Изготовление катушек индуктивности своими руками. Как наматывают катушки индуктивности? Опыты с катушкой

Главная > Теория > Расчет катушки индуктивности

Катушки индуктивности предназначены для фильтрации токов высокой частоты. Они устанавливаются в колебательных контурах и используются для других целей в электрических и электронных схемах. Готовое устройство заводского изготовления надёжнее в работе, но дороже, чем изготовленное своими руками. Кроме того, не всегда удаётся приобрести элемент с необходимыми характеристиками. В этом случае расчёт катушки индуктивности и само устройство можно сделать самостоятельно.


Устройство катушки индуктивности

Конструкция

Главное назначение катушек индуктивности ГОСТ 20718-75 – это накопление электрической энергии в пределах магнитного поля для акустики, трансформаторов и т. д. Их используют для разработки и конструирования различных селективных схем и электрических устройств. От конструкции (материала, количества витков), наличия каркаса зависит их функциональность, размеры и область использования. Изготовление устройств производится на заводах, но можно сделать их самостоятельно. Самодельные элементы несколько уступают по надежности профессиональным, но обходятся в разы дешевле.

Фото – схема

Каркас катушки индуктивности выполняется из диэлектрического материала. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным. В зависимости от типа намотки, они бывают:

  1. Спиральными (на ферритовом кольце);
  2. Винтовыми;
  3. Винтоспиральными или комбинированными.

Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т. е., с обрывками Если используется толстый проводник, то элемент может обматываться без каркаса, если тонкий – то только на рамку. Эти каркасы катушек индуктивности бывают различного сечения: квадратные, круглые, прямоугольные. Полученная намотка может вставляться в специальный корпус какого-либо электрического устройства или использоваться в открытом виде.

Фото – конструкция самодельного элемента

Для увеличения индуктивности используются сердечники. В зависимости от назначения элемента, варьируется используемый материал стержня:

  1. С ферромагнитным и воздушным сердечником применяются при высоких частотах тока;
  2. Стальные используются в условиях низкого напряжения.

Исходя из принципа работы, бывают такие типы:

  1. Контурные. Преимущественно используются в радиотехнике для создания колебательных контуров платы, работают вместе с конденсаторами. Для соединения используется последовательное подключение. Это современный вариант плоской контурной катушки Тесла;
  2. Вариометры. Это высокочастотные перестраиваемые катушки, индуктивностью которыми можно при необходимости управлять при помощи дополнительных устройств. Они представляют собой соединение двух отдельных катушек, при этом, одна подвижна, а вторая нет;
  3. Сдвоенные и подстроечные дроссели. Основные характеристики этих катушек: малое сопротивление постоянному току и высокое переменному. Дроссели изготавливаются из нескольких катушек, соединенных обмотками между собой. Их часто используют в виде фильтра для различных радиотехнических приборов, устанавливают для контроля помех в антенны и т. д.;
  4. Трансформаторы связи. Их конструктивной особенностью является то, что на одном стержне установлено от двух и более катушек. Они используются в трансформаторах для обеспечения определенной связи между отдельными компонентами устройства.

Маркировка катушек индуктивности определяется по количеству витков и цвету корпуса.

Фото – маркировка

Изготовление дросселя

Для изготовления дросселя нужно выбрать подходящий каркас — в нашем случае это резистор определенной мощности и соответственно габаритов. Ниже приведены фото отечественных и зарубежных резисторов с обозначением их мощности.

Рис. 2. Резисторы МЛТ и зарубежные резисторы по мощности.

Рис. 3. Пример намотки дросселя на резисторе МЛТ-0,5.

Для намотки дросселя подойдут резисторы с высоким сопротивлением, например: 100кОм, 200кОм и т.д

Важно чтобы сопротивление резистора было большим, иначе добротность вашего самодельного дросселя может получиться плохой

Пример намотки равномерными слоями приведен на рисунке 3.

Для намотки можно использовать тонкий эмалированный провод (ПЭТВ) или же провод в шелковой изоляции (ПЭЛШО) диаметром 0,1-0,2мм, важно чтобы все витки намотанные таким проводом вместились на нашем каркасе из резистора. После намотки каждый из концов провода припаивают к выводам резистора, а на катушку сверху можно капнуть немножко клея чтобы витки потом не расползались

После намотки каждый из концов провода припаивают к выводам резистора, а на катушку сверху можно капнуть немножко клея чтобы витки потом не расползались.

Принцип действия

Схема работы катушек индуктивности активного действия основан на том, что каждый отдельный виток намотки пересекается с магнитными силовыми линиями. Этот электрический элемент необходим для того, чтобы извлекать электрическую энергию из источника питания и преобразовывая её сохранять в виде электрического поля. Соответственно, если ток цепи увеличивается – то расширяется и магнитное поле, но если он уменьшается – поле будет неизменно сжиматься. Эти параметры также зависят от частоты и напряжения, но в целом, действие остается неизменным. Включение элемента производит сдвиг фаз тока и напряжения.

Фото – принцип работы

Помимо этого, индуктивные (каркасные и бескаркасные) катушки обладают свойством самоиндукции, его расчет производится исходя из данных номинальной сети. В многослойной и однослойной обмотке создается напряжение, которое противоположно напряжению электрического тока. Это называется ЭДС, определение электродвижущей магнитной силы зависит от показателей индуктивности. Её можно рассчитать по закону Ома. Стоит отметить, что независимо от напряжения сети, сопротивление в катушке индуктивности не изменяется.

Фото – соединение отдельных выводов элементов

Связь индуктивности и понятия (изменения) ЭДС можно найти по формуле ε c = – dФ/dt = – L*dI/dt, где ε – это значение ЭДС самоиндукции. И если скорость изменения электрической энергии будет равна dI/dt = 1 A/c, то и L = ε c .

Видео: расчет катушки индуктивности

Ресурсы для разработки проекта

Реализация индуктивности с плоским проводом по сути ничем не отличается от варианта с проводом круглого сечения. Это та же катушка индуктивности, но с корпусом меньших размеров и с более высокими возможными номинальными значениями тока. Выбор низкопрофильной катушки индуктивности зависит от технических требований конкретного применения. Для помощи в выборе подходящего компонента доступно несколько ресурсов. Пример схемы понижающего DC/DC-преобразователя показан ниже, индуктивность обозначена на схеме символом L.

Рис. 4. Схема понижающего DC/DC на базе индуктивности с плоским проводом

Онлайн-программу для проектирования преобразователей постоянного тока можно найти на многих веб-сайтах производителей DC/DC-контроллеров. В качестве примера можно привести программный инструмент Webench, созданный компанией National Semiconductor, в 2011 году ставшей частью Texas Instruments. Разработчик загружает подробную информацию о проекте, включая входное и выходное напряжение источника питания, выходной ток и КПД. Затем программа предлагает набор микросхем и предоставляет базу данных, из которой можно выбрать вспомогательные компоненты. Индуктивности Bourns встроены в базу данных Webench, что позволяет проектировщику выбрать нужный компонент для проектируемого преобразователя. Компания Texas Instruments (TI) предлагает SwitcherPro, программу, которая включает в себя базу данных всех индуктивностей Bourns поверхностного монтажа для поддержки чипсетов TI в конструкциях преобразователей. Кроме того, на своем веб-сайте компания Bourns разместила собственный инструмент параметрического поиска. Разработчику предлагается указать индуктивность и номинальный ток, затем программа предложит ряд компонентов, которые будут соответствовать указанным требованиям. Изучение детальных технических описаний этой серии позволит разработчику точно настроить параметрический поиск для выбора нужной катушки индуктивности. Помимо всего перечисленного, компания Bourns подготовила семь типов отладочных наборов на базе индуктивностей SRPдля поддержки новых разработок и объявила о скором выпуске дополнительных отладочных комплектов. Чтобы получить комплект для своего проекта, разработчику необходимо контактировать с дистрибьюторами Bourns.

Вычисление

Формула – формула колебательного контура
Где L – это сам элемент, накапливающая магнитную энергию.

В это же время, период свободных колебаний этого контура вычисляется по:

Формула – период свободных колебаний

Где C – это конденсатор, реактивный элемент схемы, отдающий накапливающий электрическую энергию конкретной цепи. Величина индуктивного сопротивления в такой цепи вычисляется по X L = U/I. Здесь X – это емкостное сопротивление. При расчете резистора в пример вставляются основные параметры этого элемента.

Индуктивность соленоида определяет формула:

Формула – индуктивность катушки-соленоида

Помимо этого, уровень индуктивности имеет определенную зависимость от температуры на плате. Параллельное подключение нескольких деталей, изменение плотности и размеров витков обмотки и прочие параметры влияют на основные свойства этого элемента.

Фото – зависимость от температуры

Чтобы узнать параметры катушки индуктивности, можно использовать различные методы: измерить мультиметром, испытать на осциллографы, проверить отдельно амперметром или вольтметром. Эти варианты очень удобны тем, что в них в качестве реактивных элементов применяются конденсаторы, электропотери которых очень малы и могут не учитываться в расчетах. Иногда с целью упростить задачу применяется специальная программа расчета и измерения нужных параметров. Это позволяет значительно упростить выбор нужных элементов для схем.

Купить катушки индуктивности (SMD 150 мкГн и другие) и провода для их намотки можно в любом электротехническом магазине, их цена варьируется от 2 долларов до нескольких десятков.

Катушки индуктивности предназначены для фильтрации токов высокой частоты. Они устанавливаются в колебательных контурах и используются для других целей в электрических и электронных схемах. Готовое устройство заводского изготовления надёжнее в работе, но дороже, чем изготовленное своими руками. Кроме того, не всегда удаётся приобрести элемент с необходимыми характеристиками. В этом случае расчёт катушки индуктивности и само устройство можно сделать самостоятельно.

Конструкция катушки

Каркас устройства изготавливается из диэлектрика. Это может быть тонкий (нефольгированный) гетинакс, текстолит, а на тороидальных сердечниках –просто обмотка из лакоткани или аналогичного материала.

Обмотка выполняется из одножильного или многожильного изолированного провода.

Внутрь обмотки вставляется сердечник. Он изготавливается из железа, трансформаторной стали, феррита и других материалов. Он может быть замкнутым, тороидальным (бублик), квадратным или незамкнутым (стержень). Выбор материала зависит от условий работы: частоты, магнитного потока и других параметров.

Протекающий по проводу электрический ток создаёт вокруг него электромагнитное поле. Соотношение величины поля к силе тока называется индуктивностью. Если провод свернуть кольцом или намотать на каркас, то получится катушка индуктивности. Её параметры рассчитывают по определённым формулам.

Расчёт индуктивности прямого провода

Индуктивность прямого стержня – 1-2мкГн на метр. Она зависит от его диаметра. Точнее можно рассчитать по формуле:

L=0.2l(logl/d-1), где:

  • d – диаметр провода,
  • l – длина провода.

Эти величины нужно измерять в метрах (м). При этом результат будет иметь размерность микрогенри (мкГн). Вместо натурального логарифма ln допустимо использовать десятичный lg, который в 2,3 раза меньше.

Предположим, что какая-то деталь подключена проводами длиной 4 см и диаметром 0,4 мм. Произведя при помощи калькулятора расчет по выше приведённой формуле, получаем, что индуктивность каждого из этих проводов составит (округлённо) 0,03 мкГн, а двух – 0,06 мкГн.

Ёмкость монтажа составляет порядка 4,5пФ. При этом резонансная частота получившегося контура составит 300 МГц. Это диапазон УКВ.

Важно!

Поэтому при монтаже устройств, работающих в частотах УКВ, длину выводов деталей нужно делать минимальной.

Расчёт однослойной намотки

Для увеличения индуктивности провод сворачивается кольцом. Величина магнитного потока внутри кольца выше примерно в три раза. Рассчитать её можно при помощи следующего выражения:

L = 0,27D(ln8D/d-2), где D – диаметр кольца, измеренный в метрах.

При увеличении количества витков индуктивность продолжает расти. При этом индукция отдельных витков влияет на соседние, поэтому получившиеся параметры пропорциональны не количеству витков N, а их квадрату.

Дроссель с сердечником

Параметры обмотки, намотанной на каркас, диаметром намного меньше длины рассчитывается по формуле:

Она справедлива для устройства большой длины или большого тора.

Размерность в ней дана в метрах (м) и генри (Гн). Здесь:

  • 0 = 4 10-7 Гн/м – магнитная константа,
  • S = D2/4 – площадь поперечного сечения обмотки, магнитная проницаемость магнитопровода, которая меньше проницаемости самого материала и учитывает длину сердечника; в разомкнутой конструкции она намного меньше, чем у материала.

Например, если стержень антенны изготовить из феррита с проницаемостью 600 (марки 600НН), то у получившегося изделия она будет равна 150. При отсутствии магнитного сердечника = 1.

Для того чтобы использовать это выражение для расчёта обмоток, намотанных на тороидальном сердечнике, его необходимо измерять по средней линии “бублика”. При расчёте обмоток, намотанных на железе Ш-образной формы без воздушного зазора, длину пути магнитного потока измеряют по средней линии сердечника.

В расчёте диаметр провода не учитывается, поэтому в низкочастотных конструкциях сечение провода выбирается по таблицам, исходя из допустимого нагрева проводника.

В высокочастотных устройствах, так же как и в остальных, стремятся свести омическое сопротивление к минимуму для достижения максимальной добротности прибора. Простое повышение сечения провода не помогает. Это приводит к необходимости наматывать обмотку в несколько слоёв. Но ток ВЧ идёт преимущественно по поверхности, что приводит к увеличению сопротивления. Добротность в высокочастотных элементах растёт вместе с увеличением всех размеров: длины и диаметров обмотки и провода.

Максимальная добротность получается в короткой обмотке большого диаметра, с соотношением диаметр/длина, равным 2,5. Параметры такого устройства вычисляются по формуле:

L=0.08D2N2/(3D+9b+10c).

В этой формуле все параметры измеряются в сантиметрах (см), а результат получается в микрогенри (мкГн).

По этой формуле рассчитывается также плоская катушка. Диаметр “D” измеряется по среднему витку, а длина “l” по ширине:

Многослойная намотка

Многослойная намотка без сердечника вычисляется по формуле:

L=0.08D2N2/(3D+9b+10c).

Размеры здесь измеряются в сантиметрах (см), а результат получается в микрогенри (мкГн).

Добротность такого устройства зависит от способа намотки:

  • обычная плотная намотка – самая плохая, не более 30-50;
  • внавал и универсал;
  • “сотовая”.

Для увеличения добротности при частоте до 10 мГц вместо обычного, одножильного провода, можно взять литцендрат или посеребренный проводник.

Справка.

Литцендрат – это провод, скрученный из большого количества тонких изолированных друг от друга жил.

Литцендрат имеет большую поверхность, по сравнению с одножильным проводником того же сечения, поэтому на высоких частотах его сопротивление ниже.

Использование сердечника в высокочастотных устройствах повышает индуктивность и добротность катушки. Особенно большой эффект даёт использование замкнутых сердечников. При этом добротность дросселя зависит не от активного сопротивления провода, а от проницаемости магнитопровода. Рассчитывается такой прибор по обычным формулам для низкочастотных устройств.

Сделать катушку или дроссель можно самостоятельно. Перед тем, как её изготавливать, необходимо рассчитать индуктивность катушки по формулам или при помощи онлайн-калькулятора.

Как определить эффективную магнитную проницаемость сердечника с зазором

Эффективная магнитная проницаемость сердечника с зазором μе связанная c таким понятием, как сопротивление магнитному потоку Rm, которое имеет сходство с электрическим сопротивлением в том плане, что зависит от длины и сечения магнитопровода (электросопротивление зависит от длины и сечения электрического проводника). Сопротивление магнитному потоку определяется следующим выражением

Из данного выражения можно сделать вывод, что чем меньше магнитная проницаемость материала, тем выше магнитное сопротивление. Не трудно заметить, что с учетом относительной магнитной проницаемости вещества сердечника (порядка нескольких тысяч) и воздуха (примерно равно единице), магнитное сопротивление сердечника с зазором будет, в значительной степени, определятся размерами воздушного зазора.

Таким образом, полное магнитное сопротивление сердечника с зазором RO будет состоять из последовательных магнитных сопротивлений сердечника RC и магнитного сопротивления зазора RЗ. С учётом того что относительная магнитная проницаемость воздуха примерно равна единице μr = 1, то получим следующее выражение

где μ – магнитная постоянная, μ0 = 4π*10-7,

μе – эквивалентная магнитная проницаемость сердечника с зазором,

μr – абсолютная магнитная проницаемость вещества сердечника,

Se – эффективная площадь поперечного сечения сердечника,

le – эффективный путь магнитной линии сердечника,

l – длина магнитной силовой линии сердечника с зазором,

δ – длина воздушного зазора.

После преобразования получим

Так как длина зазора меньше чем длина магнитной линии сердечника (δ << le), то из данного выражения можно получить выражение для эффективной магнитной проницаемости сердечника с зазором

где μе – эквивалентная магнитная проницаемость сердечника с зазором,

μr – абсолютная магнитная проницаемость вещества сердечника,

le – эффективный путь магнитной линии сердечника,

δ – длина воздушного зазора.

Данное выражение показывает, что эффективная магнитная проницаемость сердечника с зазором, а, следовательно, и индуктивность катушки про прочих постоянных параметрах уменьшается при увеличении величины зазора.

Видео

Катушка индуктивности как радиоэлектронный элемент, достаточно распространена. Порой не заменима, для настройки многих радиоприёмников и применяется во многих устройствах. Следует отметить, что для эксклюзивных вещей, порой не достать эксклюзивных катушек, потому необходимо знать не только устройство катушки индуктивности, и формулы её расчёта, но и уметь мастерить катушки индуктивности самостоятельно. В этой статье любой начинающий радиолюбитель найдёт для себя пару полезных советов.

Основные параметры

К основным характеристикам катушки индуктивности можно отнести:

  • Индуктивность.
  • Силу тока (для подбора подходящего элемента при ремонте и проектировании это нужно учитывать).
  • Сопротивление потерь (в проводах, в сердечнике, в диэлектрике).
  • Добротность — отношение реактивного сопротивления к активному.
  • Паразитная емкость (емкость между витками, говоря простым языком).
  • Температурный коэффициент индуктивности — изменение индуктивности при нагреве или охлаждении элемента.
  • Температурный коэффициент добротности.

Как залить катушку индуктивности воском:

Собирая схему, в которой есть колебательный контур, настраивая радиоприёмник или передатчик (что угодно) или делая любую другую схему (наматывая, например, высоковольтные катушки). Вам необходимо регулировать расстояние между витками катушки. Когда вы настроили вашу схему, то для исключения не желательного изменения параметров катушки из-за механического смещения витков, вам достаточно просто залить катушку обыкновенным воском или парафином (если катушка не греется) рисунок №3.

Рисунок №3 – Пример залитой воском катушки

Можно заливать катушки эпоксидной смолой или силиконом – всё зависит от того в каких условиях должна работать ваша катушка индуктивности. И что находится у вас под рукой. В случае с воском (парафином), вам достаточным будет растопить его и просто дождаться его остывания предварительно опустив в него катушку индуктивности.

Для того, чтобы создать магнитное поле и сгладить в нем помехи и импульсы, используются специальные накопительные элементы. Катушки индуктивности в цепи переменного тока и постоянного применяются для накопления определенного количества энергии и ограничения электричества.

Конструкция

Главное назначение катушек индуктивности ГОСТ 20718-75 – это накопление электрической энергии в пределах магнитного поля для акустики, трансформаторов и т. д. Их используют для разработки и конструирования различных селективных схем и электрических устройств. От конструкции (материала, количества витков), наличия каркаса зависит их функциональность, размеры и область использования. Изготовление устройств производится на заводах, но можно сделать их самостоятельно. Самодельные элементы несколько уступают по надежности профессиональным, но обходятся в разы дешевле.

Фото – схема

Каркас катушки индуктивности выполняется из диэлектрического материала. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным. В зависимости от типа намотки, они бывают:

  1. Спиральными (на ферритовом кольце);
  2. Винтовыми;
  3. Винтоспиральными или комбинированными.

Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т. е., с обрывками Если используется толстый проводник, то элемент может обматываться без каркаса, если тонкий – то только на рамку. Эти каркасы катушек индуктивности бывают различного сечения: квадратные, круглые, прямоугольные. Полученная намотка может вставляться в специальный корпус какого-либо электрического устройства или использоваться в открытом виде.

Фото – конструкция самодельного элемента

Для увеличения индуктивности используются сердечники. В зависимости от назначения элемента, варьируется используемый материал стержня:

  1. С ферромагнитным и воздушным сердечником применяются при высоких частотах тока;
  2. Стальные используются в условиях низкого напряжения.

Исходя из принципа работы, бывают такие типы:

  1. Контурные. Преимущественно используются в радиотехнике для создания колебательных контуров платы, работают вместе с конденсаторами. Для соединения используется последовательное подключение. Это современный вариант плоской контурной катушки Тесла;
  2. Вариометры. Это высокочастотные перестраиваемые катушки, индуктивностью которыми можно при необходимости управлять при помощи дополнительных устройств. Они представляют собой соединение двух отдельных катушек, при этом, одна подвижна, а вторая нет;
  3. Сдвоенные и подстроечные дроссели. Основные характеристики этих катушек: малое сопротивление постоянному току и высокое переменному. Дроссели изготавливаются из нескольких катушек, соединенных обмотками между собой. Их часто используют в виде фильтра для различных радиотехнических приборов, устанавливают для контроля помех в антенны и т. д.;
  4. Трансформаторы связи. Их конструктивной особенностью является то, что на одном стержне установлено от двух и более катушек. Они используются в трансформаторах для обеспечения определенной связи между отдельными компонентами устройства.

Маркировка катушек индуктивности определяется по количеству витков и цвету корпуса.

Фото – маркировка

Изготовление дросселя

Для изготовления дросселя нужно выбрать подходящий каркас — в нашем случае это резистор определенной мощности и соответственно габаритов. Ниже приведены фото отечественных и зарубежных резисторов с обозначением их мощности.

Рис. 2. Резисторы МЛТ и зарубежные резисторы по мощности.

Рис. 3. Пример намотки дросселя на резисторе МЛТ-0,5.

Для намотки дросселя подойдут резисторы с высоким сопротивлением, например: 100кОм, 200кОм и т.д

Важно чтобы сопротивление резистора было большим, иначе добротность вашего самодельного дросселя может получиться плохой

Пример намотки равномерными слоями приведен на рисунке 3.

Для намотки можно использовать тонкий эмалированный провод (ПЭТВ) или же провод в шелковой изоляции (ПЭЛШО) диаметром 0,1-0,2мм, важно чтобы все витки намотанные таким проводом вместились на нашем каркасе из резистора. После намотки каждый из концов провода припаивают к выводам резистора, а на катушку сверху можно капнуть немножко клея чтобы витки потом не расползались

После намотки каждый из концов провода припаивают к выводам резистора, а на катушку сверху можно капнуть немножко клея чтобы витки потом не расползались.

Принцип действия

Схема работы катушек индуктивности активного действия основан на том, что каждый отдельный виток намотки пересекается с магнитными силовыми линиями. Этот электрический элемент необходим для того, чтобы извлекать электрическую энергию из источника питания и преобразовывая её сохранять в виде электрического поля. Соответственно, если ток цепи увеличивается – то расширяется и магнитное поле, но если он уменьшается – поле будет неизменно сжиматься. Эти параметры также зависят от частоты и напряжения, но в целом, действие остается неизменным. Включение элемента производит сдвиг фаз тока и напряжения.

Фото – принцип работы

Помимо этого, индуктивные (каркасные и бескаркасные) катушки обладают свойством самоиндукции, его расчет производится исходя из данных номинальной сети. В многослойной и однослойной обмотке создается напряжение, которое противоположно напряжению электрического тока. Это называется ЭДС, определение электродвижущей магнитной силы зависит от показателей индуктивности. Её можно рассчитать по закону Ома. Стоит отметить, что независимо от напряжения сети, сопротивление в катушке индуктивности не изменяется.

Фото – соединение отдельных выводов элементов

Связь индуктивности и понятия (изменения) ЭДС можно найти по формуле ε c = – dФ/dt = – L*dI/dt, где ε – это значение ЭДС самоиндукции. И если скорость изменения электрической энергии будет равна dI/dt = 1 A/c, то и L = ε c .

Видео: расчет катушки индуктивности

Вычисление

Формула – формула колебательного контура
Где L – это сам элемент, накапливающая магнитную энергию.

В это же время, период свободных колебаний этого контура вычисляется по:

Формула – период свободных колебаний

Где C – это конденсатор, реактивный элемент схемы, отдающий накапливающий электрическую энергию конкретной цепи. Величина индуктивного сопротивления в такой цепи вычисляется по X L = U/I. Здесь X – это емкостное сопротивление. При расчете резистора в пример вставляются основные параметры этого элемента.

Индуктивность соленоида определяет формула:

Формула – индуктивность катушки-соленоида

Помимо этого, уровень индуктивности имеет определенную зависимость от температуры на плате. Параллельное подключение нескольких деталей, изменение плотности и размеров витков обмотки и прочие параметры влияют на основные свойства этого элемента.

Фото – зависимость от температуры

Чтобы узнать параметры катушки индуктивности, можно использовать различные методы: измерить мультиметром, испытать на осциллографы, проверить отдельно амперметром или вольтметром. Эти варианты очень удобны тем, что в них в качестве реактивных элементов применяются конденсаторы, электропотери которых очень малы и могут не учитываться в расчетах. Иногда с целью упростить задачу применяется специальная программа расчета и измерения нужных параметров. Это позволяет значительно упростить выбор нужных элементов для схем.

Купить катушки индуктивности (SMD 150 мкГн и другие) и провода для их намотки можно в любом электротехническом магазине, их цена варьируется от 2 долларов до нескольких десятков.

Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга

. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью

. Индуктивность катушки измеряется в
Генри
(Гн), обозначается буковкой
L
и замеряется с помощью LC – метра .

Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

где

В – магнитное поле, Вб

I –

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

И у нас получится вот такая картина с магнитными силовыми линиями:

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф)

. Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока
(I),
а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность – это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается, то магнитное поле сжимается.

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции.

Эта зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома :

где

I

– сила тока в катушке, А

U

– напряжение в катушке, В

R

– сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности – источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником

. Снизу на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух – это немагнитный сердечник:-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы.

Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

Дроссели

Также есть особый вид катушек индуктивностей. Это так называемые . Дроссель – это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

Также существует еще один особый вид дросселей – это . Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

Опыты с катушкой

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов. Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC – метр мне показывает ноль.

Имеется ферритовый сердечник

Начинаю вводить катушку в сердечник на самый край

LC-метр показывает 21 микрогенри.

Ввожу катушку на середину феррита

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине.

Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности в переменных катушках индуктивности:

где

1 – это каркас катушки

2 – это витки катушки

3 – сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо “виток к витку”.

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз. Вывод: чем меньше количество витков – тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.

Замеряем индуктивность

15 микрогенри

Отдалим витки катушки друг от друга

Замеряем снова

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

Замеряем

Офигеть! Увеличил количество витков в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от “витков в квадрате”.

Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Обозначение на схемах

Последовательное и параллельное соединение катушек

При последовательном соединении индуктивностей

, их общая индуктивность будет равняться сумме индуктивностей.

А при параллельном соединении

получаем вот так:

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате.

Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.

Особенности применения дросселей в схемах

Дроссели можно соединять последовательно и параллельно.

[Индуктивность последовательно соединенных дросселей

] = [
Индуктивность первого дросселя
] + [
Индуктивность второго дросселя
]

[Индуктивность параллельно соединенных дросселей

] = 1 / (1 / [
Индуктивность первого дросселя
] + 1 / [
Индуктивность второго дросселя
])

На рисунке приведены типовые схемы на катушках индуктивности. (А) — Индуктивный делитель переменного напряжения. [Напряжение на нижнем дросселе

] = [
Входное напряжение
] * [
индуктивность нижнего дросселя
] / ([
индуктивность нижнего дросселя
] + [
индуктивность верхнего дросселя
]) (Б) — Фильтр высших частот. (В) — Фильтр низших частот.

(читать дальше…) :: (в начало статьи)

123

:: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи. сообщений.

Вот одна формула = * * / / , по которой получается, что чем больше ток через дроссель, тем больше получается число витков — что в корне противоречит теории — чем нужен больший ток, тем должно быть меньше число витков (ЭТО Читать ответ…

А что такое E в первой формуле, прямо таки получается огромная величина индуктивности. В первой формуле правдоподобно, если индуктивность в микрогенри Если я правильно понял, то, например, E-3 означает 0.001? Читать ответ…

Как рассчитать и изготовить самому дроссель ВЧ, индуктивностью 5мкГн, на ток 3-4А ? Читать ответ…

Еще статьи

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить… Приемы намотки импульсного дросселя / трансформатора….

Инвертор, преобразователь, чистая синусоида, синус… Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за…

Преобразователь однофазного в трехфазное. Конвертер одной фазы в три. … Схема преобразователя однофазного напряжения в трехфазное….

Резонансный инвертор, преобразователь напряжения повышающий. Схема, ко… Инвертор 12/24 в 300. Резонансная схема….

Простой импульсный прямоходовый преобразователь напряжения. 5 — 12 вол… Схема простого преобразователя напряжения для питания операционного усилителя….

Диодные схемы. Схемные решения. Схемотехника. Частота, мощность, шумы…. Классификация, типы полупроводниковых диодов. Схемы, схемные решения на диодах. …

Понижающий импульсный источник питания. Онлайн расчет. Форма. Подавлен… Как рассчитать понижающий импульсный преобразователь напряжения. Как подавить пу…

Проверка электронных элементов, радиодеталей. Проверить исправность, р… Как проверить исправность детали. Методика испытаний. Какие детали можно использ…

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]