Особенности асинхронного двигателя с фазным ротором

Современный асинхронный двигатель с фазным ротором – это многофункциональная силовая электроустановка, регулировка работы которой осуществляется с помощью включенных в роторную цепь резисторов. В отличии от распространённых сейчас короткозамкнутых двигателей, моторы такого типа характеризуются повышенным пусковым моментом и более низкими стартовыми токами. Также они отличаются стойкостью к механическим перегрузкам без значительного уменьшения КПД.

Особенности запуска, параметры и функциональные возможности электромотора зависят от его типа, свойств и нюансов конструкции. Асинхронный двигатель с фазным ротором – это распространенная многозадачная силовая электроустановка, поддерживающая возможность регулировки посредством включения в роторную цепь дополнительных сопротивлений. От классического короткозамкнутого мотора она отличается повышенным пусковым моментом и более низкими стартовыми токами. Для лучшего понимания работы такого агрегата сначала нужно разобраться в особенностях его запуска.

Особенности пуска электромотора с фазным ротором

Во время включения установки фазный ротор асинхронного двигателя начинает медленно и равномерно вращаться. При этом сила сопротивления на ее валу уравновешивается. Чтобы преодолеть тормозной момент и компенсировать внутренние потери, мотор начинает активно потреблять энергоресурсы. Характеристики стартового пускового момента часто сильно отличаются от рекомендуемого значения, поэтому асинхронный электродвигатель с фазным ротором не может сразу переключится на режим полноценного функционирования. Данная особенность влечет за собой потерю ускорения и даже может вызвать критический перегрев внутренних частей конструкции.

Для решения этой проблемы частоту пусков электромотора ограничивают несколькими включениями. Если асинхронный двигатель с фазным ротором подключается от электросети малой мощности, то возможны потери общего напряжения и негативное воздействие на подсоединенные к той же линии электрические приборы. Включение в цепь фазного ротора асинхронного силового агрегата пусковых резисторов позволяет снизить токовые показатели, но одновременно повышает пусковой момент на старте вплоть до достижения им максимально допустимого порога.

Возможны следующие варианты запуска:

  • легкий;
  • нормальный;
  • тяжелый.

Здесь важно правильно подобрать резисторы с оптимальными параметрами. Если запуск асинхронного мотора прошел успешно, то далее необходимо обеспечить поддержку стабильного крутящего момента на всем этапе его разгона с целью снижения нагрева и уменьшения длительности переходного периода из спокойного до рабочего состояния. Это делается за счет уменьшения сопротивления резисторов, переключение между которыми происходит через подсоединенные последовательно контакторы. В таком случае отключать агрегат от электросети можно, только если роторную цепь замкнуть накоротко. В противном случае велика вероятность возникновения значительного перенапряжения в фазных обмотках статора.

Зачем нужно добавочное сопротивление?

Добавочное сопротивление служит для запуска двигателя с нагрузкой на его валу. Как только достигаются номинальные обороты вала, сопротивление отключается за ненадобность, а кольца закорачиваются. В противном случае работа электродвигателя будет нестабильной, возникнут потери КПД.

Роль добавочного внешнего сопротивления, как правило, выполняет ступенчатый реостат. В этом случае двигатель будет разгонятся тоже ступенчато. Часто используются устройства, способные поднять КПД двигателя, при этом избавляя щетки от излишнего трения о кольца. После разгона устройство поднимает щетки и замыкает кольца.

Для реализации автоматического пуска электродвигателя используется подключенная индуктивность к обмотке ротора. Дело в том, что в тот момент, когда осуществляется пуск, в роторе показатели индуктивности и частоты тока максимальны. При разгоне двигателя эти показатели падают, а в конечном итоге двигатель выходит на нормальный рабочий режим.

Пусковой процесс поэтапно

Для лучшего понимания процесса, пуск асинхронного двигателя с фазным ротором можно разделить на несколько ключевых этапов:

  • работа асинхронного мотора начинается с постепенного и равномерного раскручивания вала, при котором происходит уравновешивание момента сил сопротивления;
  • во время преодоления приложенного к ротору тормозного момента, компенсации потерь и передачи подвижным элементам конструкции кинетической энергии потребление ресурсов источника питания сильно возрастает;
  • на данном этапе начальная величина пускового момента и характеристики скольжения напрямую связаны с активным сопротивлением, создаваемым резисторами методом последовательного включения их в роторную цепь;
  • сопротивление пусковых резисторов снижает токовые показатели электроустановки, но пропорционально увеличивает до максимального значения пусковой момент;
  • для уменьшения пускового момента на старте в обязательном порядке применяется методика увеличения резистивного сопротивления, что также способствует ограничению области скольжения и снижению риска достижения ею недопустимых величин, плохо влияющих на разгон электромотора;
  • далее для поддержки полученного при разгоне ротора крутящего момента, сокращения времени старта и защиты агрегата от перегрева необходимо постепенно понижать сопротивление пусковых резисторов;
  • разные по своим характеристикам резисторы переключаются с помощью контакторов ускорения, последовательно включенных в схему;
  • чтобы обмотка фазного ротора не получила избыточное напряжение, отключать электроустановку от питающей сети можно только при замыкании накоротко роторной электроцепи.

Если при выключении рассматриваемого силового агрегата роторную цепь не замкнуть, то может возникнуть трехкратное, а то и четырехкратное напряжение по сравнению с номиналом.

Важные технические характеристики

Современные асинхронные двигатели с фазным ротором должны отвечать определенным параметрам, гарантирующим их качественную и безотказную работу в тех или иных условиях. Правильно подобранная механическая характеристика асинхронного двигателя с оптимальными электрическими показателями – залог успешной и эффективной работы всей электроустановки.

Среди основных технических характеристик электромотора можно выделить:

  • соответствующая техническому регламенту мощность;
  • габаритные размеры и конструкция;
  • степень защиты от воздействия окружающей среды во время эксплуатации в определенных условиях (например, одни модели специально предназначены для работы в помещениях, а другие могут работать на открытом воздухе или одни агрегаты выдерживают сильный холод, а другие – экстремальную жару);
  • толщина и качество изоляционного покрытия (устройство асинхронного двигателя с фазным подключением ротора должно предусматривать устойчивость к повышенным внутренним температурам и сильное нагревание обмоток, для чего здесь используется специальный слой защитной изоляции);
  • рабочие режимы в соответствии с установленными нормами;
  • система охлаждения, обеспечивающая нормальное функционирование силового агрегата в заданном рабочем режиме;
  • уровень создаваемого шума при работе на холостом ходу (желательно не выше второго класса).

Это наиболее важные параметры, на которые необходимо обращать внимание при выборе и эксплуатации электрического двигателя. Но существует и другие характеристики, к примеру, определяющие специфические режимы работы и техническое обслуживание асинхронного электромотора. Как правило, все они подробно описываются в руководстве и технической документации к силовому агрегату или электроприводу.

Сферы применения

В настоящее время многие промышленные двигатели являются асинхронными. Их популярность обусловлена вышеперечисленными плюсами и доступностью. Сферы применения таких агрегатов очень обширные, поэтому их активно используют для работы автоматизированных устройств из телемеханической сферы, бытового и медицинского оборудования и звукозаписывающих установок. Асинхронный двигатель — это полезное изобретение нынешнего времени, которое упрощает жизнь человека и обеспечивает хороший КПД при минимальных затратах электроэнергии.

Конструкционные особенности

Знание особенностей конструкции любого оборудования значительно облегчает покупку и последующую работу с ним, в том числе эксплуатацию и ремонт асинхронного двигателя с фазным ротором. Прежде всего, следует запомнить, что все электромоторы устроены по схожему принципу – они обязательно имеют неподвижный статор и подвижный ротор, осуществляющий вращательные движения внутри силового агрегата. Статор асинхронного двигателя с фазным ротором имеет подключаемые к электросети переменного тока обмотки, напряжение на которых взаимодействует с обмотками ротора. Данная связь объясняется принципами действия магнитного потока.

Обычная конструкция статора асинхронного двигателя представляет собой корпус электромотора с запрессованным внутрь сердечником. Обмотка сердечника разделена не несколько заключенных в катушки секторов. От этих обмоток отводятся кабеля с защитной изоляцией, предотвращающей их взаимное замыкание. Ротор устроен из вала и набранного пластинчатого сердечника. Обычно здесь применяются пластины с симметричными пазами стандартного размера, выполненные из высокотехнологичной стали. Во время работы роторного вала происходит передача крутящего момента приводу электроустановки.

Чертеж асинхронного двигателя с его основными составными частями выглядит так:

Наиболее распространенными считаются роторы двух типов:

  1. Короткозамкнутый.
  2. Фазный.

Первый вариант в составе своей конструкции имеет стержни из алюминия, проходящие сквозь сердечник и замкнутые торцевыми кольцами. Это так называемое «беличье колесо». Для повышения прочности пазов их также часто обрабатывают алюминиевым составом. Устройство фазного ротора несколько отличается от короткозамкнутого. Здесь количество установленных под определенным углом катушек напрямую зависит от числа парных полюсов, во многих случаях сопоставимых с парными полюсами, какие есть на статоре.

Измерение параметров трехфазного асинхронного двигателя при условиях,

отличных от номинальных

Понижение напряжения

при номинальной частоте приводит к уменьшению тока холостого хода и магнитного потока, а значит, и к уменьшению потерь в стали. Величина тока статора, как правило, повышается,

коэффициент мощности увеличивается, скольжение возрастает, а КПД несколько падает. Вращающий момент двигателя уменьшается, так как он пропорционален квадрату напряжения.

При повышении напряжения

сверх номинального и номинальной частоте двигатель перегревается из-за увеличения потерь в стали. Вращающий момент двигателя растет, величина скольжения уменьшается. Ток холостого хода увеличивается, а коэффициент мощности ухудшается. Ток статора при полной нагрузке может уменьшиться, а при малой нагрузке может увеличиться вследствие увеличения тока холостого хода.

При уменьшении частоты и номинальном напряжении

увеличивается ток холостого хода, что приводит к ухудшению коэффициента мощности. Ток статора обычно возрастает. Увеличиваются потери в меди и стали статора, охлаждение двигателя несколько ухудшается вследствие уменьшения частоты вращения.

При повышении частоты сети и номинальном напряжении

уменьшается ток холостого хода и вращающий момент.

Принцип работы электромотора с фазным ротором

Теперь подробнее рассмотрим принцип действия асинхронного двигателя с ротором фазным и его подключение. Здесь можно выделить очередность из пяти важных этапов:

  • первый этап – на имеющий тройную обмотку статор поступает напряжение от трехфазной электросети переменного тока с нужными параметрами;
  • второй этап – формируется магнитное поле, приводящее в движение ротор;
  • третий этап – ротор постепенно разгоняется, а его скорость оборотов значительно возрастает;
  • четвертый этап – когда линии полей статора и ротора достигают определенного значения и пересекаются, возникает электродвижущая сила, воздействующая на обмотку ротора и создающая на ней электрический ток;
  • пятый этап – статорные и роторные магнитные поля начинают активно взаимодействовать между собой, поддерживая вращательный момент вала.

Далее управление асинхронным двигателем с ротором фазного типа осуществляется в штатном режиме. Принцип работы асинхронного двигателя с фазным ротором отличается от короткозамкнутого варианта еще и наличием полноценной трехфазной обмотки с аналогичной укладкой на статорной и роторной части.

Типовая схема управления асинхронным двигателем с фазным ротором выглядит так:

Схема управления асинхронным двигателем с фазным ротором показывает, что роторные обмоточные выводы соединены с контактными кольцами, установленными на вал электромотора. Эти кольца имеют защитную изоляцию, как между собой, так и в точках соприкосновения с валом. Для каждой из фаз, каких обычно насчитывается три, на роторе предусмотрена своя отдельная обмотка. Схема пуска этих обмоток чаще всего имеет вид «Звезды».

К роторной обмотке монтируется реостат управления, сопряженный со щетками и контактными кольцами. Несмотря на кажущуюся сложность такой конструкции и более тщательный расчет асинхронного мотора, возможностей регулировки рабочего момента на валу здесь на порядок больше, чем у двигателей с ротором короткозамкнутого типа, контроль и применение которых обычно связано с необходимостью использования частотного преобразователя или специального регулятора оборотов.

Статорная обмотка создается с учетом количества катушек и полюсов, которых на статоре и роторе должно быть одинаковое количество. Сдвиг катушек статора между собой происходит на определенное число градусов. Регулировка действия асинхронного двигателя с фазным ротором выполняется путем изменения тока в роторных обмотках. Это позволяет контролировать размер скольжения и рабочий момент электромотора. Чтобы снизить износ колец и щеток во время полного выведения реостата их обычно замыкают посредством специального устройства для поднимания щеток

Достоинства и недостатки электромоторов с фазным ротором

Сейчас асинхронные силовые агрегаты широко применяются как в быту, так и на производстве. Такая популярность обусловлена большим количеством преимуществ, расширяющих их функционал и назначение.

Среди основных достоинств асинхронных моторов с ротором фазного типа можно выделить:

  • высокие показатели стартового крутящего момента;
  • стойкость к механическим перегрузкам без значительного уменьшения коэффициента полезного действия, а также без снижения эффективности и стабильности функционирования электроустановки (скорость работы даже сильно нагруженного агрегата остается в пределах допустимой нормы);
  • низкая величина пускового тока;
  • возможность работы в полностью автоматическом режиме;
  • простая и интуитивно понятная схема пуска;
  • доступная стоимость;
  • отсутствие дополнительного рабочего и дорогостоящего монтажного оборудования.

Несмотря на все многочисленные плюсы, нельзя не отметить и недостатки асинхронного двигателя с такой конструкцией. Главный из них – это достаточно большие габаритные размеры агрегата, что усложняет процесс монтажа, дальнейшую эксплуатацию и ремонт асинхронного двигателя с фазным ротором. Кроме того, такие электромоторы часто уступают по продуктивности и КПД аналогичным по мощности силовым агрегатам с короткозамкнутым ротором.

Где применяется

Большая часть всех электродвигателей, выпускающихся в производственных масштабах, являются асинхронными.


Крановый асинхронный электродвигатель

Список сфер, где применяются асинхронные моторы:

  • медицинское оборудование;
  • техника для записи звука;
  • устройства автоматики;
  • бытовые приборы.

Обратите внимание! АД применяется там, где нужны высокие мощности, но вместе с тем нет необходимости в плавном регулировании скорости вращения в больших диапазонах.

Такие электромоторы чаще всего используют в тяжелом оборудовании, к примеру, в подъемных кранах, станках, лифтах и прочих подъемниках. Проще говоря, асинхронную машину нужно подключать в тех условиях, где работа производится под нагрузкой.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]