м2) |
Последовательное подключение
При последовательном соединении выход элемента связан со входом следующего. Общее сопротивление находится при помощи расчётной формулы: R=R1+R2+…+Rn, где R=R1+R2+…+Rn — значения сопротивления элементов в Омах.
Параллельное подключение
Параллельным называется соединение, при котором оба вывода одного элемента цепи соединены с соответствующими контактами другого. Для параллельного подключения характерно одинаковое напряжение на элементах. Ток на каждом элементе будет пропорционален сопротивлению.
Общее сопротивление высчитывается по формуле: 1/R=1/R1+1/R2+…+1/Rn.
В реальных схемах электропроводки применяется смешанное соединение. Для расчёта сопротивления следует упростить схему, просуммировав сопротивления в каждой последовательной цепи. Затем схему уменьшают путём расчёта отдельных участков параллельного соединения.
Потери напряжения
Потеря напряжения представляет собой расход электрической энергии на преодоление сопротивления и нагревание проводов.
Падение напряжения происходит при работе различных электронных компонентов, например, диодов. Складывается оно из суммы порогового напряжения p-n перехода и проходящего через диод тока, умноженного на сопротивление.
При прохождении тока через резистор также наблюдается падение напряжения. Этот эффект используется для снижения напряжения на отдельных участках цепей. Например, для использования приборов рассчитанных на низкое напряжение в цепях с высоким значением напряжения.
Последовательное включение сопротивления
На схеме приведен пример последовательного включения резистора, который вызывает падение напряжения на лампе с 12 до 7 Вольт. На этом принципе построены регуляторы интенсивности освещения (диммеры).
При эксплуатации проводки с длиной до 10 метров потерями напряжения можно пренебречь.
Потеря напряжения на резисторе и способы замера показаны в видео от канала «Радиолюбитель TV».
К чему приводит потеря напряжения
Потери напряжения в кабельной системе являются причинами ряда негативных явлений:
- неполноценная и некорректная работа потребителей;
- повреждение и выход из строя оборудования;
- понижение мощности и крутящего момента электродвигателей (особенно заметное в момент пуска);
- неравномерное распределение тока между потребителями на начальном участке и в конце цепи;
- из-за работы ламп на неполном накале происходит неполное использование мощности тока, что ведет к потерям электроэнергии.
От чего зависит потеря
Потеря напряжения в цепях переменного и постоянного напряжения имеет зависимость от силы тока и сопротивления проводника. При увеличении указанных параметров потери напряжения возрастают. Кроме того, на потерю оказывает влияние конструкция кабелей. Плотность прижатия и степень изоляции проводников в кабеле превращают его в конденсатор, который формирует заряд с ёмкостным сопротивлением.
Потеря напряжения на диодах зависит от типа материала. При использовании германия значение лежит в пределах 0,5-0,7 вольта, на более дешевых кремниевых значение увеличивается и достигает 0,7-1,2 вольта. При этом падение не зависит от напряжения в цепи, а зависит только от силы тока.
К основным причинам потерь тока в магистралях относят:
- При прохождении тока происходит нагрев проводника и дополнительное формирование ёмкостного сопротивления, являющегося частью реактивного. При возникновении реактивной нагрузки возникает эффект неполной реализации энергии, частичного отражения от нагрузки и возникновения циркулирующих паразитных токов.
- При больших реактивных сопротивлениях возникают скачки напряжения и силы тока, а также дополнительный разогрев проводки.
- Индуктивная мощность, возникающая при работе обмоток трансформаторов.
Ещё одной причиной падения напряжения на линиях является воровство электроэнергии.
В бытовых условиях потери напряжения зависят от ряда факторов:
- затраты энергии на нагрев проводки из-за повышенного потребления;
- плохой контакт на соединениях;
- емкостный и индуктивный характер нагрузки;
- применение устаревших потребителей.
Причины снижения напряжения изложены в видео от канала ElectronicsClub.
Допустимые значения
Значение потери напряжения относится к регламентированным значениям и нормируется несколькими правилами и инструкциями ПУЭ (Правила устройства электроустановок).
Источник: https://razvodka.net/wiring/napryazhenie-formula-7232/
Расчет делителя напряжения на резисторах
В простейшей схеме применяют два резистора. При необходимости количество компонентов увеличивают для обеспечения ступенчатой регулировки. Чтобы рассчитать делитель напряжения, калькулятор онлайн использовать не обязательно. Приведенная ниже подробная инструкция поможет получить точный результат собственными силами за несколько минут.
Формула делителя напряжения
Для примера взяты определенные значения:
- Входного постоянного напряжения (Uвх) – 20 Вольт;
- Сопротивления резисторов R1 и R2 – 20 и 50 кОм, соответственно.
Уменьшение входного напряжения в два раза получится при равных значениях сопротивлений резисторов. Для настоящего примера придется рассчитать пропорцию, пользуясь формулой закона Ома:
Подставив исходные значения, несложно узнать силу тока, протекающего по данной последовательной цепи:
20/ (20 000 + 50 000) = 0,000286 А
На отдельных элементах падения напряжения составят:
- UR1 = 0,000286 * 20 000 = 5,72 V;
- UR2 = 0,000286 * 50 000 = 14,3 V.
Для непосредственного расчета напряжения на рабочем плече можно пользоваться формулой:
UR2 = Uвх * R2/ (R1+R2)
Расчет делителя напряжения калькулятором онлайн
Соответствующие программы предлагают посетителям «Паяльник» и другие специализированные сайты бесплатно и без регистрации. В стандартной форме заполняют «окошки» с напряжением на входе и выходе. После подтверждения автоматически выполняется расчет с отображением значений электрических сопротивлений резисторов и рассеиваемых мощностей.
Как понятно из примера, основные формулы не отличаются повышенной сложностью. Однако автоматизированный расчет делителя напряжения на резисторах онлайн (online) позволяет выполнять многократные теоретические эксперименты с минимальными затратами времени. Такой инструмент пригодится для точного определения основных параметров делителя.
Таблица расчетов
Входное напряжение Uвх, V | Эл. сопротивление, Ом | Рассеиваемая мощность, Вт | Напряжение на выходе Uвых, V | ||
R1 | R2 | R1 | R2 | ||
12 | 1000 | 2000 | 0,016 | 0,032 | 8 |
12 | 50000 | 4545 | 0,00242 | 0,00022 | 1 |
12 | 50000 | 550000 | 0,00002 | 0,00022 | 11,5 |
12 | 100 | 200 | 0,16 | 0,32 | 8 |
Приведенные цифры демонстрируют, что для существенного уменьшения Uвых сопротивление R1 должно быть значительно больше R2. Обратные пропорции применяют для примерного равенства напряжений на входе и выходе.
Совокупные потери в цепи определяют по рассеиваемой мощности. Чем меньше сопротивление, тем сильнее ток. Для самостоятельных расчетов пользуются формулой:
Схема делителя напряжения на резисторах
Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.
Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.
Применение
Использование такой схемотехники на практике демонстрируют следующие примеры. Для расчетов электрических параметров без учета сопротивления нагрузки подойдут рассмотренные выше ручные и автоматизированные методики.
Потенциометры
Если резистор оснастить ползунком и соответствующим приводом, сопротивления можно будет менять плавно. Это решение позволяет точнее менять напряжения на выходе, по сравнению с дискретными схемами. Главный недостаток – усложнение конструкции, что, кроме удорожания, снижает надежность. Приходится обеспечивать герметичность рабочей зоны для исключения загрязнения и предотвращения коррозийных процессов.
Резистивные датчики
В этом варианте пользуются способностью некоторых материалов увеличивать/ уменьшать электрическое сопротивление под воздействием температуры, светового потока, других внешних воздействий. Созданный на основе этих принципов датчик устанавливают в плечо делителя. По уровню напряжения на выходе контролируют изменение соответствующих параметров.
Цепи обратной связи в усилителях
Таким решением обеспечивают необходимый коэффициент усиления. На представленной ниже схеме этот параметр не будет никогда ниже единицы. Для повышения уровня преобразования увеличивают значение сопротивления R2 по отношению к R1.
Простейшие электрические фильтры
Для фильтрации заменяют конденсатором резисторы R1 или R2. В первом варианте устройство беспрепятственно пропускает высокочастотные составляющие. При снижении частоты до определенного уровня реактивное сопротивление увеличивается, препятствует прохождению тока. Аналогичным образом делают изменения в нижнем плече делителя с целью отсечения низких частот.
Усилитель напряжения
Переменным резистором изменяют уровень сигнала для получения необходимой громкости звучания. В таких устройствах применяют элементы с логарифмической характеристикой изменения сопротивления, что хорошо соответствует естественному механизму восприятия человеческими органами слуха.
Параметрический стабилизатор напряжения
В таких схемах нижнее плечо делителя можно создать с применением стабилитрона. Его вольтамперные характеристики выбирают таким образом, чтобы выходное напряжение сохраняло нужное значение при изменении входных параметров.
Применение делителя напряжения на резисторах
В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.
Потенциометры
Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.
Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.
Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.
Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.
Резистивные датчики
Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.
Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).
Пример работы делителя напряжения на фоторезисторе.
Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.
Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.
21 комментарий
Короче,делитель напряжения — это следящая ( сравнивающая ) цепочка в системах автоматического регулирования. Её можно увидеть в регуляторах напряжеия генераторов.
Отличная статья, жаль, что про рассеиваемую мощность не сказано ни слова.
спасибо,понравилось.вопрос-схема где показаны способы присоединения делителей правый(внизу) измеряют снимаемое (Uout) c Uout и минуса входящего?
Просто и понятно описано, чтобы понять даже ребенку.
За калькуляторы отдельное спасибо — очень удобно!
Увы. Врет калькулятор безбожно! Пытался рассчитать делитель с 6В на 2.5В. Жаль нельзя скриншот вставить. Результаты: По формуле 1: R1 = 4.8K, R2 = 22K, Vin = 6В, Vout = 4.4В. (Значения резисторов взяты из результатов формулы 3) По формуле2: Vin = 6В, Vout = 2.5В, R1+R2 = 26,4K. Результат: R1 = 666,667, R2 = 3,333K. В сумме ну никак не 26К, которые в исходных данных забиты. По формуле3: Vin=6B, Vout = 2,5B, R2=22K. Результат: R1 = 4,4K. (при расчете вручную 30800) Т.е. результаты ну совсем рядом не стояли. А по идее формулы должны сходные результаты давать. Кроме этого, в формуле 1. R1 указано 4.8К, при этом Vout = 4.4В. Если указать R1 4.84, то результат уже 1.245. Добавили 0.04К, а напряжение упало аж в 4 раза? А если добавить еще 0.004К, то на выходе уже 152 мВ. Т.е. в 10 раз меньше предыдущего. В общем не фонтан.
Читайте примечание внизу калькулятора…
вполне приличный калькулятор.спасибо.
Спасибо за отличный и удобный калькулятор!
Рассчитать резистор R2 для выходного напряжения (Uout) и резистора R1-добавить для удобства расчетов
смысла формулы не пойму , почему в делителе нужно умножать именно на R2, Ток течет от плюса к минусу чисто условно, он с таким же успехом идет и наоборот, Впечатление , что формула хоть и верная но притянута за уши .
При умножении на R1 ты вычислишь разницу напряжений Uin-Uout
А как будет влиять на систему нагрузка? Она снизит сопротивление цепи.
Без учета нарузки это сферический конь в вакууме.
Сама идея создать калькуляторы хорошая. Только вот изначально необходимо вводить условие нагрузки. Без этого такие калькуляторы совершенно бессмысленные, и годятся разве что для демонстрации закона Ома. И хорошо бы сделать калькулятор на несколько коэффициентов деления, например 1:1 — 1:10 — 1:100 — 1:1000, и конечно же с условием входного сопротивления нагрузки. И в этом же калькуляторе должны быть строки для отображения мощности рассеяния резисторов делителя. И при этом необходимо ещё учитывать температуру резисторов. Собственно, все проекты начинаются с задания диапазона рабочих температур. А иначе при работе все эти резисторы перекосит по сопротивлению напрочь. Вобщем, в таком виде это не калькуляторы, а бессмысленные игрушки.
Ограничения в применении
Из приведенных в таблице примеров расчетов хорошо видно, как значительно увеличиваются потери при уменьшении сопротивления цепи. Энергия расходуется впустую для нагрева окружающей среды. При большой мощности рассеивания приходится использовать принудительные системы охлаждения, пассивные радиаторы.
В приведенных расчетах не учитывалась нагрузка. Если добавить соответствующее реальным условиям сопротивление, образуются дополнительные потери в параллельной цепи.
На первой части рисунка изображен типовой делитель, обеспечивающий выходное напряжение 5 V. При потреблении тока 0,01 А сопротивление нагрузки составит 0,5 кОм. Пользуясь формулой расчета для параллельной цепи, несложно выяснить суммарное значение R = 1/(1/R2 + 1/Rнагрузки) = 0,25 кОм. Это добавление уменьшит плановое значение Uвых до 3,46 V.
Уменьшением R2 можно снизить вредное влияние на выходное напряжение (4,75 V). Однако такой способ, приведенный на второй части рисунка, сопровождается значительными потерями энергии. Ток будет проходить по участку с меньшим сопротивлением, не выполняя полезные функции. В данном примере необходимо выбрать R1, рассчитанный на мощность не менее 2 Вт, чтобы обеспечить надежную работу устройства.
Делитель напряжения. Расчет делителя напряжения.
Делитель напряжения, одна из широко используемых схем соединения резисторов. Делитель напряжения позволяет уменьшить выходное напряжение. Например, на вход делителя подается 12 Вольт, а на выходе 3 Вольта, или сколько нужно, но не больше входного напряжения делителя. Схема соединения резисторов, о которой мы говорим, может использоваться только для слаботочной нагрузки, чуть позже я объясню почему. Вот собственно и сама схема делителя:
Делитель напряжения вы все ни один раз видели, например, регулятор громкости. Регулятором громкости является переменный резистор, соединенный по схеме потенциометра. Потенциометр, можно представить как два резистора, соединённых последовательно, при вращении рукоятки один резистор уменьшает свое сопротивление, другой увеличивает.
В делителе напряжения, входное напряжение полностью падает на двух резисторах. Например, входное напряжение 40 Вольт и если на одном резисторе падает 3 Вольта, то на другом 37 Вольт.
Расчет делителя напряжения.
Сразу скажу одно правило, ток, протекающий через резистор R1 и R2 должен быть как минимум в 10 раз больше, чем ток нагрузки (иначе будет просадка напряжения на выходе). Например, если к нашему девайсу будет подсоединена лампа, потребляющая ток 40 мА, то делитель нужно рассчитывать так, чтобы ток, текущий через резисторы R1 и R2 был минимум 400 мА (в 10 и более раз больше).
И еще один нюанс. Ток делителя не только должен быть больше тока нагрузки в 10 раз, но и должен быть меньше тока, выдаваемого источником тока. Вот пример, мы посадили на выход делителя напряжения лампу, потребляющую 200 мА, соответственно ток через делитель потечет как минимум в 10 раз больше (2 Ампер), но если источник тока у нас рассчитан выдавать 1 Ампер, то он просто напросто не вытянет и сгорит, либо сработает защита.
Поэтому есть правило. При расчете делитель напряжения нужно рассчитывать так, чтобы ток через него был как минимум в 10 раз больше тока нагрузки и меньше максимального тока источника.
Отсюда делитель напряжения используют для слаботочных нагрузок.
Входной ток (ток делителя) ищется по такой формуле:
Например, у меня входное напряжение 12 Вольт (10 Ампер), мне нужен делитель напряжения, у которого на выходе нагрузка напряжением 3 Вольта и током потребления 20 мА (зацеплю светодиод).
Ток делителя Iвх должен быть минимум в 10 раз больше тока нагрузки, возьму в 20 раз. Получается
Iвх = 20 мА*20=400мА.
Найдем теперь сумму резисторов R1 и R2 (Rобщ) зная ток, текущий через них 0,4 Ампер и напряжение на них 12 Вольт. Rобщ=12 Вольт/0,4 Ампер = 30 Ом.
Далее нахожу номинал резистора R2 по следующей формуле:
R2 = (3 Вольта*30 Ом)/12 Вольт = 7,5 Ом.
Теперь нахожуу R1, R1 = Rобщ – R2 = 30 – 7,5 = 22,5 Ом.
Давайте проверим по этой формуле:
Iвх = 3 Вольт / 7,5 Ом = 0,4 Ампер.
Iвх = 12 Вольт / 30 Ом = 0,4 Ампер.
Рассчитаем мощность резисторов.
Напряжение на R2 = 3 Вольт, значит напряжение на R1 = Uвх-Uвых = 9 Вольт (я уже говорил, если на одном падает 3 Вольта, то на втором резисторе делителя падает остальное напряжение).
Мощность ищется по следующей формуле:
P1 = 9 Вольт* 0,4 Ампер = 3,6 Вт (из стандартного ряда 5 Вт);
P2 = 3 Вольт* 0,4 Ампер = 1,2 Вт (из стандартного ряда 2 Вт);
Вот еще несколько формул, вы их можете использовать для расчета делителя напряжение в зависимости от того, какими известными значениями вы владеете.
- Проверка расчета практически.
При расчете мы получили следующие номиналы резисторов, R1 = 22,5 Ом (из стандартного рядя 22 Ом), R2 = 7,5 Ом.
По мощности у меня оба резистора 2 Вт, поэтому R1 у меня сильно греется.
Входное напряжение делителя 12 Вольт. Напряжение, которое падает на R1 = 22 Ом почти 9 Вольт. Напряжение, которое падает на R2 = 7,5 Ом (наше выходное напряжение делителя) = 3 Вольта. Ток, текущий через R1 и R2 (входной ток делителя) = 430 мА. Светодиод загорается и горит в нормальном режиме, не перегорая.
Если пренебрегать погрешностями резисторов и прибора, то расчет верен.
«Маленькие хитрости». Часть 4.
Формулы для радиолюбительских расчетов.
Каждый уважающий себя радио-мастер обязан знать формулы для расчета различных электрических величин. Ведь при ремонте электронных устройств или сборке электронных самоделок очень часто приходится проводить подобные расчеты. Не зная таких формул очень сложно и трудоемко, а порой и невозможно справиться с подобного рода задачей!
Как рассчитать емкость конденсатора, как рассчитать сопротивление резистора или узнать мощность устройства – в этом помогут формулы для радиолюбительских расчетов.
Первое, что нужно усвоить – ВСЕ ВЕЛЕЧИНЫ В ФОРМУЛАХ УКАЗЫВАЮТЬСЯ В АМПЕРАХ, ВОЛЬТАХ, ОМАХ, МЕТРАХ И КИЛОГЕРЦАХ.
Закон Ома.
Известный из школьного курса физики ЗАКОН ОМА. На нем строится большинство расчетов в радиоэлектронике. Закон Ома выражается в трех формулах:
I=U/R
U=IR
R=U/I
Где: I – сила тока (А), U – напряжение (В), R– сопротивление, имеющееся в цепи (Ом).
Теперь рассмотрим на практике применение формул в радиолюбительских расчетах.
Как рассчитать сопротивление гасящего резистора.
Сопротивление гасящего резистора рассчитывают по формуле: R=U/I
Где: U – излишек напряжения, который необходимо погасить (В), I – ток потребляемый цепью или устройством (А).
Как рассчитать мощность гасящего резистора.
Расчет мощности гасящего резистора проводят по формуле: P=I2R
Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).
Как рассчитать напряжение падения на сопротивлении.
Напряжение падения на сопротивлении можно рассчитать по формуле: Uпад.=RI
Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).
Как рассчитать ток потребляемый устройством или цепью.
Рассчитать ток потребляемый устройством или цепью можно по формуле: I=P/U
Где P– мощность устройства (Вт), U– напряжение питания устройства (В).
Как рассчитать мощность устройства в Вт.
Рассчитать мощность устройства в Вт можно по формуле: P=IU
Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).
Как рассчитать длину радиоволны.
Рассчитать длину радиоволны можно по формуле: ƛ=300000/ƒ
Где ƒ-частота в килогерцах ƛ- длинна волны в метрах.
Как рассчитать частоту радиосигнала.
Частоту радиосигнала можно рассчитать по формуле: ƒ=300000/ƛ
Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.
Как рассчитать номинальную выходную мощность звуковой частоты.
Рассчитать номинальную выходную мощность звуковоспроизводящего устройства (усилитель, проигрыватель и т.п.) можно по формуле: P=U2вых./ Rном.
Где U2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.
И в завершении еще несколько формул. По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях, когда возникает необходимость в параллельном или последовательном их соединении.
Как рассчитать сопротивление двух параллельно включенных резисторов.
Расчет соединенных параллельно двух резисторов производят по формуле: R=R1R2/(R1+R2)
Где R1 и R2 — сопротивление первого и второго резистора соответственно (Ом).
Как рассчитать сопротивление более двух включенных параллельно резисторов.
Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле: 1/R=1/R1+1/R2+1/Rn…
Где R1, R2, Rn… — сопротивление первого, второго и последующих резисторов соответственно (Ом).
Как рассчитать емкость включенных параллельно двух или более конденсаторов.
Расчет емкости соединенных параллельно нескольких конденсаторов проводят по формуле: C=C1+ C2+Cn…
Где C1 , C2 и Cn– емкость первого, второго и последующих конденсаторов соответственно (мФ).
Как рассчитать емкость включенных последовательно двух конденсаторов.
Расчет емкости двух соединенных последовательно конденсаторов проводят по формуле: C=C1 C2/C1+C2
Где C1 и C2 – емкость первого и второго конденсаторов соответственно (мФ).
Как рассчитать емкость включенных последовательно более двух конденсаторов.
Расчет емкости включенных последовательно более чем двух конденсаторов проводят по формуле: 1/C=1/C1+1/C2+1/Cn…
Где C1, C2 и Cn… — емкость первого, второго и последующих конденсаторов (мФ).
СЛЕДУЮЩИЙ МАТЕРИАЛ: Виртуальный осциллограф
Рекомендуем посмотреть:
Программы для радиолюбительских расчетов и измерений
Справочники по радиоэлектронике
Калькулятор для расчета делителя напряжения
Делитель напряжения используется в электрических цепях, если необходимо понизить напряжение и получить несколько его фиксированных значений. Состоит он из двух и более элементов (резисторов, реактивных сопротивлений). Элементарный делитель можно представить как два участка цепи, называемые плечами. Участок между положительным напряжением и нулевой точкой – верхнее плечо , между нулевой и минусом – нижнее плечо .
Делитель напряжения на резисторах может применятmся как для постоянного, так и для переменного напряжений. Применяется для низкого напряжения и не предназначен для питания мощных машин. Простейший делитель состоит из двух последовательно соединенных резисторов:
На резистивный делитель напряжения подается напряжение питающей сети U, на каждом из сопротивлений R1 и R2 происходит падение напряжения. Сумма U1 и U2 и будет равна значению U.
В соответствии с законом Ома (1):
Падение напряжения будет прямо пропорционально значению сопротивления и величине тока. Согласно первому закону Кирхгофа, величина тока, протекающего через сопротивления одинакова. С чего следует, что падение напряжения на каждом резисторе (2,3):
Тогда напряжение на всем участке цепи (4):
Отсюда определим, чему равно значение тока без включения нагрузки (5):
Если подставить данное выражение в (2 и 3), то получим формулы расчета падения напряжения для делителя напряжения на резисторах (6, 7):
Необходимо упомянуть, что значения сопротивлений делителя должны быть на порядок или два (все зависит от требуемой точности питания) меньше, чем сопротивление нагрузки. Если же это условие не выполняется, то при приведенном расчете подаваемое напряжение будет посчитано очень грубо.
Для повышения точности необходимо сопротивление нагрузки принять как параллельно подсоединенный резистор к делителю. А также использовать прецизионные (высокоточные) сопротивления.
Онлайн подбор сопротивлений для делителя
Пусть источник питания выдает 24 В постоянного напряжения, примем, что величина сопротивления нагрузки переменная, но минимальное значение равно 15 кОм. Необходимо рассчитать параметры резисторов для делителя, выходное напряжение которого равно 6 В.
Таким образом, напряжения: U=24 B , U 2=6 В; сопротивление резисторов не должно превышать 1,5 кОм (в десять раз меньше значения нагрузки). Принимаем R 1=1000 Ом, тогда используя формулу (7) получим:
выразим отсюда R2 :
Зная величины сопротивления обоих резисторов, найдем падение напряжения на первом плече (6):
Ток, который протекает через делитель, находится по формуле (5):
Схема делителя напряжения на резисторах рассчитана выше и промоделирована:
Использование делителя напряжения очень неэкономичный, затратный способ понижения величины напряжения, так как неиспользуемая энергия рассеивается на сопротивлении (превращается в тепловую энергию). КПД очень низкий, а потери мощности на резисторах вычисляются формулами (8,9):
По заданным условиям, для реализации схемы делителя напряжения необходимы два резистора:
1. R1=1 кОм, P1=0,324 Вт. |
2. R2=333,3 Ом, P2=0,108 Вт. |
Полная мощность, которая потеряется:
Делитель напряжения на конденсаторах применяется в схемах высокого переменного напряжения, в данном случае имеет место реактивное сопротивление.
Сопротивление конденсатора рассчитывается по формуле (10):
где С – ёмкость конденсатора, Ф; |
f – частота сети, Гц. |
Исходя из формулы (10), видно, что сопротивление конденсатора зависит от двух параметров: С и f . Чем больше ёмкость конденсатора, тем сопротивление его ниже (обратная пропорциональность). Для ёмкостного делителя расчет имеет такой вид (11, 12):
Еще один делитель напряжения на реактивных элементах – индуктивный, который нашел применение в измерительной технике. Сопротивление индуктивного элемента при переменном напряжении прямо пропорционально величине индуктивности (13):
где L – индуктивность, Гн. |
Падение напряжения на индуктивностях (14,15):
Как работает делитель напряжения
Делитель напряжения это устройство, осуществляющее регулировку выходного напряжения по отношению значения входного напряжения, в соответствии с коэффициентом передачи. То есть, из большего значения получается меньшее, а само напряжение бывает постоянным или переменным. Самая простая схема делителя напряжения состоит как минимум из двух сопротивлений. Если их сопротивления равны между собой, то и падения напряжения будут одинаковыми. Поэтому, по закону Ома напряжение на выходе прибора будет ровно в два раза ниже, чем на входе. В других случаях для расчетов падения напряжений используются формулы.
Основной функцией делителя напряжения в электрических цепях является снижение напряжения и получение нескольких его значений с фиксированными показателями на различных участках. Его основой служат резисторы или реактивные сопротивления в количестве два и более элементов.
Простейший делитель представляется в виде двух участков цепи, называемых плечами. Верхним плечом считается участок между нулевой точкой и положительным напряжением, а нижним – участок между нулевой точкой и минусом. После того как определены исходные данные, можно сделать самый простой расчет делителя напряжения.
В качестве примера рассматриваются два резистора, соединенные последовательно. К ним подается напряжение U, которое может быть переменными или постоянным. После этого в действие вступает закон Ома, когда при последовательном соединении резисторов, общее сопротивление составит сумму их номиналов. В виде формы это будет выглядеть следующим образом: I = U/Rобщ, в которой Rобщ = R1+R2. Следовательно, I = U/(R1+R2).
Калькулятор делителя напряжения
Разделитель напряжения представляет собой схему, используемую для создания напряжения, которое меньше или равно входному напряжению.
Выходы
Выходное напряжение (V out )
Как найти выходное напряжение цепи делителя
Два делителя напряжения резистора являются одной из наиболее распространенных и полезных схем, используемых инженерами. Основная цель этой схемы заключается в уменьшении входного напряжения до более низкого значения в зависимости от отношения двух резисторов. Этот калькулятор помогает определить выходное напряжение схемы делителя с учетом входного (или источника) напряжения и значений резисторов. Обратите внимание на то, что выходное напряжение в реальных схемах может быть различным, поскольку резистор и сопротивление нагрузки (при подключении выходного напряжения) становятся факторами.
Уравнение
$$ V_ $$ = Выходное напряжение. Это уменьшенное напряжение.
$$ V_ $$ = Входное напряжение.
$$ R_ $$ и $$ R_ $$ = значения резистора. Отношение $$ frac > + R_ > $$ определяет масштабный коэффициент.
Приложения
Поскольку делители напряжения довольно распространены, их можно найти в ряде приложений. Ниже приведены лишь некоторые из мест, где эта схема найдена.
потенциометры
Возможно, наиболее распространенной схемой делителя напряжения является то, что используется потенциометр, который является переменным резистором. Схематическое изображение потенциометра показано ниже:
«Горшок» обычно имеет три внешних контакта: два являются концами резистора, а один подключен к рычагу стеклоочистителя. Стеклоочиститель разрезает резистор пополам и перемещает его, регулируя соотношение между верхней половиной и нижней половиной резистора. Соедините два внешних выводы к напряжению (вход) и ссылку (земля) со средним (стеклоочистители штифтом) в качестве выходного контакта и вы сам делитель напряжения.
Уровневые сдвиги
Другая область, в которой используются делители напряжения, – это когда напряжение должно быть выровнено. Наиболее распространенным сценарием является взаимодействие сигналов между датчиком и микроконтроллером с двумя разными уровнями напряжения. Большинство микроконтроллеров работают при напряжении 5 В, в то время как некоторые датчики могут принимать только максимальное напряжение 3, 3 В. Естественно, вы хотите выровнять напряжение от микроконтроллера, чтобы избежать повреждения датчика. Пример схемы показан ниже:
Схема выше показывает схему делителя напряжения, включающую резистор 2 кОм и 1 кОм. Если напряжение от микроконтроллера составляет 5 В, то пониженное напряжение на датчик рассчитывается как:
Этот уровень напряжения теперь безопасен для работы датчика. Обратите внимание, что эта схема работает только для выравнивания напряжений и не выравнивания.
Ниже приведены некоторые другие комбинации резисторов, используемые для выравнивания часто встречающихся напряжений:
Комбинация резисторов | использование |
4, 7 кОм и 6, 8 кОм | От 12 В до 5 В |
4, 7 кОм и 3, 9 кОм | 9V до 5V |
3, 6 кОм и 9, 1 кОм | От 12 В до 3, 3 В |
3, 3 кОм и 5, 7 кОм | От 9 В до 3, 3 В |
Чтение резистивного датчика
Многие датчики являются резистивными устройствами и большинством микроконтроллеров считывают напряжение, а не сопротивление. Таким образом, резистивный датчик обычно подключается в цепи делителя напряжения с резистором для взаимодействия с микроконтроллером. Пример установки показан ниже:
Термистор – это датчик, сопротивление которого изменяется пропорционально температуре. Скажем, что термистор имеет сопротивление комнатной температуре 350 Ом. Сопряженное сопротивление выбирается равным 350 Ом.
Когда термистор находится при комнатной температуре, выходное напряжение:
Когда температура увеличивается, сопротивление термистора изменяется до 350, 03 Ом, выход изменяется на:
Такое небольшое изменение напряжения обнаруживается микроконтроллером. Если функция передачи термистора известна, теперь можно рассчитать эквивалентную температуру.
Дальнейшее чтение
Техническая статья – Разделители напряжения и тока: что это такое и что они делают
Учебник – Глава 6 – Цепи Divider и законы Кирхгофа
Учебник – Потенциометр в качестве делителя напряжения
Емкостной делитель напряжения
Простейший емкостной делитель напряжения состоит из двух последовательно соединенных конденсаторов и используется для снижения величины U на отдельных элементах электрической цепи.
Делитель постоянного напряжения на конденсаторах чаще всего применяют многоуровневых инверторов напряжения, широко используемых как на электроподвижном составе, так и в других направлениях силовой электроники.
Главная сложность практического применения такой схемы (и всех подобных схем) заключается в невозможности обеспечения равномерного разряда конденсаторов, вследствие чего напряжения на них будет распределяться не поровну. Чем сильнее разряжен один конденсатор по сравнению с другим (иди с другими), тем большая разница в U будет на них, что наглядно отображает формула:
По этой причине подобные схемы крайне нестабильно работают и обязательно предусматривают узлов подзарядки конденсаторов с целью выравнивания напряжения на последних.
Емкостной делитель напряжения в цепи переменного тока
В радиоэлектронике в большей степени находят применение емкостные делители переменного напряжения.
Конденсатор, как и катушка индуктивности, относится к реактивному элементу, то есть потребляет реактивную мощность от источника переменного тока, в отличие от резистора, который является активным элементов и потребляет исключительно активную мощность.
Реактивный элемент
Здесь следует кратко пояснить разницу между активной и реактивной мощностями. Активная мощность выполняет полезную работу и реализуется только в том случае, когда ток и напряжение направлены в одном направлении и не отстают друг от друга, то есть находятся в одной фазе, что имеет место только на резисторе. На конденсаторе ток опережает напряжение на угол φ = 90°. В результате чего ток напряжение находятся в противофазе, поэтому когда ток имеет максимальное значение напряжение равно нулю, а произведение этих двух величин дают мощность, которая в таком случае равна нулю, так как один из множителей равен нулю. Следовательно, мощность не потребляется.
Аналогичные процессы протекают и в цепи с катушкой индуктивности. Разница лишь в том, что на индуктивности i отстает от u на угол φ = 90°.
Реактивная мощность проявляется только в цепях переменного тока. Она составляет часть полной мощности и определяется по формуле:
Реактивная мощность в отличие от активной, не потребляется нагрузкой, а циркулирует между источником питания и нагрузкой. Поэтому конденсатора и катушка индуктивности являются реактивными элементами, не потребляющими активную мощность и по этой причине они практически не нагреваются.
Расчет сопротивления делителя напряжения на конденсаторах заключается в определении необходимых значений сопротивлений.
Сопротивление конденсатора XC является величиной не постоянной и зависит от частоты переменного тока f и емкости C:
Как видно из формулы, сопротивление снижается с увеличением частоты и емкости. Для постоянного тока, частота которого равна нулю, сопротивление стремится к бесконечности, поэтому, рассматриваемая далее схема емкостного делителя напряжения не применяется постоянном токе.
Для снижения величины uвых, например в два раза, емкости C1 и C2 должны быть равны. Универсальные формулами для определения выходных uвых1 и uвых2 в зависимости от входного и емкостей C1 и C2 имеют вид, аналогичный для резисторных делителей:
Поскольку частота переменного тока для всех конденсаторов одинакова, то формулу можно упростить:
Индуктивный делитель напряжения
В качестве делителей переменного напряжения также, но гораздо реже, применяют катушки индуктивности, которые относятся к реактивным элементам. Однако, в отличие от конденсаторов, которые являются накопителями электрического поля, катушки индуктивности накапливают магнитное поле.
Индуктивное сопротивление зависит от индуктивности L и частоты переменного тока f. С ростом этих параметров сопротивление катушки переменному току возрастает.
XL = 2πfL.
Упрощенный вариант формулы:
Как вы наверняка уже заметили, чтобы рассчитать емкостной делитель напряжения достаточно знать емкости конденсаторов, а индуктивный делитель – индуктивности.
Еще статьи по данной теме
- Делитель напряжения на резисторах
- Инвертор напряжения
- Умножитель напряжения
- Замена электролитического конденсатора
Калькулятор для расчета делителя напряжения
Чтобы задать режим работы транзистора, стабилитрона или операционного усилителя, надо приготовить для них определённое напряжение. Чаще всего этим занимается делитель напряжения — простая схема из двух резисторов. Раньше мне всегда хватало калькуляторов на сайте joyta.ru. Но когда был нужен делитель с подстроечным резистором, приходилось вручную добавлять его сопротивление то к одному, то к другому плечу, чтобы узнать диапазон регулировки. Однажды мне это надоело, и я решил сделать удобный инструмент для расчётов любых делителей.
Получились три таблички в форматах:
Схема делителя напряжения на резисторах
Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.
Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.
«Сложный» делитель (подбор сопротивления, расчёт напряжений)
На первый взгляд эта разновидность делителя кажется сложной, а формулы и вовсе отпугивают. Однако подстроечный резистор, включённый по схеме потенциометра, делает схему очень предсказуемой. Сопротивление R2 всегда постоянно, поэтому ток делителя не меняется, и высчитать диапазон регулировки напряжения очень просто.
Калькулятор построен так, что после расчётов можно распечатать его страницу со всеми результатами. Если вдруг понадобится пересчитать делитель — есть формулы на картинке. Справа висит таблица стандартных номиналов радиодеталей — чтобы вы не кошмарили магазины мифическими резисторами на 77 кОм.
Инструкция: 1. Задать входное напряжение Uвх. 2. Установить R2max и R2.1 в нули. R2.2 обнулится автоматически. 3. Подобрать такие R1 и R3, чтобы Uвых среднее было близким к нужному. 4. Для точной регулировки укажите максимальное сопротивление подстроечного резистора R2max. 5. Калькулятор выдаст диапазон регулировки (Umin, Umax) и текущее значение Uвых. Последнее можно менять, увеличив сопротивление R2.1. 6. В реальную схему вместо потенциометра можно поставить постоянные R2.1 и R2.2 рассчитанных номиналов.
Ещё калькулятор умеет считать напряжение самого простого двухрезисторного делителя. Для этого надо указать значения R1 и R3 при R2max и R2.1 = 0.
Замечание вообще про любые делители напряжения: Ток делителя Iдел должен быть в 10 и более раз больше, чем ток нагрузки. Иначе её сопротивление войдёт в состав R3, R2.2 и собьёт настройку. Поэтому делители используются там, где токи небольшие — до нескольких десятков миллиампер. Если же вы надумали сделать автомобильную зарядку для телефона через делитель — вы погорячились. И резисторы ваши тоже очень быстро разгорячатся на десяти амперах. Не надо так.
Делитель с подстройкой верхнего плеча (расчёт сопротивления, расчёт напряжений)
Здесь нижний вывод подстроечного резистора R2 соединён со средним выводом и выходом делителя, поэтому фактически R2 входит в состав R1 — верхнего плеча.
Этот калькулятор чуть удобнее — он рассчитывает R1 и R2 для заданного выходного напряжения и R3. Не придётся долго перебирать номиналы, чтобы попасть в нужный диапазон напряжений.
Инструкция: 1. Задать входное и выходное напряжения Uвх, Uвых. 2. Установить R1, R2max и R2* в нули. 3. Выбрать R3 из таблицы стандартных номиналов и внести его в графу. Калькулятор выдаст расчётное значение суммы R1 и R2. 4. Задать стандартный номинал R1 — меньше, чем сумма R1+R2. 5. Указать максимальное сопротивление подстроечного резистора R2max. Итоговая сумма R1+R2max должна быть больше расчётного значения. Чем ближе R1 к сумме и чем меньше R2, тем уже диапазон регулировки Umin, Umax. 6. В графу R2* можно внести точное значение резистора, чтобы увидеть, какое при этом будет напряжение на выходе Uвых. И для реальной схемы дополнить R1 конкретно этим R2*.
Можно рассчитать и простой делитель на двух резисторах, если указать значения R1 и R3 при R2max и R2* = 0.
Применение делителя напряжения на резисторах
В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.
Потенциометры
Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.
Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.
Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.
Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.
Делитель с подстройкой нижнего плеча (расчёт сопротивления, расчёт напряжений)
Схема наоборот — здесь верхний вывод подстроечного резистора R2 соединён со средним выводом и выходом делителя, поэтому фактически R2 входит в состав R3 — нижнего плеча.
Этот калькулятор считает R1 по заданному выходному напряжению, R2 и R3.
Инструкция: 1. Задать входное и выходное напряжения Uвх, Uвых. 2. Установить R1, R2max и R* в нули. 3. Выбрать R3 из таблицы стандартных номиналов и внести его в графу. Калькулятор выдаст расчётное значение R1. 4. Задать максимальное значение R2max и (опционально) R2*. Чем меньше R2max, тем уже будет диапазон регулировки Umin, Umax. 5. Задать стандартный номинал R1, близкий к рассчитанному. 6. Калькулятор рассчитает Uвых и диапазон регулировки Umin, Umax. 7. В графу R2* можно внести точное значение резистора, чтобы скорректировать Uвых. И для реальной схемы дополнить R3 конкретно этим R2*.
Как и раньше, делитель на двух резисторах можно рассчитать, указав значения R1 и R3 при R2max и R2* = 0.