Урок по физике на тему «СТОРОННИЕ СИЛЫ. ЭДС. ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ.»(10 класс)


Разность потенциалов

Напряжение на неоднородном участке цепи

(где есть сторонние силы) равно сумме ЭДС источника и разности потенциалов на этом участке:

Для однородного участка цепи

, где сторонние силы не действуют,

Т.е. напряжение совпадает с разностью потенциалов на концах участка цепи

.

    Закон Ома для однородного участка
    цепи в интегральной
    и дифференциальной
    форме
    . Сопротивление и его зависимость от температуры. Сверхпроводимость.

Закон Ома для однородного участка
цепи в интегральной
и дифференциальной
форме
Закон Ома для однородного участка цепи: н

емецкий физик Георг Ом экспериментально установил, чтосила тока в цепи прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника:.

Закон Ома в дифференциальной форме (закон Ома для плотности тока).

Закон Ома в форме относится ко всему проводнику. Представим закон Ома в дифференциальной (т.е. относящейся к элементу тока длины
dl
) форме. Некоторая точка внутри проводника характеризуется вектором плотности тока , напряженностью электрического поляи свойствами материала проводника, т.е. удельным сопротивлением. Выделим мысленно малый объем вблизи рассматриваемой точки и подставимв закон Ома, получим:
,
здесь — разность потенциалов между сечениями
dS
отстоящими на расстоянии
dl
. Следовательно,.

Учтем, что — напряженность электростатического поля;- плотность электрического поля;- удельная электрическая проводимость.

Тогда из формулы (20) следует закон Ома в дифференциальной форме

: .

Пример сторонних сил

Простейшая схема источника сторонней силы (источника тока), которая имеет механическое происхождение, представлена на рис.1.

Рисунок 1. Схема источника сторонней силы. Автор24 — интернет-биржа студенческих работ

Готовые работы на аналогичную тему

Курсовая работа Сторонние силы и ЭДС 400 ₽ Реферат Сторонние силы и ЭДС 240 ₽ Контрольная работа Сторонние силы и ЭДС 250 ₽

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Пусть между электродами А и В (рис.1) находится электрически нейтральная среда с равным зарядов противоположного знака. Сторонняя сила неэлектрического происхождения перемещает положительные заряды к электроду В (данный электрод заряжается положительно), а отрицательная к электроду А (отрицательно заряженный электрод). Во внешней цепи течет электрический ток. Ток производит работу. Энергия, которая необходима для производства такой работы, сообщается внешними силами, которые тратят ее на разделение зарядов между электродами. Ток внутри источника сторонней силы замыкает ток внешней цепи. Направление электрического тока во внешней цепи — от положительного электрода к отрицательному, внутри источника тока, наоборот. Практической реализацией такой схемы является электростатическая машина.

ЭДС и закон Ома[ | ]

Электродвижущая сила источника связана с электрическим током, протекающим в цепи, соотношениями закона Ома. Закон Ома для неоднородного участка цепи

имеет вид[1]:
φ 1 − φ 2 + E = I R , {\displaystyle \varphi _{1}-\varphi _{2}+{\mathcal {E}}=IR,}
где φ 1 − φ 2 {\displaystyle \varphi _{1}-\varphi _{2}} — разность между значениями потенциала в начале и в конце участка цепи, I {\displaystyle I} — сила тока, текущего по участку, а R {\displaystyle R} — сопротивление участка.

Если точки 1 и 2 совпадают (цепь замкнута), то φ 1 − φ 2 = 0 {\displaystyle \varphi _{1}-\varphi _{2}=0} и предыдущая формула переходит в формулу закона Ома для замкнутой цепи

[1]:
E = I R , {\displaystyle {\mathcal {E}}=IR,}
где теперь R {\displaystyle R} — полное

сопротивление всей цепи.

В общем случае полное сопротивление цепи складывается из сопротивления внешнего по отношению к источнику тока участка цепи ( R e {\displaystyle R_{e}} ) и внутреннего сопротивления самого́ источника тока ( r {\displaystyle r} ). С учётом этого следует:

E = I R e + I r . {\displaystyle {\mathcal {E}}=IR_{e}+Ir.}

Как формулируется закон Ома для замкнутой цепи?

Закон Ома для полной замкнутой цепи формулируется так: сила тока в замкнутой цепи прямо пропорциональна ЭДС в цепи и обратно пропорциональна общему сопротивлению цепи. Под общим сопротивлением подразумевается сумма внешнего и внутреннего сопротивлений.

Интересные материалы:

Как записать длину в математике? Как записать на айфоне телефонный разговор? Как записать телефонный разговор на айфоне 2021? Как записать внутренний звук на андроид? Как записывается координаты вектора? Как записывать дату в Excel? Как запланировать сообщение в телеграмме? Как заполнить место рождения в анкете? Как заполнить первую часть заявки на участие в аукционе? Как заправиться на заправке самообслуживания Татнефть?

Нулевой уровень

Ученики 7-9 класса в задачах иногда встречают понятие ЭДС. И сразу же вопрос: «Что это такое?»

Если вы берете в руки любой источник тока: батарейку (гальванический элемент), блок питания и т.п., – на нем видите, например, надпись «4,5 В». Вы называете это напряжение источника. Но на самом деле это ЭДС – электродвижущая сила. Обозначается ℰ, измеряется в вольтах (В).

Если электрическим сопротивлением источника можно пренебречь (т.е. в условии задачи ничего не говорится про это сопротивление или написано, что источник идеальный), то ЭДС и напряжение источника равны.

Таким образом,

ЭДС – это одна из характеристик источника тока

.

Обычно для решения задач в 7-9 классах этого достаточно.

Определение и физический смысл

Приложение некоторой разности потенциалов между двумя концами проводника создаст перетекание электронов от одного конца к другому. Но этого недостаточно для поддержания потока зарядов в проводнике. Дрейф электронов приводит к уменьшению потенциала до момента его уравновешивания (прекращение тока). Таким образом, для создания постоянного тока необходимы механизмы, непрерывно возвращающие описанную систему в первоначальную конфигурацию, то есть, препятствующие агрегации зарядов в результате их движения. Для этой цели используются специальные устройства, называемые источники питания.

В качестве иллюстрации их работы удобно рассматривать замкнутый контур из сопротивления и гальванического источника питания (батареи). Если предположить, что внутри батареи тока нет, то описанная проблема объединения зарядов остаётся неразрешённой. Но в цепи с реальным источником питания электроны перемещаются постоянно. Это происходит благодаря тому, что поток ионов протекает и внутри батареи от отрицательного электрода к положительному. Источник энергии, перемещающий эти заряды в батарее — химические реакции. Такая энергия называется электродвижущей силой.

ЭДС является характеристикой любого источника энергии, способного управлять движением электрических зарядов в цепи. В аналогии с замкнутым гидравлическим контуром работа источника э. д. с. соответствует работе насоса для создания давления воды. Поэтому значок, обозначающий эти устройства, неотличим на гидравлических и электрических схемах.

Несмотря на название, электродвижущая сила на самом деле не является силой и измеряется в вольтах. Её численное значение равно работе по перемещению заряда по замкнутой цепи. ЭДС источника выражается формулой E=A/q, в которой:

  • E — электродвижущая сила в вольтах;
  • A — работа сторонних сил по перемещению заряда в джоулях;
  • q — перемещённый заряд в кулонах.

Из этой формулы ЭДС следует, что электродвижущая сила не является свойством цепи или нагрузки, а есть способность генератора электроэнергии к разделению зарядов.

Неэлектростатический характер ЭДС[ | ]

Внутри источника ЭДС ток течёт в направлении, противоположном нормальному. Это невозможно без дополнительной силы неэлектростатической природы, преодолевающей силу электрического отталкивания
Как показано на рисунке, электрический ток, нормальное направление которого — от «плюса» к «минусу» то есть от положительного полюса источника тока к отрицательному полюсу, внутри источника ЭДС (например, внутри гальванического элемента) течёт в противоположном направлении. Направление от «плюса» к «минусу» совпадает с направлением электростатической силы, действующей на положительные заряды. Поэтому для того, чтобы заставить ток течь в противоположном направлении, необходима дополнительная сила неэлектростатической природы (центробежная сила, сила Лоренца, силы химической природы, сила со стороны вихревого электрического поля) которая бы преодолевала силу со стороны электростатического поля. Диссипативные силы, хотя и противодействуют электростатическому полю, не могут заставить ток течь в противоположном направлении, поэтому они не входят в состав сторонних сил, работа которых используется в определении ЭДС.

ЭДС индукции[ | ]

Причиной возникновения электродвижущей силы в замкнутом контуре может стать изменение потока магнитного поля, пронизывающего поверхность, ограниченную данным контуром. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

E = − d Φ d t , {\displaystyle {\mathcal {E}}=-{\frac {d\Phi }{dt}},}

где Φ {\displaystyle \Phi } — поток магнитного поля через указанную поверхность. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца). В свою очередь причиной изменения магнитного потока может быть как изменение магнитного поля, так и движение контура в целом или его отдельных частей.

Электродвижущая сила. Закон Ома для полной цепи

Как вы знаете, для существования электрического тока, необходимо наличие электрического поля. Причем, это поле должно постоянно поддерживаться неким источником тока. Сегодня мы поговорим об основной характеристике источника тока, которая называется электродвижущей силой (или, сокращенно, ЭДС). Для начала рассмотрим простой опыт: возьмем два противоположно заряженных шарика и соединим их проводником. В этом случае, в проводнике возникнет электрический ток, но он будет очень кратковременным. Дело в том, что очень скоро произойдет перераспределение заряда, и потенциалы шариков уравняются. Значит, перестанет существовать электрическое поле.

Из этого можно сделать вывод, что для поддержания постоянного тока необходимо наличие неких сил неэлектрического происхождения, чтобы эти силы могли перемещать заряды против поля. Такие силы называются сторонними силами. То есть, сторонние силы — это любые силы, которые действуют на электрические заряды, но при этом не являются силами электрического происхождения

. Например, это могут быть силы, действующие на заряды со стороны магнитного поля — это используется в генераторах.

В батареях или аккумуляторах работу по разделению электрических зарядов выполняют химические реакции.

Еще один аргумент, который мы можем привести — это то, что работа кулоновских сил при перемещении заряда по замкнутому контуру, равна нулю

. А это значит, что какие-то другие силы должны обеспечивать ненулевую работу для поддержания разности потенциалов.

Устройство для поддержания электрического тока, называется источником тока.

В любом источнике тока сторонние силы действуют на заряды, совершая работу против кулоновских сил. Стало быть, характеристикой источника должна быть величина, не зависящая от величины заряда. Эта величина называется электродвижущей силой.
Электродвижущая сила равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру, к величине этого заряда:
Из формулы видно, что электродвижущая сила, как и напряжение, измеряется в вольтах:

Теперь, когда мы познакомились с ЭДС, мы можем перейти к изучению закона Ома для полной цепи. Полной цепью называется замкнутая цепь, включающая в себя источник тока.

Для удобства, мы рассмотрим простейшую электрическую цепь, состоящую только из источника тока, резистора и соединительных проводов:

Как мы уже сказали, источник тока характеризуется ЭДС. Тем не менее, любой источник тока обладает определенным сопротивлением, которое называется внутренним сопротивлением

. Закон Ома для полной цепи представляет собой связь между ЭДС, внутренним и внешним сопротивлением и силой тока в цепи. Для того, чтобы установить эту связь, воспользуемся законом сохранения энергии. Запишем, что работа сторонних сил равна произведению ЭДС источника и величины заряда:

Как вы знаете, каждый участок цепи выделяет то или иное количество теплоты. По закону Джоуля-Ленца, это количество теплоты вычисляется по формуле:

Исходя из закона сохранения энергии, мы можем приравнять это количество теплоты к работе сторонних сил:

Закон Ома для полной цепи звучит так: сила тока в замкнутой цепи равна отношению ЭДС источника к полному сопротивлению цепи:

Вывести закон Ома для полной цепи можно, рассуждая несколько иначе. Как мы знаем, при последовательном соединении полное напряжение цепи равно сумме падений напряжений на всех участках цепи:

Мы видим, что произведение силы тока и сопротивления резистора есть не что иное, как напряжение на этом резисторе. А произведение силы тока и внутреннего сопротивления — это падение напряжения на самом источнике:

Надо сказать, что внутреннее сопротивление источника во многих случаях пренебрежимо мало по сравнению с сопротивлением внешней части цепи. В этом случае, мы можем считать, что напряжение на зажимах источника примерно равно ЭДС (то есть падение напряжения на источнике считается приблизительно равным нулю):

Тем не менее, именно внутренним сопротивлением определяется сила тока в цепи при коротком замыкании. Напомним, что при коротком замыкании, внешнее сопротивление становится почти нулевым, поэтому в цепи резко возрастает сила тока:

Рассмотрим теперь цепь, содержащую несколько последовательно соединенных источников тока.

В этом случае, ЭДС всей цепи равна алгебраической сумме ЭДС отдельных источников.

В таких случаях необходимо выбрать так называемое «направление обхода тока». Это направление выбирается условно (в нашем случае — против часовой стрелки). Тогда, ,поскольку они стремятся вызвать ток в направлении обхода.

А,поскольку они стремятся вызвать ток в направлении, противоположном направлению обхода. Отрицательная ЭДС означает, что сторонние силы внутри источника совершают отрицательную работу. Таким образом, ЭДС нашей цепи будет равна:

В соответствии с правилами последовательного соединения, суммарное сопротивление цепи равно сумме внешнего сопротивления и внутренних сопротивлений всех источников тока:

Пример решения задачи.

Задача.

К источнику тока с внутренним сопротивлением 1 Ом подключили резистор с сопротивлением 15 Ом. После этого в цепь включили амперметр, который показал, что сила тока равна 5 А. Найдите работу сторонних сил внутри источника, совершенную за 2 минуты.


Механическая аналогия электрической цепи

Для лучшего понимания значения источника тока в замкнутой электрической цепи рассмотрим следующую механическую аналогию. На рисунке 2.48 изображен замкнутый контур, состоящий из труб и насоса. Чтобы исключить действие силы тяжести, предположим, что контур расположен горизонтально. Весь контур заполнен жидкостью, например водой. На любом участке горизонтальной трубы жидкость течет за счет разности давлений на концах участка. Жидкость перемещается в сторону уменьшения давления. Но сила давления, появляющаяся вследствие сжатия жидкости, — это вид сил упругости, которые являются потенциальными. Поэтому работа этих сил на замкнутом пути, как и работа кулоновских сил, равна нулю. Следовательно, одни эти силы не могут вызвать длительную циркуляцию жидкости в замкнутом контуре, так как течение жидкости сопровождается потерями энергии вследствие действия сил трения.

Для циркуляции воды необходим насос — аналог источника тока. Крыльчатка этого насоса действует на частички жидкости и создает постоянную разность давлений (напор) на входе и выходе насоса, благодаря чему жидкость и течет по трубам. Роль сторонних сил в насосе играет сила, действующая на воду со стороны вращающейся крыльчатки. Внутри насоса вода течет от участков с меньшим давлением к участкам с большим давлением.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]