На воздухе медные провода окисляются медленно, покрываясь тонким слоем окиси CuO, препятствующим дальнейшему окислению меди. Коррозию меди вызывают сернистый газ SO2, сероводород H2S, аммиак NH3, окись азота NO, пары азотной кислоты и некоторые другие реактивы.
Проводниковую медь получают из слитков путем гальванической очистки ее в электролитических ваннах. Примеси даже в ничтожных количествах, резко снижают электропроводность меди, делая ее малопригодной для проводников тока, поэтому в качестве электротехнической меди применяют лишь две ее марки М0 и М1.
Почти все изделия из проводниковой меди изготавливаются путем проката, прессования и волочения. Так, волочением могут быть изготовлены провода диаметром до 0,005 мм, ленты толщиной до 0,1 мм и медная фольга толщиной до 0,008 мм.
Проводниковая медь применяется как в отожженном после холодной обработки виде (мягкая медь марки ММ), так и без отжига (твердая медь марки МТ).
При температурах термообработки выше 900 °C вследствие интенсивного роста зерна механические свойства меди резко ухудшаются.
В целях повышения предела ползучести и термической устойчивости медь легируют серебром в пределах 0,07—0,15%, а также магнием, кадмием, цирконием и другими элементами.
Медь с присадкой серебра применяется для обмоток быстроходных и нагревостойких машин большой мощности, а медь, легированная различными элементами, используется в коллекторах и контактных кольцах сильно нагруженных машин.
Характеристики электротехнических материалов
Главной характеристикой в электротехнике считается удельная электропроводность, измеряемая в См/м. Она служит коэффициентом пропорциональности между вектором напряжённости поля и плотностью тока. Обозначается часто греческой буквой гамма γ. Удельное сопротивление признано величиной, обратной электропроводности. В результате формула, упомянутая выше, обретает вид: плотность тока прямо пропорциональна напряжённости поля и обратно пропорциональна удельному сопротивлению среды. Единицей измерения становится Ом м.
Рассматриваемое понятие сохраняет актуальность не только для твёрдых сред. К примеру, ток проводят жидкости-электролиты и ионизированные газы. Следовательно, в каждом случае допустимо ввести понятие удельного сопротивления, ведь через среду проходит электрический заряд. Найти в справочниках значения, к примеру, для сварочной дуги сложно по простой причине – подобными задачами не занимаются в достаточной степени. Это не востребовано. С момента обнаружением Дэви накала платиновой пластины электрическим током до внедрения в обиход лампочек накала прошло столетие – по схожей причине не сразу осознали важность, значимость открытия.
Свойство материала
В зависимости от значения величины удельного сопротивления материалы делятся:
- У проводников – менее 1/10000 Ом м.
- У диэлектриков – свыше 100 млн. Ом м.
- Полупроводники по значениям удельного сопротивления находятся между диэлектриками и проводниками.
Эти значения характеризуют исключительно способность тела сопротивляться прохождению электрического тока и не влияют на прочие аспекты (упругость, термостойкость). К примеру, магнитные материалы бывают проводниками, диэлектриками и полупроводниками.
Как образуется в материале проводимость
В современной физике сопротивление и проводимость принято объяснять зонной теорией. Она применима для твёрдых кристаллических тел, атомы решётки которого принимаются неподвижными. Согласно указанной концепции энергия электронов и прочих типов носителей заряда определяется установленными правилами. Выделяют три основные зоны, присущие материалу:
- Валентная зона содержит электроны, связанные с атомами. В этой области энергия электронов градируется ступенями, а число уровней ограничено. Внешняя из слоёв атома.
- Запрещённая зона. В этой области носители заряда находиться не вправе. Служит границей раздела двух других зон. У металлов часто отсутствует.
- Свободная зона расположена выше двух предыдущих. Здесь электроны участвуют свободно в создании электрического тока, а энергия любая. Нет уровней.
Диэлектрики характеризуются высочайшим расположением свободной зоны. При любых мыслимых на Земле естественных условиях материалы электрический ток не проводят. Велика ширина и запрещённой зоны. У металлов масса свободных электронов. А валентная зона одновременно считается областью проводимости – запрещённых состояний нет. В результате подобные материалы обладают малым удельным сопротивлением.
Расчёт уд. сопротивления
На границе контактов атомов образуются промежуточные энергетические уровни, возникают необычные эффекты, используемые физикой полупроводников. Неоднородности создаются намеренно внедрением примесей (акцепторов и доноров). В результате образуются новые энергетические состояния, проявляющие в процессе протекания электрического тока новые свойства, которыми не владел исходный материал.
У полупроводников ширина запрещённой зоны невелика. Под действием внешних сил электроны способны покидать валентную область. Причиной становится электрическое напряжение, нагрев, облучение, прочие типы воздействий. У диэлектриков и полупроводников по мере понижения температуры электроны переходят на пониженные уровни, в результате валентная зона заполняется, а зона проводимости остаётся свободна. Электрический ток не течёт. В соответствии с квантовой теорией класс полупроводников характеризуется как материалы с шириной запрещённой зоны менее 3 эВ.
Перейдем к диэлектрикам
Диэлектрик — это материя, которая не подчиняется воздействию электрического поля, то есть не пропускает через себя ток, а если и пропускает, то в незначительном количестве.
Происходит это потому, что они не обладают свободно передвигающимися частицами — носителями тока, поскольку в них очень сильная атомная связь.
В жизни такими веществами выступают резина, керамические компоненты, стекло, отдельные виды смол, дистиллированная вода, карбонит, фарфор, текстолит, а так же сухое дерево и так далее.
Именно благодаря свои свойствам, вышеперечисленные материалы являются основой корпусов различных электрических приборов, выключателей, розеток, вилок и других приспособлений, которые контактируют с электричеством непосредственно.
Изоляционные элементы в сетях также изготовляются из диэлектрических материалов.
Но, не все так просто и с диэлектриками. Если пропускать через них ток выше нормы, хранить их или устанавливать в среде с высокими показателями влажности или неправильно их использовать, то можно вызвать такое явление, как «пробой изолятора» — это означает, что материал диэлектрика теряет свои токонепроводимые функции и становится проводником.
То есть, если в двух словах описать ситуацию, то основное в диэлектрике — это его электроизоляционные способности. Таким образом эти приборы помогают нам защититься от травмирующего воздействия электричества.
Свойства диэлектрика измеряются его электрической прочностью — это показатель, который равняется с напряжением пробоя диэлектрика.
Энергия Ферми
Важное место в теории проводимости, объяснениях явлений, происходящих в полупроводниках, занимает энергия Ферми. Скрытности добавляют туманную определения термина в литературе. В зарубежной литературе говорится, что уровень Ферми – некое значение в эВ, а энергия Ферми – разница между ним и наименьшим в кристалле. Приведём избранные общие и понятные предложения:
- Уровень Ферми – максимальный из всех, присущих электрону в металлах при температуре 0 К. Следовательно, энергией Ферми считается разница между этой цифрой и минимальным уровнем при абсолютном нуле.
- Энергетический уровень Ферми – вероятность нахождения электронов составляет 50% при всех температурах, кроме абсолютного нуля.
Энергия Ферми определятся исключительно для температуры 0 К, тогда как уровень существует при любых условиях. В термодинамике понятие характеризует полный химический потенциал всех электронов. Уровень Ферми определяют как работу, затраченную на дополнение объекта единственным электроном. Параметр определяет проводимость материала, помогает понять физику полупроводников.
Уровень Ферми не обязательно существует физически. Известны случаи, когда место пролегания находилось в середине запрещённой зоны. Физически уровень не существует, там нет электронов. Однако параметр заметен при помощи вольтметра: разница потенциалов между двумя точками цепи (показания на дисплее) пропорциональна разнице уровней Ферми этих точек и обратно пропорциональна заряду электрона. Простая зависимость. Допустимо увязать эти параметры с проводимостью и удельным сопротивлением, пользуясь законом Ома для участка цепи.
Припои
Пайка — это процесс соединения двух деталей при помощи припоя, материала с температурой плавления меньшей, чем у соединяемых деталей. Например, соединение двух медных проводников при помощи олова. Именно использование припоя — основное отличие от сварки, когда детали соединяются расплавом из самих себя, например стальной крюк к стальной двери приваривается при помощи стального плавящегося сварочного электрода.
Припои чаще классифицируют на две группы — тугоплавкие (температура плавления 400°С и более) и легкоплавкие. Или, иногда, на твёрдые и мягкие. Учитывая, что мягкие припои обычно легкоплавкие, то часто твёрдые припои синоним тугоплавких, а мягкие припои — легкоплавких.
В электронной технике припои используют для создания надежного электрического контакта. Основные припои в электронной технике — мягкие, на базе олова и оловянно-свинцовых сплавов. Все остальные экзотические припои рассматриваться не будут.
Материалы с низким удельным сопротивлением
К проводникам относят большинство металлов, графит, электролиты. Такие материалы обладают низким удельным сопротивлением. В металлах положительно заряженные ионы образуют узлы кристаллической решётки, окружённые облаком электронов. Их принято называть общими за вхождение в состав зоны проводимости.
Хотя не до конца понятно, что такое электрон, его принято описывать как частицу, движущуюся внутри кристалла с тепловой скоростью в сотни км/с. Это намного больше, чем нужно, чтобы вывести космический корабль на орбиту. Одновременно скорость дрейфа, образующая электрический ток под действием вектора напряжённости, едва достигает сантиметра в минуту. Поле распространяется в среде со скоростью света (100 тыс. км/ с).
В результате указанных соотношений становится возможным выразить удельную проводимость через физические величины (см. рисунок):
Формула для расчётов
- Заряд электрона, e.
- Концентрация свободных носителей, n.
- Масса электрона, me.
- Тепловая скорость носителей,
- Длина свободного пробега электрона, l.
Уровень Ферми для металлов лежит в пределах 3 – 15 эВ, а концентрация свободных носителей почти не зависит от температуры. Поэтому удельная проводимость, а значит, и сопротивление определяется строением молекулярной решётки и её близостью к идеалу, свободой от дефектов. Параметры определяют длину свободного пробега электронов, легко найти в справочниках, если требуется произвести вычисления (к примеру, с целью определения удельного сопротивления).
Лучшей проводимостью обладают металлы с кубической решёткой. Сюда относят и медь. Переходные металлы характеризуются гораздо большим удельным сопротивлением. Проводимость падает с ростом температуры и при высоких частотах переменного тока. В последнем случае наблюдается скин-эффект. Зависимость от температуры линейная выше некого предела, носящего имя нидерландского физика Петера Дебая.
Отмечаются и не столь прямолинейные зависимости. К примеру, температурная обработка стали повышает количество дефектов, что закономерно снижает удельную проводимость материала. Исключением из правила стал отжиг. Процесс снижает плотность дефектов, что за счёт чего удельное сопротивление уменьшается. Яркое влияние оказывает деформация. Для некоторых сплавов механическая обработка приводит к заметному повышению удельного сопротивления.
Объёмное представление свойства
Олово
Sn — Олово.
Основной компонент мягких припоев. Олово — относительно легкоплавкий металл, что позволяет использовать его для соединения проводников. В чистом виде не используется (см. факты). Из-за дороговизны олова (а также других причин, см. ниже), его в припоях разбавляют свинцом. Припой из 61% олова и 39% свинца образует эвтектику, такой смесью, ПОС-61 (Припой Оловянно-Свинцовый — 61% олова) паяют радиодетали на платах, провода. В менее ответственных узлах (шасси, теплоотводы, экраны и т.п.) олово в припоях разбавляют сильнее, до 30% олова, 70% свинца.
Электронные устройства долгое время паяли оловянно-свинцовыми припоями. Затем набежали экологи и заявили, что свинец — металл тяжелый, токсичный, и проблемы бы не было, если бы все эти ваши айфоны, компьютеры и прочие гаджеты не оказывались на свалке, откуда свинец попадает в окружающую среду. Поэтому придумали серию бессвинцовых припоев, когда олово разбавлено висмутом, или вовсе используется в чистом виде, стабилизированное добавками, например, серебра. Но эти припои дороже, хуже по характеристикам, более тугоплавкие. Поэтому оловянно-свинцовые припои надолго останутся в ответственных изделиях военного, космического, медицинского применения.
Кроме того, бессвинцовые припои склонны к образованию «усов». Оловянные усы — длинные тонкие кристаллы, вырастающие из оловянного припоя — причина отказов и сбоев аппаратуры. К сожалению, присадки в припои не позволяют на 100% прекратить рост «усов», поэтому оловянно-свинцовые припои, как проверенные временем, используются в критичных системах — космос, медицина, военка, атомные применения. Подробнее про усы.
Факты об олове
- Чистое олово подвержено «оловяной чуме», когда при температурах ниже 13,2 °C олово меняет свою кристаллическую решетку, превращаясь из блестящего металла в серый порошок (как при нагревании алмаз превращается в графит). Согласно байкам, оловянная чума — одна из причин поражения Наполеоновской армии в условиях суровых российских городов (представьте, как на морозе ваши пуговицы, ложки, вилки, кружки превращаются в серый порошок). И вполне состоявшийся факт, что оловянная чума стала одной из причин которая погубила экспедицию Скотта — консервные банки, емкости с топливом были пропаяны оловом и на морозе просто развалились. Небольшая добавка висмута практически устраняет оловянную чуму.
- Олово проводит электрический ток в 7 раз хуже меди.
- Олово используется как защитное покрытие консервных банок — луженая жесть при контакте с пищей не делает её опасной. (но так как олово правее железа в ряду напряженности металлов, лужение не защищает железо от коррозии гальванически, как цинк, который левее железа в ряду напряженности. Как работает гальваническая защита можно прочитать по ссылке).
- До широкого распространения алюминия, фольгу делали из олова, её называли «станиоль» (от stannum — латинское навание олова).
- Не пытайтесь отремонтировать ювелирные украшения при помощи мягких оловянных и оловянно-свинцовых припоев. Прочность соединения будет неприемлемой, а наличие легкоплавкого припоя на поверхности осложнит нормальную пайку твёрдыми припоями.
Легкоплавкие припои
На базе сплавов с содержанием олова были разработаны легкоплавкие припои. И даже очень легкоплавкие припои, которые плавятся в горячей воде. Хороший список сплавов есть в Википедии.
Катушки и прутки оловянно-свинцовых припоев. Проволока из припоя содержит центральный канал с флюсом, облегчающим процесс пайки.
Основные припои для радиоаппаратуры
- ПОС-61 — 61% олова, остальное — свинец. Температура плавления (ликвидус) 183 °C. Есть множество сходных по составу и по свойствам импортных припоев, в которых пропорции компонентов отличаются на пару процентов, например Sn60Pb40 или Sn63Pb37.
- ПОС-40 — 40% олова. Остальное — свинец. Температура плавления (ликвидус) 238 °C Менее прочный, более тугоплавкий, неэвтектический (плавится не сразу, есть диапазон температур при котором припой больше походит на кашу). Но благодаря тому, что чуть ли не в два раза дешевле (олово дорогое), применяется для неответственных соединений — пайка экранов, шин. Аналогичны припои ПОС-33 (температура плавления 247С), ПОС-25 (температура плавления 260С), ПОС-15 (температура плавления 280С).
- Бессвинцовые припои. Для пайки медных водопроводных труб горелкой чаще всего используют мягкий припой с 3% меди (Sn97Cu3). Он не содержит свинца, потому пригоден для питьевой воды. По экологическим причинам современную электронику на заводах паяют в основном бессвинцовыми припоями. Хорошая статья.
Замыкают список совсем легкоплавкие припои:
- Сплав Розе: 25% Sn, 25% Pb, 50% Bi. Температура плавления +94 °C.
- Сплав Вуда: 12,5% Sn, 25% Pb, 50% Bi, 12.5% Cd Температура плавления +68,5 °C.
Применяются для лужения печатных плат любителями, так как плавятся в горячей воде, и можно резиновым шпателем под слоем кипящей воды быстро покрыть припоем медную фольгу печатной платы. В технике их используют для пайки деталей, не выдерживающих нагрева до обычной температуры припоев, или в тех случаях, когда зачем-то нужен очень легкоплавкий металл (например, для датчика температуры).
Если спаять подпружиненные контакты легкоплавким припоем, то получится простой и надежный термопредохранитель, при превышении температуры припой плавится и контакты разрывают цепь. Правда, предохранитель получится одноразовым. Во многих советских телевизорах в блоке строчной развертки была защита из обычной стальной спиральной пружинки, припаянной на легкоплавкий припой. При перегреве, в том числе от большого тока через пружинку, она отпаивалась и отрывалась. Предохранители такого типа очень хороши как защита от пожара.
Материалы с высоким удельным сопротивлением
Порой требуется специально удельное сопротивление повысить. Подобная ситуация встречается в случаях с нагревательными приборами и резисторами электронных схем. Вот тогда приходит черед сплавов с высоким удельным сопротивлением (более 0,3 мкОм м). При использовании в составе измерительных приборов предъявляется требование минимального потенциала на границе стыковки с медным контактом.
Наибольшую известность получил нихром. Нередко нагревательные приборы конструируют из дешёвого фехраля (хрупкий, но дешёвый). В зависимости от назначения в сплавы входит медь, марганец и прочие металлы. Это дорогое удовольствие. К примеру, резистор из манганина стоит 30 центов на Алиэкспресс, где цены традиционно ниже магазинных. Встречается даже сплав палладия с иридием. О цене материала не следует говорить вслух.
Резисторы печатных плат часто изготавливают из чистых металлов в виде плёнок методом напыления. Массово применяются хром, тантал, вольфрам, сплавы, среди прочего, нихром.
Основы электроакустики
Проводниковые материалы Твердыми проводниками электрического тока являются металлы, металлические сплавы и некоторые модификации углерода. Среди металлических проводников различают: материалы, обладающие высокой проводимостью, которые используют для изготовления проводов, кабелей; проводящих соединений в микросхемах, обмоток трансформаторов, волноводов и т. д.; металлы и сплавы, обладающие высоким сопротивлением, которые применяют для изготовления электронагревательных приборов, резисторов, реостатов ламп накаливания и т. д.
Свойства проводниковых материалов. Основными электрическими параметрами проводниковых материалов являются
- удельная проводимость (или обратная ей величина — удельное сопротивление)
- температурный коэффициент удельного сопротивления.
Механические свойства проводников характеризуются пределом прочности при растяжении и относительным удлинением при разрыве. Общеизвестны такие физические параметры, как плотность, температура плавления и т. д.
Удельное сопротивление р проводника, имеющего постоянное поперечное сечение S к длину l, определяют по формуле p=RS/l и выражают в омах на метр (Ом-м). Для измерения удельного сопротивления проводников пользуются внесистемной единицей Ом-мм2/м (S измерено в мм2, l — в м); 1 Ом-м=106 Ом-мм2/м. Дольная от системной единицы 1 мкОм-м = 1 Ом-мм2/м. Будем выражать удельное сопротивление проводников в мкОм-м, при этом сохранятся привычные численные значения р.
Температурный коэффициент удельного сопротивления показывает, как изменяется сопротивление, равное 1 Ом, при изменении температуры на один градус. Физические параметры полупроводниковых материалов приведены в табл. 1.
Металл | Плотность, Мг/м3 | Темпера, тура плавления, °С | Удельное сопротивление, мкОм-м | Температурный коэффициент удельного сопротивления. | Работа выхода, эВ |
Алюминий | 2,7 | 660 | 0,0265 | 4,1 | 4,25 |
Вольфрам | 19,3 | 3400 | 0,055 | 5,0 | 4,54 |
Железо | 7,87 | 1540 | 0,097 | 6,25 | 4,31 |
Золото | 19,3 | 1063 | 0,0225 | 3,95 | 4,3 |
Кобальт | 8,85 | 1500 | 0,064 | 6,0 | 4,41 |
Медь | 8,92 | 1083 | 0,0168 | 4,3 | 4,4 |
Молибден | 10,2 | 2620 | 0,05 | 4,33 | 4,3 |
Никель | 8,96 | 1453 | 0,068 | 6,7 | 4,5 |
Олово | 7,29 | 232 | 0,113 | 4,5 | 4,38 |
Платина | 21,45 | 1770 | 0,098 | 3,9 | 5,32 |
Ртуть | 13,5 | — 39 | 0,958 | 0,9 | 4,52 |
Свинец | 11,34 | 327 | 0,190 | 4,2 | 4,0 |
Серебро | 10,49 | 961 | 0,016 | 4,1 | 4,3 |
Хром | 7,19 | 1900 | 0,13 | 2,4 | 4,58 |
Цинк | 7,14 | 419 | 0,059 | 4,1 | 4,25 |
Удельное сопротивление тонких металлических пленок (толщина которых соизмерима с длиной свободного пробега электрона) больше удельного сопротивления исходного металла и зависит от толщины и способа получения пленок. Оценивают проводящие свойства тонких пленок по удельному поверхностному сопротивлению (сопротивлению квадрата ), равному сопротивлению участка пленки, длина которого равна его ширине при прохождении тока через две его противоположные грани параллельно поверхности подложки Rп =рб/б,где Рб — удельное (объемное) сопротивление пленки . Удельное сопротивление сплавов больше удельного сопротивления исходных компонентов. Увеличение р происходит при введении в металл неметаллических примесей, а также при сплавлении двух металлов, образующих твердый раствор, в котором атомы одного металла входят в кристаллическую решетку другого.
Технические проводниковые материалы подразделяют на
- материалы высокой проводимости,
- металлы и сплавы различного назначения,
- сплавы высокого сопротивления,
- проводящие модификации углерода и материалы на их основе.
Материалы высокой электрической проводимости. К наиболее распространенным материалам высокой электрической проводимости относят медь и алюминий (см. табл. 1).
Медь обладает малым удельным сопротивлением, высокой механической прочностью, удовлетворительной стойкостью к коррозии, легко паяется, сваривается и хорошо обрабатывается, что позволяет прокатывать ее в листы, ленту и вытягивать в проволоку.
В качестве проводникового материала используется медь марок Ml и МО. В марке Ml содержится 99,9 % чистой меди, а в общем количестве примесей (0,1 %) кислород составляет до 0,08 %« Лучшими механическими свойствами обладает вторая марка, в которой содержится 99,95% меди, а в составе примесей (0,05%) имеется до 0,02 % кислорода. Лучшая бескислородная медь содержит 99,97 % чистого вещества, а вакуумная (выплавленная в вакуумных индукционных печах) — 99,99. %. Твердотянутую медь, полученную методом холодной протяжки, используют, когда необходима высокая механическая прочность, а мягкую (отожженную) — когда важна гибкость, например для изготовления монтажных проводов и шнуров. Электровакуумная медь идет на изготовление деталей электронных приборов. Медь используется также для изготовления фольгированного гетинакса, а в микроэлектронике — для получения токопроводящих пленок на подложках, обеспечивающих соединение между функциональными элементами схемы. Наиболее употребительные марки обмоточных проводов приведены в табл. 2.
Марка провода | Характеристика изоляции | Диаметр провода, мм |
ПЭЛ | Эмалевая лакостойкая | 0,02 — 2,44 |
ПЭВ-1 | Эмалевая с одинарным и двойным винифлексовым покрытием | 0,06 — 2,44 |
ПЭЛБО | Эмалевая лакостойкая с одним сло ем хлопчатобумажной обмотки | 0,2-2,1 |
П-ЭЛБД | То же, но с двумя слоями хлопчатобумажной обмотки | 0,72 — 2,1 |
пэлшо | То же, но с одним слоем шелковой обмотки | 0,05-2,1 |
пэлшд | Эмалевая лакостойкая с двумя слоями шелковой обмотки | 0,86 |
ПЭЛШКО | Эмалевая лакостойкая с одним слоем обмотки из капрона | 0,05-2,1 |
пэлшкд | Эмалевая лакостойкая с двумя слоями обмотки из капрона | 0,86 |
ПЭЛБВ | Эмалевая лакостойкая с обмоткой из длинноволокнистой бумаги | 0,51 — 1,45 |
ПВО | Один слой хлопчатобумажной обмотки | 0,2 — 2,1 |
ПБД | Два слоя хлопчатобумажной обмотки | 0,2 — 5,2 |
Бронза — сплав меди с небольшим количеством олова, кремния, фосфора, хрома, кадмия или других материалов, обладающий более высокими механическими свойствами, чем медь. Широко применяется для изготовления токопроводящих пружин. Латунь — сплав меди с цинком и другими добавками, обладающий большим относительным удлинением, что важно при обработке штамповкой и глубокой вытяжке. Применяется для изготовления различных токопроводящих деталей.
Состав и свойства некоторых медных электротехнических сплавов приведены в табл. 3.Таблица 3
Сплав | Удельная проводимость, % к меди | Предел прочности, МПа | Относительное удлинение при разрыве, % |
Кадмиевая бронза (0,9 % Cd) | 95 | До 310 | 50 |
Бронза (0,8 % Cd; 0,6 % Sn) | 55 — 60 50—55 | 290 До 730 | 55 4 |
Фосфористая бронза (7 % Sn; 0,1 % Р) | 10 — 15 | До 400 | 60 |
Латунь (70 % Си; 30 % Zn) | 25 | 320 — 350 | 70 |
Алюминий приблизительно в 3,5 раза легче меди. Для электротехнических целей используют алюминий технической чистоты АЕ, содержащий до 0,5 % примесей. Проволока, изготовленная из алю« миния АЕ и отожженная при температуре 350 °С, обладает удельным сопротивлением 0,028 мкОм*м. Алюминий высокой чистоты А97 (примесей до 0,03 %) используется для изготовления тонкой (до 6 мкм) фольги, электродов и корпусов электролитических конденсаторов.
Альдрей — сплав алюминия с магнием (0,3 — 0,5 %), кремнием (0,4 — 0,7%). и железом (0,2 — 0,3 %). Сохраняет легкость чистого алюминия (плотность 2,7 Мг/м3), обладает близким к нему удельным сопротивлением (0,0317 мкОм-м) и высокой (близкой к твердотянутой меди) механической прочностью.
Металлы и сплавы различного назначения. Ниже рассматривая ются металлы и сплавы, применяющиеся в электротехнике и радиоэлектронике. Исходя из температуры плавления, общности характеристик и области применения, различают тугоплавкие и благородные металлы, металлы со средней и низкой температурой плавления, припои и флюсы.
Тугоплавкие металлы обладают температурой плавления выше 1700 °С, химически устойчивы при низких и активны при высоких температурах, поэтому при повышенных температурах эксплуатируются в вакууме или атмосфере инертных газов. Тугоплавкими являются такие металлы, как вольфрам, молибден, тантал, ниобий, хром, ванадий, титан, цирконий. Основные физические свойства некоторых из них были приведены в табл. 1. Тугоплавкие металлы используются для изготовления нитей ламп накаливания, электродо в электронных ламп, пленочных резисторов в микросхемах, контактов, обладающих высокой устойчивостью к эрозии (электроизносу) и образованию электрической дуги. Помимо чистых тугоплавких металлов в электровакуумной технике для арматуры приборов применяют сплавы W+Mo, Mo+Re, Ta+Nb, Ta+W и др., обладающие требуемыми пластичностью, электрическими и термическими свойствами.
К благородным металлам относятнаиболее химически стойкие металлы (золото, серебро, платину).
Золото обладает высокой пластичностью (предел прочности при растяжении 150 МПа, относительное удлинение при разрыве около 40%) и используется в электронной технике для нанесения коррозионно-устойчивых покрытий на резонаторы СВЧ, внутренние поверхности волноводов, электроды ламп и др. Основные параметры золота были приведены в табл. 1.
Серебро — стойкий против окисления металл (при нормальной температуре), обладающий наименьшим удельным сопротивлением (см. табл. 1). Используется для изготовления электродов и контактов на небольшие токи, для непосредственного нанесения на диэлектрики, внутренние поверхности волноводов, а также в производстве керамических и слюдяных конденсаторов.
Платина — очень стойкий к химическим реагентам металл, хорошо поддается механический обработке, пластичен. Основные параметры плагины были приведены в табл. 1. Применяется для изготовления термопар, подвесок, подвижных систем электрометров и контактных сплавов.
Металлы со средним значением температуры плавления (железо, никель, кобальт), обладающие повышенным температурным коэффициентом удельного сопротивления (в 1,5 раза выше меди), ферромагнитны.
Железо (сталь) — наиболее дешевый металл, обладающий высокой механической прочностью и относительно высоким (по сравнению с медью) удельным сопротивлением (около 0,1 мкОм-м). Удельное сопротивление стали, содержащей примеси углерода и других элементов, возрастает
В качестве проводникового материала используется мягкая сталь, содержащая- 0,1 — 0,15 % углерода, имеющая предел прочности при растяжении 700 — 750 МПа, относительное удлинение при разрыве 5 — 8 % и удельную проводимость в 6 — 7 раз меньшую, чем меди. Основные параметры железа были приведены в табл. 1. Железо используют для изготовления корпусов электронных приборов, работающих при температуре до 500°С, при которой газовыделение невелико. Из алюминированного железа (покрытого тонкой пленкой алюминия) изготовляют аноды, экраны и другие детали электронных ламп.
Никель обладает плотностью, равной плотности меди, легко поддается механической обработке, устойчив к окислению. Основные свойства никеля были приведены в табл. 1. Применяется для изготовления арматуры электронных ламп, нагревательных элементов, в качестве компонента магнитных и проводниковых сплавов и защитных покрытий изделий из железа.
Сплавы для электровакуумных приборов созданы на основе металлов со средними значениями температуры плавления. Обладают такими температурными коэффициентами линейного расширения а1, при которых возможно сопряжение стекла с металлическими конструкциями электронных приборов.
Инвар Н-36 — сплав железа с 36 % никеля, обладает очень малым аг~10-6К-1 в диапазоне температуры от — 100 до + 100 °С, Платинит Н-47 — сплав железа с 47% никеля. Ковар — сплав железа с 29% никеля и 17% кобальта, обладает малым аi=4,8*10-6К-1 и примерно в 2 раза меньшим, чем инвар, удельным сопротивлением. Температура плавления 1450°С. Рассмотренные сплавы применяются для изготовления токоотводов электронных ламп, проходящих через стеклянные элементы.
Металлы с низкой (менее 500 °С) температурой плавления.
Свинец — мягкий, пластичный металл, обладающий невысокой прочностью (предел прочности при растяжении 16 МПа, относительное удлинение при разрыве 55 %), не стоек к вибрации; устойчив к действию воды, серной и соляной кислот и других реагентов; подвержен действию азотной и уксусной кислот, извести и гниющих органических веществ. Основные свойства свинца были приведены в табл. 1. Свинец и его сплавы используют для изготовления защитных (от влаги) оболочек кабелей, плавких вставок предохранителей, пластин кислотных аккумуляторов и в качестве материала, поглощающего рентгеновское излучение. Свинец и его соединения ядовиты.
Олово — мягкий, тягучий металл, не подвержен влиянию влаги, не окисляется на воздухе, разведенные кислоты действуют на него очень медленно. Основные свойства олова были приведены в табл. 1. Применяется в качестве защитных покрытий металлов (лужение), с примесью 15% свинца и 1% сурьмы — для получения оловянной фольги в производстве конденсаторов, входит в состав бронз и сплавов для пайки,
Ртуть — жидкий, химически стойкий металл, слабо взаимодействует с водородом и. азотом. Платина, серебро, золото, щелочные и щелочноземельные металлы, цинк, олово и алюминий растворяются в ртути, образуя амальгамы. Нерастворимы в ртути вольфрам, железо, тантал; слабо растворимы медь и никель. Ртуть и ее соединения очень ядовиты. Основные свойства ртути были приведены в табл. 1. Ртуть применяется в качестве жидкого катода в ртутных выпрямителях, газоразрядных приборах, лампах дневного света и др.
Припои представляют собой специальные сплавы, используемые при пайке. Обычно припой имеет более низкую температуру плавления, чем соединяемые металлы. Различают мягкие и твердые припои с температурой плавления ТПЛ соответственно до 300 и более 300 °С.
Мягкими припоями являются оловянно-свйнцовые сплавы (ПОС) с содержанием олова от 10 (ПОС 10) до 90 % (ПОС 90), остальное — свинец. Некоторые оловянно-свйнцовые припои содержат небольшой процент сурьмы (например, ПОС 61-05). Твердыми являются медно-цинковые (ПМЦ) и серебряные (ПСР) припои с раз« личным» легирующими добавками. Свойства некоторых марок мягких припоев приведены в табл. 4. Таблица 4
Припой | Марка и состав | Температура плавления, cc | Удельное сопро. тивление, мкОм*М | Удельная теплопроводность, Вт/(м-К) | Предел прочности при растяжении, МПа |
Оловянно-свинцовый | ПОС 61 (61 % Sn; 39% Pb) ПОС 40 (40 % Sn; 60 % Pb) | 183 — 190 183 — 238 | 0,14 0,16 | 50 42 | 43 38 |
Оловянно-свинцово-кадмиевый | ПОСК 50-18 (50 % Sn; 18 % Cd; 32 % Pb) | 142 — 145 | 0,13 | 54 | 40 |
Оловянносвинцрвосурьмянистый | ПОССу 40-2 (40 % Sn; 2% Sb; 58% Pb) | 185 — 299 | 0,17 | 42 | 43 |
Флюсы, используемые для получения надежной пайки, должны растворять и удалять окислы и загрязнения с поверхности спаиваемых металлов и защищать их от окисления. Бескислотными флюсами являются канифоль, а также флюсы на ее основе с добавлением неактивных веществ (спирта, глицерина). Кислотные (активные) флюсы приготавливают на основе соляной кислоты, хлористых и фтористых металлов, активно растворяющих оксидные пленки на поверхности металлов, благодаря чему обеспечиваются хорошая адгезия и высокая механическая прочность соединения. Пайка электроприборов с использованием активных флюсов не допускается.
Сплавы высокого сопротивления. Сплавы, с высоким удельным сопротивлением применяются для изготовления образцовых резисторов, реостатов, электроплиток, паяльников, электроизмерительных и электронагревательных приборов и должны длительно выдерживать температуры около 1000 °С. Наибольшее распространение получили сплавы на медной основе (манганин, константен), хромо-никелевые и железохромоалюминиевые, основные свойства которых приведены в табл. 5.
Таблица 5
Сплав | Плотность, Мг/м» | Удельное сопротивление, мкОм м | Температурный коэффициент сопротивления а -10е,к-1 | Рабочая температура,°С | Предел прочности при растяжении, МПа | Относительное удлинение при разрыве, % |
Манганин | 8,4 | 0.42 — 0,48 | 5 — 30 | 100 — 200 | 450 — 600 | 15 — 30 |
Константан | 8.9 | 0.48 — 0,52 | — (5 — 25) | 450 — 500 | 400 — 500 | 20 — 40 |
Нихром Х15Н60 | 8,2 | 1-1,2 | 100 — 200 | 1000 | 650 — 700 | 25 — 30 |
Фехраль и хромаль | ||||||
Х13Ю4 | 7,1-7,5 | 1.2 — 1,35 | 100 — 200 | 900 | 700 | 20 |
Х23Ю5 | 6,9-7,3 | 1.3-1,5 | 65 | 1200 | 800 | 10-15 |
Манганин — сплав на медной основе (86% Си, 12% Мп, 2 % Ni) используется для изготовления образцовых резисторов и электроизмерительных приборов. Хорошо вытягивается в проволоку диаметром до 0,02 мм или прокатывается в ленту толщиной 0,01 — 1 мм и шириной 10 — 300 мм.
Константан — сплав меди (60%) и никеля (40%). Хорошо поддается обработке (протягивается в проволоку и прокатывается в ленту тех же размеров, что и манганин). Электронагревательные элементы из константана допускают работу при температуре до 450° С. При нагреве проволока покрывается оксидной пленкой, обладающей электроизоляционными свойствами, В паре с медью или железом константан дает большую термо-эдс, что затрудняет использование резисторов из него в измерительных схемах, но позволяет изготовление термопары для измерения температуры до нескольких сотен градусов.
Нихром — сплав никеля (55 — 80%), хрома (15 — 20 %), марганца (1,5 %). Термоустойчив на воздухе. Срок службы нихромовых нагревательных элементов возрастает, если их поместить в твердую инертную среду, затрудняющую доступ кислорода (например, в глину — шамот). Нанесенные на подложки пленки нихрома обеспечивают сопротивление квадрата Rо =50-300 Ом и мощность рассеивания Рдоп=1 Вт/см2 и применяются в качестве резисторов в микросхемах.
Железохромоникелевые сплавы (фехраль, хромаль) по сравнению с нихромом обладают большей твердостью и хрупкостью, с трудом вытягиваются в проволоку и ленту, имеют меньшую стоимость и используются в мощных электронагревательных устройствах. . Резистивный сплав РС-37-10 содержит 36,5% Сг, 8 — 11 % Ni, остальное — кремний, a PC30-01 — 32% Сг, 0,7 — 1,8%.Fe, остальное — кремний. Эти сплавы соответственно применяют для изготовления тонкопленочных и прецизионных тонкопленочных резисторов. Многокомпонентные резистивные спла вы МЛТ для тонкопленочных резисторов, содержащие Si, Fe, Cr, Ni, Al, W, устойчивы к окислению и воздействию химически активных сред. Основные свойства резистивных сплавов приведены в табл. 6.
Сплав | Плотность, Мг/м | Температура плавления, °С | Удельное сопротивление, мкОм-м | Температурный коэффициент сопротивления а*10-4, к-1 | Со противление квадрата пленки, Ом | Толщина пленки, нм |
РC-37-10 | 4,5 — 5 | 1250 | 5 — 7 | 15 — 25 | 50 — 2000 | 15 — 300 |
РС-30-01 | 3,7 — 4 | 1350 | 25 — 35 | 5 — 15 | 800 — 3000 | 20 — 100 |
МЛТ | — | — | 100 — 300 | От — 2,5 до + 4 | 100 — 20 000 | — |
Двух компонентные материалы для тонкопленочных резисторов интегральных схем (дислициды молибдена и хрома и сплавы кремния и хрома) имеют следующие параметры:
MoSiz | CrSi2 | Si57Cr43 | Si73Cr27 | |
R0, Ом | 200 | 1300 | 2000 | 20000 |
ар 10-4, К-1 | — 1,25 | +2 | — 1,5 | -14 |
Сплавы — копель (56 % Си, 44 % Ni); алюмёль (95 % Ni, остальное Al, Si, Mg), хромель (90 % Ni, 10 % Сг), платинородий (90% Pt, 10% Rh) — используют для изготовления термопар. Для измерения температуры до 1600°С применяются платинородий-платиновые термопары, до 900 — 1000 °С — хромель-алюмелевые, до 600 °С — железо-копелевые, хромель-копелевые и железо-константа-новые, а до 350 °С — медь-константановые и медь-копелевые.
Проводящие модификации углерода. Природный графит, пиролитический углерод и углеродистые пленки применяют в качестве проводящих материалов при изготовлении непроволочных линейных резисторов, микрофонов и различных деталей разрядников телефонных сетей, электровакуумных приборов и др.
Природный графит — модификация чистого углерода; Мелкодисперсной разновидностью углерода является сажа. Пиролитический углерод получают термическим разложением без доступа кислорода (пиролиз) газообразных углеводородов (метана, бензина) в камере.
Боруглеродистые пленки с малым коэффициентом удельного сопротивления (порядка 10 мкОм-м) и температурным коэффициентом — 1*10-4К-1 получают пиролизом борорганических соединений, например (С3Н7)зВ и др. Основные параметры графита и пиро-литического углерода приведены в табл. 7.
Таблица 7
Параметры | Поликристаллический графит | Монокристалл графита | Пиролитический | |
вдоль | поперек | |||
базисных плоскостей | ||||
Плотность, Мг/м3 | 2,3 | 2,2 | 2,1 | |
Температурный коэффициент линейного расширения аi106, К-1 | 7,5 | 6,6 | 26 | 6,5 — 7 |
Удельное сопротивление, мкОм-м | 8 | 0,4 | 100 | 10 — 50 |
Температурный коэффициент удельного сопротивления, К-1 | — 1*10-3 | +9-1 0-4 | -4- 10-2 | -2-10-4 |
Вещества, не проводящие электрический ток
Диэлектрики характеризуются впечатляющим удельным сопротивлением. Это не ключевая черта. К диэлектрикам относят материалы, способные перераспределять заряд под действием электрического поля. В результате происходит накопление, что используется в конденсаторах. Степень перераспределения заряда характеризуется диэлектрической проницаемостью. Параметр показывает, во сколько раз возрастает ёмкость конденсатора, где вместо воздуха использован конкретный материал. Отдельные диэлектрики способны проводить и излучать колебания под действием переменного тока. Известно сегнетоэлектричество, обусловленное сменой температур.
В процессе смены направления поля возникают потери. Подобно тому, как магнитная напряжённость частично преобразуется в тепло при воздействии на мягкую сталь. Диэлектрические потери зависят преимущественно от частоты. При необходимости в качестве материалов используют неполярные изоляторы, молекулы которых симметричны, без ярко выраженного электрического момента. Поляризация возникает, если заряды прочно связаны с кристаллической решёткой. Типы поляризации:
- Электронная поляризация возникает как результат деформации внешних энергетических оболочек атомов. Обратима. Характерна для неполярных диэлектриков в любой фазе вещества. Из-за малого веса электронов возникает почти мгновенно (единицы фс).
- Ионная поляризация распространяется на два порядка медленнее и характерна для веществ с ионной кристаллической решёткой. Соответственно, материалы применяются на частотах до 10 ГГц и обладают большим значением диэлектрической проницаемости (у двуокиси титана – до 90).
- Дипольно-релаксационная поляризация намного медленнее. Время совершения составляет сотые доли секунды. Дипольно-релаксационная поляризация характерна для газов и жидкостей и зависит, соответственно, от вязкости (плотности). Прослеживается влияние температуры: эффект образует пик при некотором значении.
- Спонтанная поляризация наблюдается у сегнетоэлектриков.