Что такое чередование фаз?
Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую. В каждой линии напряжение отличается на 120º от остальных.
Рис. 1. Напряжение в трехфазной сети
Как видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана разница между фазным и линейным напряжением.
Если взять за основу, что из нулевой точки на рисунке а) выходит UA, то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от UA к UB, а за ним к UC. Это означает, что фазы чередуются в порядке A, B, C. Такой порядок чередования считается прямым.
Прямое и обратное чередование фаз
В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.
Рисунок 2: Прямая и обратная последовательность
Обратите внимание, цветовая маркировка определяет последовательность в соответствии их очередностью в алфавите по первым буквам цвета:
- Желтый – первый;
- Зеленый – второй;
- Красный – третий.
На рисунке 2 изображен классический вариант прямой последовательности A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A, C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.
2.7. ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ И ИСПЫТАНИЮ СРЕДСТВ ЗАЩИТЫ, ИСПОЛЬЗУЕМЫХ В ЭЛЕКТРОУСТАНОВКАХ
2.7. Указатели напряжения для проверки совпадения фаз
Назначение, принцип действия и конструкция
2.7.1. Указатели предназначены для проверки совпадения фаз напряжения (фазировки) в электроустановках от 6 до 110 кВ.
2.7.2. Указатели представляют собой двухполюсные устройства, кратковременно включаемые на геометрическую (векторную) разность напряжений контролируемых фаз. При несовпадении фаз этих напряжений (расхождении на определенный угол) указатель подает соответствующий световой (и звуковой) сигнал.
2.7.3. Указатели состоят из двух электроизоляционных трубчатых корпусов, соединенных гибким высоковольтным проводом.
Корпуса могут быть разъемными и неразъемными. Корпуса состоят из рабочих, изолирующих частей и рукояток. Рабочие части содержат электроды-наконечники, узлы, реагирующие на значение напряжения между контролируемыми точками, и элементы индикации.
Рабочие части в месте установки электродов-наконечников не должны иметь резьбовых элементов.
2.7.4. Принцип действия иных конструкций, не содержащих гибкого высоковольтного провода, а также методика их испытаний и правила пользования приводятся в руководствах по эксплуатации.
Эксплуатационные испытания
2.7.5. В процессе эксплуатации механические испытания указателей не проводят.
2.7.6. При электрических испытаниях указателей проводится проверка электрической прочности изоляции рабочих, изолирующих частей и соединительного провода, а также их проверка по схемам согласного и встречного включения.
2.7.7. При испытании изоляции рабочей части напряжение прикладывается между электродом-наконечником и элементом резьбового разъема. Если указатель не имеет резьбового разъема, то вспомогательный электрод для присоединения провода испытательной установки устанавливается на границе рабочей части.
2.7.8. При испытании изолирующей части напряжение прикладывается между элементом ее сочленения с рабочей частью (резьбовым элементом, разъемом и т.п.) и временным электродом, наложенным у ограничительного кольца со стороны изолирующей части.
2.7.9. При испытаниях гибкого провода указателей на напряжение до 20 кВ его погружают в ванну с водой при температуре (25 +/- 15) °C так, чтобы расстояние между местом заделки провода и уровнем воды было в пределах 60 — 70 мм. Напряжение прикладывается между одним из электродов-наконечников и корпусом ванны.
Гибкий провод указателей напряжения 35 — 110 кВ испытывается по аналогичной методике отдельно от указателя. При этом расстояние между краем наконечника провода и уровнем воды должно быть 160 — 180 мм. Напряжение прикладывается между металлическими наконечниками провода и корпусом ванны.
2.7.10. При проверке указателя по схеме согласного включения оба электрода-наконечника подключаются к высоковольтному выводу испытательной установки (рис. 2.2а).
При проверке указателя по схеме встречного включения один из электродов-наконечников подключается к высоковольтному выводу испытательной установки, а другой — к ее заземленному выводу (рис. 2.2б).
При испытаниях напряжение плавно поднимается от нуля до появления четких сигналов. Нормируемые значения напряжения индикации для обеих схем испытаний в зависимости от номинального напряжения электроустановок приведены в табл. 2.6.
Таблица 2.6
НАПРЯЖЕНИЯ ИНДИКАЦИИ УКАЗАТЕЛЕЙ НАПРЯЖЕНИЯ ДЛЯ ПРОВЕРКИ СОВПАДЕНИЯ ФАЗ
┌────────────────────────┬───────────────────────────────────────┐ │ Номинальное напряжение │ Напряжение индикации, кВ │ │ электроустановки, кВ ├───────────────────┬───────────────────┤ │ │по схеме согласного│по схеме встречного│ │ │включения, не менее│включения, не более│ ├────────────────────────┼───────────────────┼───────────────────┤ │6 │ 7,6 │ 1,5 │ │10 │ 12,7 │ 2,5 │ │15 │ 20 │ 3,5 │ │20 │ 28 │ 5 │ │35 │ 40 │ 17 │ │110 │ 100 │ 50 │ └────────────────────────┴───────────────────┴───────────────────┘
2.7.11. Нормы и периодичность электрических испытаний указателей приведены в Приложении 7.
Правила пользования
2.7.12. При работе с указателями применение диэлектрических перчаток обязательно.
2.7.13. Исправность указателя перед применением проверяется на рабочем месте путем двухполюсного подключения к фазе и заземленной конструкции. При этом должны быть четкие световые (и звуковые) сигналы.
2.7.14. При совпадении фаз напряжения на контролируемых токоведущих частях указатель не подает сигналов.
Зачем нужно учитывать порядок фаз?
Последовательность чередования играет значительную роль в таких ситуациях:
- При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
- При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
- При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.
С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.
Как выполнить проверку?
Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.
С помощью фазоуказателя
По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — ФУ-2 .
Рисунок 3: Принципиальная схема работы ФУ-2
Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.
На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.
На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.
С помощью мегаомметра
Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.
Рис. 4: Прозвонка кабеля мегаомметром
Посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.
На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.
По расцветке изоляции жил
Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.
Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.
При помощи мультиметра
Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.
Рис. 5: фазировка мультиметром
Необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута. Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.
Если при подключении щупов к выводам A — A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.
Как и чем определить порядок чередования фаз в трехфазной сети?
При подключении различного оборудования к электросети часто возникает проблема в том, что провода и обозначения фаз могут быть ошибочными, а маркировка фаз утерянной или стертой.
Если подключить оборудование неправильно — возникнет риск серьезных аварий и поломок, поскольку неверный порядок последовательности фаз приводит к тому, что двигатели вращаются в обратную сторону. Чем это чревато на транспорте, на стройках или в крупном промышленном производстве объяснять не стоит.
Для определения последовательности фаз можно применять осциллограф, но это не совсем удобно и не всегда применимо к производственным условиям.
Существуют специальные приборы: индикаторы последовательности чередования фаз, которые бывают электромеханические, электронные и бесконтактные.
Данные приборы имеют множество названий: индикаторы фазовращения, указатели последовательности фаз, индикаторы очередности фаз, индикаторы порядка следования фаз и т.д.., однако суть от этого не изменяется.
Электромеханические индикаторы
Это самые распространенные и простые приборы, которые уже давно применяются и отличаются простотой и наглядностью. Они представляют из себя небольшой трехфазный двигатель с вращающимся диском, по направлению вращения которого можно определить порядок чередования фаз. Самые известные приборы : ЭИ5001 или И517М.
Прибор следует подключить к 3-м фазам и кратковременно нажать на кнопку. Вращение диска покажет правильно ли определен порядок чередования фаз.
Есть одна тонкость — нажатие на кнопку должно быть кратковременным, достаточно 1-2 секунды, чтобы диск начал вращение. Если держать кнопку нажатой слишком долго, то прибор может выйти из строя за счет перегрева.
Более современный электромеханический прибор — 8PK-ST850.
Устроен по принципу предыдущего, однако снабжен штатным проводами, мягким чехлом и неоновыми индикаторами фаз. Если контакта с какой-либо фазой нет — то это будет сразу понятно по отсутствию свечения индикатора данной фазы.
К недостаткам таких приборов следует отнести относительно большие габариты и массу, а также наличие подвижных частей. К достоинствам — высокая помехоустойчивость и практически нулевая вероятность ошибки измерений.
Электронные контактные индикаторы
UT261A — удобный малогабаритный прибор на ЖК индикаторах, позволяющий отслеживать наличие каждой фазы и порядок их чередования.
Прибор не требует внутреннего источника питания, т к питается исследуемым напряжением.
UT261B — электронный прибор , который показывает так же как и предыдущий наличие фаз неоновыми индикаторами и порядок чередования фаз светодиодами. Питание прибора — 9 вольт от батареи Крона.
Особенность прибора — не только определение порядка чередования фаз напряжения, но и порядка чередования обмоток двигателя. Это работает так: прибор подключается к отключенному от сети двигателю. Вал двигателя вращают вручную и при этом светодиоды покажут порядок чередования фаз обмоток — L (левый) или R (правый).
К достоинствам приборов следует отнести простоту использования, малые габариты и массу, отсутствие подвижных частей и вследствие этого большую надежность.
К недостаткам — более высокую чувствительность к помехам и искажениям в сети по сравнению с электромеханическими приборами. В случае очень сильных помех прибор может давать неопределенные показания, однако уровень помех или искажений должен быть очень большим.
Бесконтактные электронные индикаторы
Довольно новые приборы UT262A и UT262C, которые позволяют определить порядок чередования фаз без разрыва цепи и гальванического контакта с сетью.
Для измерений клипсы с датчиками тока крепятся на проводах и светодиодные индикаторы показывают направление вращения фаз. Естественно, при этом, по проводам должен течь ток.
К достоинствам прибора относится простота и безопасность использования.
К недостаткам — слишком высокая чувствительность к электромагнитным помехам и нелинейным искажениям. В производственных условиях избежать такого рода помех сложно, т к в наше время к сети подключены частотные приводы, инверторы и т.д., использующие технологии ШИМ и синтеза частоты.
Однако, для первичных вводов приборы вполне подходят, то есть там, где уровень помех и несинусоидальности относительно невелик.
В кратком обзоре мы рассмотрели 3 основных типа индикаторов последовательности чередования фаз, которые поставляются ТОО Test instruments, являющегося официальным дистрибьютором заводов производителей.
Заказы на приборы принимаются на интернет портале
Защита от нарушения порядка чередования
Для защиты электрического оборудования от неправильного чередования на практике применяется реле контроля фаз. Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.
Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.