сертификация исо 9001 казань Мы являемся аккредитованной компанией 18 СРО по всей России. Работаем в этой сфере 7 лет. Знаем все подводные камни и способны выйти из самых непростых ситуаций.

Что такое переходное сопротивление контактов и как его измерять?

В электротехнике очень часто возникает необходимость коммутации электрических цепей. Каждое электромеханическое коммутирующее устройство имеет, как минимум, одну пару соединительных контактов. Вопреки ожиданиям, нередко можно наблюдать, что контакты нагреваются. Виной тому является переходное сопротивление контактов, от которого невозможно полностью избавиться.

Контактное пятно образуется в результате любого соприкосновения проводников. В точке соединения проводов всегда возникает сопротивление, которое превышает величину удельных сопротивлений материалов проводника. Существует несколько причин такого явления, о которых речь пойдёт в данной статье. А для начала выясним, что подразумевают под термином переходного сопротивления контактов.

Введение

Электрический контакт является одним из основных элементов любой электрической схемы. В связи с усложнением технических систем растет количество и разнообразие типов и форм контактов, их режимов и условий работы. Роль контактов становится ответственнее как в техническом, так и в технико-экономическом отношении. Все это требует более интенсивного и глубокого изучения физических процессов в различных режимах и условиях работы контактов, методов инженерного расчета и конструирования, правильного нормирования режимов и условий работы, разработки и исследования новых контактных материалов и новых конструктивных форм контактов.

В данной статье излагаются основные принципы действия, физические процессы и явления, происходящие в электрических соединителях, обозначаются основные понятия и их физический смысл. Приводятся факторы, определяющие надежность, долговечность и условия сохраняемости электрических соединителей. Определяются пути повышения надежности и долговечности, излагаются правила эксплуатации.

Квантовый предел

Когда проводник имеет пространственные размеры, близкие к , где находится волновой вектор Ферми проводящего материала, закон Ома больше не выполняется. Эти небольшие устройства называются квантовыми точечными контактами . Их проводимость должна быть целым числом, кратным значению , где — элементарный заряд, а — постоянная Планка . Квантовые точечные контакты ведут себя больше как волноводы, чем классические провода повседневной жизни и могут быть описаны формализмом рассеяния Ландауэра . Точечно-контактное туннелирование — важный метод определения характеристик сверхпроводников . 2πkF{\ displaystyle 2 \ pi / k _ {\ text {F}}}kF{\ displaystyle k _ {\ text {F}}}2е2час{\ displaystyle 2e ^ {2} / h}е{\ displaystyle e}час{\ displaystyle h}

Болтовые контактные соединения.

Контактные соединения, выполненные с помощью болтов, чаще всего имеют дефекты из-за отсутствия шайб в месте соединения медной жилы с плоским выводом из меди или сплава алюминия, отсутствия тарельчатых пружин, непосредственного подсоединения алюминиевого наконечника к медным выводам оборудования в помещениях с агрессивной или влажной средой, в результате недостаточной затяжки болтов и др. Болтовые контактные соединения алюминиевых шин на большие токи (3000 А и выше) недостаточно стабильны в эксплуатации. Если контактные соединения на ток до 1500 А требуют подтяжки болтов 1 раз в 1 — 2 года, то аналогичные соединения на токи 3000 А и выше нуждаются в ежегодной переборке с непременной зачисткой контактных поверхностей. Необходимость в такой операции связана с тем, что в многоамперных шинопроводах (сборные шины электростанций и т.п.), выполненных из алюминия, более интенсивно протекает процесс образования оксидных пленок на поверхности контактных соединений. Процессу образования оксидных пленок на поверхности болтовых контактных соединений способствуют различные температурные коэффициенты линейного расширения стальных болтов и алюминиевой шины. Поэтому при прохождении по шинопроводу тока КЗ, при работе его с переменной токовой нагрузкой в нем при большой протяженности в результате вибрационных воздействий происходит деформация (уплотнение) контактной поверхности алюминиевой шины. В этом случае усилие, стягивающее две контактные поверхности ошиновки, ослабевает, имевшийся между ними слой смазки испаряется и т.д. Из-за образования оксидных пленок площадь соприкосновения контактов, т.е. число и размер контактных площадок (число точек), через которые проходит ток, уменьшаются и, вместе с тем, увеличивается плотность тока, которая может достигать тысяч ампер на квадратный сантиметр, вследствие чего сильно растет нагрев этих точек. Температура последней точки достигает температуры плавления материала контакта, и между контактными поверхностями образуется капля жидкого металла. Температура капли, повышаясь, доходит до кипения, пространство вокруг контактного соединения ионизируется, и появляется опасность многофазного замыкания в РУ. Под действием магнитных сил дуга может перемещаться вдоль шин РУ со всеми вытекающими отсюда последствиями. Опыт эксплуатации показывает, что наряду с многоамперными шинопроводами недостаточной надежностью обладают и одноболтовые контактные соединения. Последние, в соответствии с ГОСТ 21242-75, допускаются к применению на номинальный ток до 1 ООО А, однако повреждаются уже при токах 400 — 630 А. Повышение надежности одноболтовых контактных соединений требует принятия ряда технических мер по стабилизации их электрического сопротивления. Процесс развития дефекта в болтовом контактном соединении, как правило, протекает достаточно длительно и зависит от ряда факторов: тока нагрузки, режима работы (стабильная нагрузка или переменная), воздействия химических реагентов, ветровых нагрузок, усилий затяжки болтов, стабилизации давления контактов и др. Переходное сопротивление болтового контактного соединения зависит от продолжительности токовой нагрузки. Переходное сопротивление контактных соединений постепенно повышается до определенного момента, после чего происходит резкое ухудшение контактной поверхности контактного соединения с интенсивным тепловыделением, свидетельствующим об аварийном состоянии контактного соединения. Аналогичные результаты были получены специалистами фирмы “Инфраметрикс” (США) при тепловых испытаниях болтовых контактных соединений. Повышение температуры нагрева в процессе испытаний носило постепенный характер в течение года, а затем наступал период резкого повышения тепловыделения.

Основные преимущества пайки

  • не требуется дорогостоящее оборудование;
  • данное соединение легко поддается ремонту — достаточно лишь хорошо прогреть его тем же паяльником;
  • спаянные провода могут выдержать большие нагрузки — они не раскрутятся, не переломятся и не порвутся даже при значительном механическом усилии.

Надо заметить, что пайка проводов может выполняться для соединения практически любых металлов, как одного вида, так и различных. Главная хитрость при пайке — достижение одинаковой температуры, как соединяемых поверхностей, так и припоя. Именно при соблюдении этого условия мы получим великолепный результат. Для этого надо хорошо подобрать инструмент, припой и флюс.

Это значит, что толстые скрутки 40-ваттным паяльником хорошо спаять вряд ли получится, особенно, если в помещении низкая температура воздуха. Очень важна хорошая зачистка проводов. С меди окись убираем механическим способом (соскребая), а вот с алюминием дело обстоит сложнее. Обычно пленку с алюминиевых проводов удаляют уже во время пайки, соскребая ее под слоем расплавленного припоя.

Также можно применить особый флюс, который разъедает окись при нагреве. Главное удалить после пайки лишние остатки флюса, чтобы паяное соединение впоследствии не разрушалось. Для этого можно воспользоваться техническим спиртом или бензином «Калоша».

Место спайки надо хорошо заизолировать. Можно использовать для этого изоленту — хлопчатобумажную (более термостойкую) или виниловую (обладающую хорошей влагостойкостью). Наибольшую герметичность можно получить, проложив внутри тканевую изоляцию, а снаружи — винил. Можно вместо изоленты использовать защитный пластмассовый колпачок, который выглядит аккуратнее.

Как правильно измерять переходное сопротивление

Есть определенные правила, описывающие правильное измерение Rn для устройств коммутации. К ним относятся автоматические выключатели, всевозможные разъединители и шины.

Методов измерений насчитывается несколько:

  • метод, когда отсчет производится прямо и непосредственно;
  • с использованием мультиметра (можно также пользоваться амперметром или вольтметром);
  • способ измерения нестабильного статического поведения сопротивления перехода.

Обратите внимание! Первый пункт предполагает использование приборов для непосредственного расчета с погрешностью менее 10 %. Чаще им пользуются для измерения Rn контактного соединения

Перед замером контакты не очищают. Их соединяют с выводами приборов. При этом перемещать приборы и размыкать контакты противопоказано.


Формула для нестабильного статического СП

При втором способе определяется величина падения напряжения при фиксированном значении тока на переходе, который тестируется. Погрешность любого прибора в измерительной системе подобного рода не более 3 %. Изначально значение сопротивления подбирается в несколько раз больше, чем предполагаемое. Расчет выполняется по формуле: Rп = UPV2/IPA, где UPV2 — цифра, которую показал вольтметр PV2 в В; IPA — ток, измеренный амперметром PA в Ам.

Статическая нестабильность сопротивления перехода определяется исходя из среднеквадратичного изменения Rn, определяемого в ходе многократного измерения. Погрешность таких замеров +/- 10 %.


Список приборов для измерения СП

Нормы по ПУЭ 7

Правилами предусмотрено соблюдение важных параметров, включая допустимые значения для контактных переходов. Измерения сопротивления постоянному току проводятся при испытаниях разъединителей и отделителей. Нормы по ПУЭ 7 требуют, чтобы показания величин для отделителей и разъединителей, предназначенных для работы под напряжением от 110 кВ, соответствовали данным заводов-изготовителей.

По правилам ПУЭ 7 для разъединителей типа РОН3, рассчитанных на номинальное напряжение 400 – 500 кВ (при номинальном токе 2000 А) переходное сопротивление не должно превышать 200 мкОм. Для ЛРН (110 – 220 кВ/ 600 А сопротивление контактов должно составлять 220 мкОм.

Требования для остальных типов отделителей, применяемые в сетях 110 – 500 кВ:

  • Номинальному току 600 А соответствует сопротивление 175 мкОм;
  • 1000 А – 120 мкОм;
  • 1500 – 2000 А – наибольшее допустимое сопротивление 50 мкОм.

Измерения выполняются между точкой «контактный ввод» и на клемме «контактный вывод».

Контактная поверхность

Поверхность контакта, как и всякого твердого тела, всегда обладает шероховатостью и волнистостью. Приближенно геометрическую модель контактной поверхности можно рассматривать как некоторую волнистую поверхность, на которой расположены сферические выступы. Высота выступов относительно основания волн неодинакова. Статистическое распределение значений высот этих выступов близко к нормальному.

Наличие шероховатости и волнистости приводит к тому, что две поверхности всегда контактируют только в отдельных «пятнах».

Поверхность, представляющая собой совокупность точек, через которые передается давление, называется эффективной поверхностью механического контакта, и если это чистый металл, то есть его поверхность свободна от непроводящих пленок, то такая поверхность будет также являться эффективной поверхностью электрического контакта.

Эффективная поверхность контакта является функцией контактного нажатия.

Под действием усилия нажатия две поверхности сближаются за счет деформации контактирующих выступов, и в соприкосновение входит все большее и большее количество отдельных выступов. Сближение контактирующих поверхностей происходит до тех пор, пока сумма реакций упруго деформированных выступов не будет равна усилию нажатия N, то есть когда:

где nk — количество контактирующих выступов; Ni — реакция выступа, деформированного на величину Δi .

Величина эффективной контактной поверхности при этом равна:

где r — средний радиус выступов, величина которого определяется чистотой обработки контактных поверхностей.

Зависимость между величиной эффективной контактной поверхности и контактным давлением можно представить в виде:

для случая контактирования по линии (например, контакт между образующей цилиндра и плоскостью).

для случая контактирования по плоскости, где Е — модуль Юнга; hm — максимальная высота выступов; no — общее количество выступов на «кажущейся» контактной поверхности.

При контактных давлениях порядка 0,015ч1,0 кгс, которые обычно имеют место на практике в разъемных контактах, эффективная поверхность контактирования ничтожно мала по сравнению с кажущейся контактной поверхностью. Обычно она составляет от долей до единиц процента.

Особенности износа контактов, размыкаемых под током

Нормальный режим работы основной массы электрических соединителей предусматривает их размыкание и соединение в обесточенном состоянии. Исключение составляют разрывные соединители и некоторые другие конструкции.

Иногда возникает необходимость размыкания электрических соединителей под током. Это крайне нежелательно, так как такой режим эксплуатации резко снижает ресурс нормальной работы электрических соединителей.

При размыкании контактов под током происходит резкое увеличение переходного сопротивления и падения напряжения на них, что приводит в соответствии с уравнением

к возрастанию температуры контактируемых выступов, вплоть до температуры плавления материала контакта. В первый момент размыкания контактов между ними образуется мостик из расплавленного металла покрытия контактов и металла самих контактов, который при дальнейшем расхождении контактов будет утончаться не в середине, а ближе к положительному электроду, где, наконец, прервется. Это явление аналогично электролизу. Этот процесс вызывает перенос металла с одного контакта на другой. Указанное явление получило название мостиковой эрозии контактов.

При напряжениях и токах в размыкаемой цепи, меньших определенных значений для конкретных материалов контактов (например, для серебра U I

В результате эрозии изменяется микрогеометрия контактных поверхностей, что приводит к повышению механического износа контактных поверхностей, так как электрическая эрозия препятствует переходу процесса износа контактов из фазы приработки в фазу нормального износа.

В том случае, когда напряжение и ток в раз- рываемой цепи больше определенных значе- ний (например, для серебра U > 12 В, I > 0,4 А), между контактами при их размыкании возникает электрическая дуга. Дуга вызывает повышенную эрозию контактов — как за счет своего термического действия, так и за счет бомбардировки катода ионами газа, которые образуются в момент горения дуги. Режим работы электрических соединителей с образованием между контактами в момент их размыкания электрической дуги является крайне нежелательным и при эксплуатации электрических соединителей его необходимо исключать. Даже кратковременная работа соединителей в режиме образования электрической дуги практически сводит к нулю ресурс нормальной эксплуатации электрических соединителя.

Факторы, из-за которых появляется

Сопротивление контакта связывает между собой отдельные участки цепи. В месте соединения образуется взаимное прикосновение провождения тока. Через этот участок ток из одной ветки может попасть в другую. Если просто наложить жилы друг на друга, то надежного соединения не будет. Связано это в первую очередь с тем, что поверхность, какой бы гладкой она не казалась, состоит из неровностей. При многократном увеличении это можно заметить даже на идеально отшлифованных и отполированных материалах.

Важно! На практике станет понятно, что площадь реального контакта намного меньше, чем визуального. Еще одним фактором возникновения сопротивления перехода является пленка, получающаяся в результате окисления металла проводника

Такие пленки мешают току двигаться и стягивают его направления в точках касания. Избавиться от этого полностью нельзя, так как его величина всегда больше, чем удельное сопротивление металла проводника

Еще одним фактором возникновения сопротивления перехода является пленка, получающаяся в результате окисления металла проводника. Такие пленки мешают току двигаться и стягивают его направления в точках касания. Избавиться от этого полностью нельзя, так как его величина всегда больше, чем удельное сопротивление металла проводника.


Пятна касания и неровности контактов под микроскопом

Влияние встроенного трансформатора тока (ТТ) на измерение Rпер баковых выключателей

При подаче измерительного тока через полюс бакового выключателя во вторичной обмотке ТТ возникает переходный процесс, который проявляется в индуцировании в первичную цепь импульса напряжения, постепенно спадающего до нуля. Это изменяющееся напряжение суммируется падением напряжения на Rпер., созданного измерительным током, и воспринимается микроомметром как дополнительное (внесение из вторичной обмотки ТТ) сопротивление, включенное последовательно Rпер. и изменяющееся во времени. Время затухания переходного процесса спада внесенного сопротивления зависит от многих факторов и может меняться от 1,0 до 60 с. Переходный процесс, в цепи содержащей ТТ, возникает не только при включении тока, но и при его выключении.

Документы

1. Испытания комплектующего КРУ оборудования.

Испытания комплектующего КРУ оборудования — масляных выключателей, выключателей нагрузки, разъединителей, измерительных трансформаторов, разрядников и т.д. производятся методами и по нормам, изложенным в соответствующих методиках.

2. Проверка механизма доводки и блокировки.

Проверка механизма доводки и блокировки производится в рабочем и испытательном положении. При попытке вывода тележки из закрепленного положения с включенным выключателем последний должен отключаться. Отключение выключателя должно происходить раньше перемещения тележки, вызывающего размыкание первичных разъединяющих контактов.

3. Проверка действия защитных шторок.

Проверка действия защитных шторок, обеспечивающих безопасность при производстве ремонтных работ, производится выдвижением тележки в ремонтное положение. При этом шторки под действием собственной массы должны закрыть окна. При вкатывании тележки шторки должны автоматически подниматься, открывая окна для прохода подвижных контактов первичной цепи.

Что такое переходное сопротивление

Переходным называют такое сопротивление, которое возникает в местах проводника, где ток проходит с одного провода на другой или с проводника на какой-либо электрический прибор. Случается это в тех случаях, когда имеет место плохое соединение или контакт проводов.


Варианты контактов проводов

Исходя из законов физики, в таких местах при прохождении тока нагрузки выделяется определенное тепло. Его величина равна квадрату проходящего тока, поделенного на сопротивление места контакта. Такие места могут нагреваться до достаточно больших температур и при соприкосновении с материалами, подверженными горению или плавлению, могут вызвать пожар и нестабильную работу оборудования.

Обратите внимание! Именно такие контакты являются основной причиной пожарных ситуаций, взрывов и коротких замыканий. Опасность также возникает из-за того, что такие контакты тяжело обнаружить, а механизмы защиты сетей и приборов, даже если они современные, не всегда могут предотвратить аварийную ситуацию


Контактная поверхность

В чём суть работы заземления?

Принцип действия защитного заземления основывается на главном качестве электрического тока – протекать по проводникам, которые обладают наименьшим сопротивлением. На сопротивление человеческого тела оказывают влияние многие факторы, но в среднем оно приравнивается к 1000 Ом.

Согласно Правилам устройства электроустановок (ПУЭ) контур заземления должен иметь сопротивление гораздо меньшее (допускается не более 4 Ом).

А теперь смотрите, в чём заключается принцип действия защитного заземления. Если какой-то электрический прибор неисправен, то есть произошёл пробой изоляции и на его корпусе появился потенциал, и кто-то прикоснулся к нему, то ток с поверхности прибора будет уходить в землю через человека, путь будет выглядеть как «рука-тело-нога». Это смертельная опасность, величина тока 100 мА вызывает необратимые процессы.

Защитное заземление сводит этот риск до минимума. Современные электроприборы имеют внутреннее соединение заземляющего контакта штепсельной вилки с корпусом. Когда прибор посредством вилки включён в розетку и в результате повреждения на его корпусе появляется потенциал, то он уйдёт в землю по заземляющему проводнику с низким сопротивлением. То есть ток не пойдёт через человека с сопротивлением 1000 Ом, а побежит через проводник, у которого эта величина намного меньше.

Вот почему важным этапом в обустройстве электрического хозяйства в наших жилых домах является измерение сопротивления заземления. Нам нужна 100 % уверенность, что эта величина ниже наших человеческих 1000 Ом.

И запомните, что это процедура не разового характера, измеряться сопротивление должно периодически, а сам контур надо постоянно поддерживать в исправном состоянии.

Факторы, влияющие на величину переходного сопротивления

Удельное сопротивление

Прежде, чем говорить о факторах, нужно знать, что собой представляют контакты. Они различаются по виду контактируемой поверхности:

  • точечные – соединение происходит в точке;
  • линейные – соприкасаются по линии;
  • плоскостные – контакт по плоскости.

Примеры точечных соединений – «сфера – сфера»; «вершина конуса – плоскость», «сфера – плоскость» и др. К линейным относятся соприкосновения: «тор – плоскость», «цилиндр – плоскость», «цилиндр – цилиндр» и т.п.

Площадь прикосновения контактов можно подсчитать по формуле:

Sпр = F/σ,

где:

  • F – сила сжатия контактов;
  • σ – временное сопротивление материала контактов сжатию.

Существуют разные способы соединения:

  • механические (скрутки, болтовые зажимы, опрессовка);
  • сварка;
  • пайка.

Величина переходного сопротивления определяется по формуле:

Rп = knx/(0,102*Fk)n,

где:

  • knx – коэффициент, обуславливаемый материалом, формой контакта, состоянием поверхности;
  • Fk – сила, с которой сжимаются контакты;
  • n – показатель степени, показывающий число точек соприкосновения.

Показатель степени для разных видов контактов:

  • для точечного – n = 0,5;
  • для линейного – n = 0,5-0,7;
  • для плоскостного (поверхностного) – n = 0,7-1.

Существуют принятые по гост ГОСТ 24606.3-82 нормы переходного сопротивления контактов.


Факторы, влияющие на Rп

Внимание! С окислением поверхностей металлов в местах соединений можно бороться при помощи протирания контактов спиртосодержащими растворами. Допустимо смазывать болтовые соединения солидолом, это поможет снижать доступ кислорода и замедлять процесс окисления

Регулярная протяжка контактов и скруток, недопустимость соединений меди и алюминия, полировка губок контакторов – всё это меры борьбы с переходным сопротивлением.

К сведению. Плохое прижатие контактируемых поверхностей вызывает не только повышение сопротивления, но и увеличение степени нагрева проводников.

Результат нагрева места соединения

Методика измерения

Можно использовать формулу ΔU/I и провести вычисления с помощью амперметра и вольтметра. Этим методом измеряют переходное параметры контактов мощных силовых выключателей. Для этого амперметр включают последовательно с контактами, а вольтметр параллельно. Перед амперметром добавляют балластный резистор, параметры которого подбирают так, чтобы рабочий ток контактов соответствовал току контактного сопротивления (с учётом требований ПУЭ).

Данная процедура довольно громоздкая. Целесообразно воспользоваться милиомметром.

При выборе омметра следует учитывать следующие обстоятельства:

  1. Границы измерений должны находиться в диапазоне контроля прибора.
  2. Нижний предел диапазона омметра должен начинаться от 10 мкОм.
  3. Погрешность измерений не должна превышать 0,5%.

Существуют специальные приборы, предназначенные для измерений переходного сопротивления контактов. Выше приведённые требования уже учтены в таких приборах. Один из измерителей показан на рисунке 4. Результат измерений отображается непосредственно на цифровом дисплее.


Рис. 4. Измерительный прибор METREL

При измерениях следует учитывать загрязнение контактов и рабочую температуру агрегата. Наличие сторонних включений на площадках контактов, равно как и заниженная температура может исказить показания измерителя в большую сторону. Чтобы получить наиболее реальные параметры, необходимо выбирать токи и напряжения, близкие по значению к номинальным, характерным для конкретного разъединителя. Следует также помнить о том, что контакты обладают первоначальным временным сопротивлением, которое снижается после прогрева.

Существуют профессиональные измерительные приборы, у которые можно регулировать выходную мощность в довольно больших пределах. Они обеспечивают более высокую точность измерения.

Подпишись на RSS!

Подпишись на RSS и получай обновления блога!

Получать обновления по электронной почте:

  • Транзисторный ключ с ограничением тока 3 июня 2020
  • Зарядное для аккумуляторов шуруповерта на базе XL4015 5 апреля 2020
  • Зарядное для авто со стабилизацией тока на L200 19 марта 2020
  • Индикатор шестиразрядный на TM1637 13 марта 2020
  • Регулируемый стабилизатор тока на L200 11 марта 2020
  • Зарядное устройство для автомобильных аккумуляторов — 237
  • Стабилизатор тока на LM317 — 173
  • Стабилизатор напряжения на КР142ЕН12А — 124 884 просмотров
  • Реверсирование электродвигателей — 101
  • Зарядное для аккумуляторов шуруповерта — 98 420 просмотров
  • Карта сайта — 96
  • Зарядное для шуруповерта — 88
  • Самодельный сварочный аппарат — 87
  • Схема транзистора КТ827 — 82
  • Регулируемый стабилизатор тока — 81
  • DC-DC (4)
  • Автомат откачки воды из дренажного колодца (5)
  • Автоматика (34)
  • Автомобиль (3)
  • Антенны (2)
  • Ассемблер для PIC16 (3)
  • Блоки питания (30)
  • Бурение скважин (6)
  • Быт (11)
  • Генераторы (1)
  • Генераторы сигналов (8)
  • Датчики (4)
  • Двигатели (7)
  • Для сада-огорода (11)
  • Зарядные (17)
  • Защита радиоаппаратуры (8)
  • Зимний водопровод для бани (2)
  • Измерения (34)
  • Импульсные блоки питания (2)
  • Индикаторы (6)
  • Индикация (10)
  • Как говаривал мой дед … (1)
  • Коммутаторы (6)
  • Логические схемы (1)
  • Обратная связь (1)
  • Освещение (3)
  • Программирование для начинающих (16)
  • Программы (1)
  • Работы посетителей (7)
  • Радиопередатчики (2)
  • Радиостанции (1)
  • Регуляторы (5)
  • Ремонт (1)
  • Самоделки (12)
  • Самодельная мобильная пилорама (3)
  • Самодельный водопровод (7)
  • Самостоятельные расчеты (37)
  • Сварка (1)
  • Сигнализаторы (5)
  • Справочник (13)
  • Стабилизаторы (16)
  • Строительство (2)
  • Таймеры (4)
  • Термометры, термостаты (27)
  • Технологии (21)
  • УНЧ (2)
  • Формирователи сигналов (1)
  • Электричество (4)
  • Это пригодится (12)
  • Архивы Выберите месяц Июнь 2022 (1) Апрель 2022 (1) Март 2020 (3) Февраль 2022 (2) Декабрь 2022 (2) Октябрь 2022 (3) Сентябрь 2019 (3) Август 2022 (4) Июнь 2022 (4) Февраль 2022 (2) Январь 2019 (2) Декабрь 2022 (2) Ноябрь 2022 (2) Октябрь 2022 (3) Сентябрь 2018 (2) Август 2022 (3) Июль 2022 (2) Апрель 2022 (2) Март 2022 (1) Февраль 2022 (2) Январь 2022 (1) Декабрь 2022 (2) Ноябрь 2022 (2) Октябрь 2022 (2) Сентябрь 2022 (4) Август 2022 (5) Июль 2022 (1) Июнь 2022 (3) Май 2022 (1) Апрель 2022 (6) Февраль 2022 (2) Январь 2017 (2) Декабрь 2016 (3) Октябрь 2016 (1) Сентябрь 2016 (3) Август 2016 (1) Июль 2016 (9) Июнь 2016 (3) Апрель 2016 (5) Март 2016 (1) Февраль 2016 (3) Январь 2016 (3) Декабрь 2015 (3) Ноябрь 2015 (4) Октябрь 2015 (6) Сентябрь 2015 (5) Август 2015 (1) Июль 2015 (1) Июнь 2015 (3) Май 2015 (3) Апрель 2015 (3) Март 2015 (2) Январь 2015 (4) Декабрь 2014 (9) Ноябрь 2014 (4) Октябрь 2014 (4) Сентябрь 2014 (7) Август 2014 (3) Июль 2014 (2) Июнь 2014 (6) Май 2014 (4) Апрель 2014 (2) Март 2014 (2) Февраль 2014 (5) Январь 2014 (4) Декабрь 2013 (7) Ноябрь 2013 (6) Октябрь 2013 (7) Сентябрь 2013 (8) Август 2013 (2) Июль 2013 (1) Июнь 2013 (2) Май 2013 (4) Апрель 2013 (7) Март 2013 (7) Февраль 2013 (7) Январь 2013 (11) Декабрь 2012 (7) Ноябрь 2012 (5) Октябрь 2012 (2) Сентябрь 2012 (10) Август 2012 (14) Июль 2012 (5) Июнь 2012 (21) Май 2012 (13) Апрель 2012 (4) Февраль 2012 (6) Январь 2012 (6) Декабрь 2011 (2) Ноябрь 2011 (9) Октябрь 2011 (14) Сентябрь 2011 (22) Август 2011 (1) Июль 2011 (5)
  • Переходное сопротивление — контакт

    Переходное сопротивление контакта — сопротивление электрического контакта, складывающееся из сопротивления, возникающего вследствие сужения сечения материала в его элементарных бугорках, через которые проходит ток, и сопротивления плохопроводящих окисных, масляных, сульфидных, газовых пленок и пыли.  

    Временной график испытания монтажных соединений на надежность.  

    Переходное сопротивление контакта измеряют миллиомметром методом вольтметра и амперметра.  

    Зависимость переходного сопротивления от контактного нажатия.  

    Переходное сопротивление контактов обусловлено не только явлением стягивания линий тока. Контактирующие поверхности покрыты адсорбированными молекулами газа, в котором располагались контакты до их замыкания.  

    Переходное сопротивление контакта может возрастать в десятки и сотни раз вследствие окисления, контактных поверхностей. В частности, нередко такое отклонение-вызывается нагревом контактов свыше 70 — 75 С.  

    Переходное сопротивление контакта может увеличиться из-за коррозии контактов и других явлений. Кроме того, при малом нажатии повышается чувствительность к вибрации, что ведет к изменению сопротивления и увеличению собственного шума ( Контактов. Вибрации могут вызываться механическими влияниями и колебаниями тока в катушке, а также потоками рассеяния соседних реле.  

    Переходное сопротивление контакта при этом уменьшается с повышением тока таким образом, что постоянным оказывается переходное падение напряжения в контакте. Для щеток из натурального графита оно равно 0 7 — 1 2 в на щетку, а для электрографитированных щеток-0 8 — 1 7 в. Следовательно, при нагрузке щетки током, равным, например, 50 с, в тонком слое между щеткой и кольцом или коллектором будет выделяться, переходя в тепло, энергия, равная 40 — 80 вт. При разрыве точек, непосредственно касавшихся друг друга, или возникает и короткое время удерживается электрическая дуга, или проскакивает весьма кратковременная электрическая искра Это происходит в том случае, когда емкость, параллельная щеточному контакту, включающая в себя емкость кабелей возбуждения и емкость обмоток ротора компенсатора или якоря возбудителя, имеет достаточную величину. При небольших токах эти дуги или искры могут быть микроскопически малыми и поэтому незаметными глазу. Токи большей величины сопровождаются более заметными дугами или искрами, особенно если наблюдать их в темноте.  

    Схема измерения минимального вжима контактов выключателя МКП-110.  

    Переходное сопротивление контактов измеряется микроомметром при включенном выключателе.  

    Схема измерения минимального вжима контактов выключателя МКП-110.  

    Переходное сопротивление контактов измеряется микрометром при включенном выключателе.  

    Переходное сопротивление контактов ( Ккот) в среднем может приниматься равным 0 05 — 0 1 ом.  

    Переходное сопротивление контактов, погруженных в масло или просто смазанных маслом, почти всегда оказывается меньше, чем для сухих контактов, так как масло способствует очистке поверхностей от загрязнения, а после разрушения окисной пленки вследствие трения при переключении препятствует повторному окислению. Медные и латунные контакты в трансформаторном масле почти не окисляются. Сопротивление стальных контактов за это время возросло более чем в 40 раз, в то время как конечные значения сопротивлений медных и латунных контактов как непокрытых, так и луженых и никелированных, практически равны начальным.  

    Переходное сопротивление контактов в микроомах определяется по формуле ( 2 — 8), причем в подавляющем большинстве случаев контакты переключающих устройств следует считать точечными, полагая / п0 5, что дает некоторый запас надежности.  

    Рейтинг
    ( 2 оценки, среднее 4 из 5 )
    Понравилась статья? Поделиться с друзьями:
    Для любых предложений по сайту: [email protected]