Что такое диэлектрические потери и из-за чего они возникают?

Благодаря материалам из диэлектриков электрический ток не утекает и проходит только по проводникам. Их изготавливаются из самого разного материала.

Функциональные возможности используются не только с целью ограничения прохождения электрических токов.

Диэлектрическая потеря является ещё одной функцией этого материала. Благодаря этому явлению под воздействием электрического поля рассеивается энергия. При излишнем скоплении энергии проводники перегреются, что может привести к перегоранию проводника и пожару.

В этой статье более подробно рассмотрим данную функцию.

Что такое диэлектрические потери?

Применение электроизоляционных материалов основано на том, что они препятствуют электрическому току преодолевать некоторое пространство, ограниченное изолятором. Идеальный изолятор должен абсолютно исключить условия для проводимости электрического тока. К сожалению, в природе не существует таких материалов. Таких диэлектриков также не сумели создать в лабораторных условиях.

Теоретически можно обосновать существование идеальных изоляторов, но синтезировать на практике такие вещества не реально, так как даже ничтожно малая доля примесей образует диэлектрическую проницаемость. Иначе говоря, рассеяния энергии в диэлектрической среде будут наблюдаться всегда. Речь может идти об усилиях, направленных на уменьшение таких потерь.

Исходя из того, что часть электроэнергии неизбежно теряется в изоляторе, был введён термин «диэлектрические потери» – необратимый процесс преобразования в теплоту энергии электрического поля, пронизывающего диэлектрическую среду, То есть, это электрическая мощность, направленная на нагревание изоляционного материала, пребывающего в зоне действия электрического поля.

Значение потерь определяется как отношение активной мощности к реактивной. Обычно активная мощность, потребляемая диэлектриком очень мала, по сравнению с реактивной мощностью. Это значит, что искомая величина тоже будет мизерной – сотые доли от единицы. Для вычислений используют величину «тангенс угла», выраженную в процентах.

Электрическую характеристику, выражающую рассеивающее свойство диэлектрика, называют тангенсом угла диэлектрических потерь. При расчётах принято считать, что диэлектрик является изоляционным материалом конденсатора, меняющего ёмкость и дополняющий до 90º угол сдвига фаз φ, образованный векторами напряжения и тока в цепи. Данный угол обозначают символом δ и называют углом рассеивания, то есть, диэлектрических потерь. Величина, численно равна тангенсу данного угла ( tgδ ), это и есть та самая характеристика диэлектрического нагрева.

tgδ применяется в расчётах для определения величины рассеиваемой мощности по соответствующей формуле. Поэтому его вычисление имеет практическое значение. Введение понятия тангенса угла позволяет вычислять относительные значения диэлектрических потерь. А это позволяет сравнивать по качеству различные изоляторы.

Именно этот показатель или просто угол δ производители трансформаторных масел указывают на упаковке своей продукции. По величине угла ( tg δ ) можно судить о качестве изолятора: чем меньше угол δ, тем высшие диэлектрические свойства проявляет изоляционный материал.

Число потерь в газообразных веществах

Так как у газообразных веществ значение электропроводности очень маленькое, то и число потерь диэлектрических в них мало.

Когда происходит поляризация газообразных молекул, диэлектрических потерь при этом не происходит. В данном случае используется зависимость под названием кривая ионизации. Эта зависимость показывает, что если тангенс δ возрастает вместе с возрастанием напряжения, то это является доказательством того, что в таком случае в изоляции есть включения газа. Если ионизация значительна, то и потери газа тоже, а это может привести к тому, что изоляция разогреется и разрушится.

Поэтому очень важным при изготовлении изоляции является избавление от вкраплений газа. Для того чтобы этого достичь, применяют специальную обработку. Она включает сушку изоляции в состоянии вакуума, после чего все поры заполняет компаунд, находящийся под давлением. Следующим этапом является обкатка. При ионизации возникает озон и окислы азота, что ведет к разрушению органической изоляции. Если эффект ионизации появляется там, где поля неравномерны, то он ведет к существенному снижению коэффициента полезного действия при передаче (это бывает на линии электропередач).

Методика расчета

Составим схему, в которой включен конденсатор с диэлектриком. При этом активная мощность в данной схеме должна соответствовать мощности, рассеиваемой в диэлектрике рассматриваемого конденсатора, а угол сдвига, образованный векторами тока и напряжения, должен равняться углу сдвига в конденсаторе. Такие условные схемы с последовательным и параллельным включением активного сопротивления представлены на рис. 1. На этой же картинке построены векторные диаграммы для каждой схемы.


Рис. 1. Эквивалентные схемы диэлектрика


Рис. 2. Формулы для расчета

Значения символов понятны из рисунка 1.

Заметим, что в качественных диэлектриках величина tg2 δ очень мала, поэтому ею можно пренебречь. Тогда каждая из формул для вычисления диэлектрических потерь приобретёт вид: Pa = U2*ω*C*tδ. Если напряжение в этой формуле выразить в вольтах, угловую частоту ( ω ) в с-1, а ёмкость C в фарадах, то получим мощность ( Pa ) в ваттах.

Очевидно, что параметры вычислений на основании приведённых схем зависят от частоты. Из этого следует, что вычислив параметры диэлектриков на одной частоте, их нельзя автоматически переносить для расчётов в других диапазонах частот.

Механизмы потерь по-разному проявляются в твёрдых, жидких и газообразных веществах. Рассмотрим природу рассеяний в этих диэлектриках.

Диэлектрические потери в разных диэлектриках

В газах

Для газообразных веществ или их включений в материалах диэлектрика характерны ионизационные потери при определённых условиях: когда молекулы газа ионизируются. Например, ионизация газов происходит во время электрических пробоев сквозным током. При этом молекулы газа превращаются в ионы, создавая токопроводящий канал с максимумом напряженности. В результате диэлектрические потери лавинообразно возрастают, стремясь к максимуму tg угла.

При таких диэлектрических потерях мощность стремительно растёт: Ри = А1 f (U – Uи)3, где А1 – постоянная, зависящая от вида вещества, f — частота поля, а символами U, Uиобозначено приложенное напряжение и напряжение ионизации, зависящее от давления газа.

Если величина напряжения Uи не достигает порога, необходимого для запуска процесса ударной ионизации, то нагревание диэлектрика является незначительным, потому что, при поляризации, пространственная ориентация дипольных молекул в газах не влияет на электропроводность. Поэтому газы – самые лучшие диэлектрики, с низкими потерями, особенно в диапазоне высоких частот.

Зависимость тангенса угла рассеивания мощности в диэлектриках с газовыми включениями, иллюстрирует график на рис. 3.


Рис. 3. Зависимость тангенса угла потерь

В жидких диэлектриках

Наличие диэлектрических потерь в жидкостях, в основном зависят от их полярности. В среде неполярных диэлектриков рассеяния обусловлены электропроводностью. При наличии в жидких веществах примесей дипольных молекул (так называемые полярные жидкости), рассеивание мощности может быть значительным. Это связано с повышением электропроводности, в результате дипольно-релаксационной поляризации.

Жидкие полярные изоляторы имеют выраженную зависимость потерь от вязкости. Поворачиваясь под действием магнитного поля в вязкой среде, диполи, в результате трения, нагревают её. Рассеиваемая мощность жидкого диэлектрика возрастает до тех пор, пока механизмы поляризации успевают за изменениями электрического поля. При достижении максимума поляризации процесс стабилизируется.

В твердых веществах

Высокочастотные диэлектрики с неполярной структурой обладают небольшим tg δ. К ним относятся качественные материалы:

  • сера;
  • полимеры;
  • парафин и некоторые другие.

Потери у диэлектриков с полярной молекулой более значительны. К таким материалам можно отнести:

  • органические стёкла;
  • эбонит и другие каучуковые вещества;
  • полиамиды;
  • целлюлозосодержащие материалы;
  • фенолоформальдегидные смолы.

Керамические диэлектрики без примесей имеют плотную ионно-решётчатую структуру. У них высокое удельное сопротивление. а значение tg δ таких материалов не превышает величины 10-3.

Вещества с неплотным расположением ионов обладают ионной поляризацией. У них наблюдается также электронно-поляризационная поляризация. tg δ этих диэлектриков ещё выше – от 10-2.

Сегнетоэлектрики и вещества со сложными неоднородными структурами, такие как текстолит, пластмассы, гетинакс и другие, имеют tg δ > 0,1.

Рассеивание мощности в результате сквозной электропроводимости происходит во всех диэлектриках. Однако потери становятся ощутимыми лишь при частотах от 50 до 1000 Гц, в температурном режиме более 100 ºC. Высокое переменное напряжение, как и удельное сопротивление также влияет на величину рассеивания.

«Электротехническое и конструкционное материаловедение» (стр. 2 )

Однако уже при напряжённости Еи плотность тока опять начинает возрастать, быстрее, чем по закону Ома. Это объясняется тем, что электроны между соударениями набирают достаточную кинетическую энергию

(W = g E λ ≥ Wвых), и начинается ударная ионизация. В результате количество заряженных частиц быстро увеличивается, и при дальнейшем увеличении напряжённости наступает пробой диэлектрика. Для воздуха при нормальных условиях процесс ударной ионизации наступает при напряжённости Еи ≈ 10 кВ/см.

Электрическая проводимость газов в обычных условиях эксплуатации не зависит от температуры.

Электропроводность жидких диэлектриков.

У жидких диэлектриков электропроводность сильно зависит от двух основных причин:

1) наличия примесей;

2) строения молекул (неполярная или полярная).

В неполярных

жидкостях число носителей заряда в единице объема невелико и проводимость мала, если в них нет примесей. Жидкие диэлектрики легко загрязняются. Вода

самое распространённое «загрязнение», которое увеличивает электропроводность жидкости. Она может быть в трёх состояниях:

а) в молекулярно-растворённом;

б) в виде эмульсии, т. е. в виде мельчайших капелек, находящихся в диэлектрике во взвешенном состоянии;

в) в виде избыточной воды (избыточная вода в трансформаторном масле собирается на дне, а в соволе – на поверхности).

Электропроводность жидкого диэлектрика, не имеющего никаких примесей и загрязнений, ионная.

Полярные

жидкости всегда имеют повышенную проводимость по сравнению с неполярными жидкостями, причём, чем больше диэлектрическая проницаемость диэлектрика, тем выше диссоциация и проводимость. Сильно полярные жидкости (например, вода) отличаются настолько высокой проводимостью, что рассматриваются уже не как жидкие диэлектрики, а как проводники с ионной проводимостью.

Неполярные диэлектрики меньше подвержены диссоциации, у них меньше электропроводность.

Удельная проводимость любой жидкости зависит от температуры. Для узкого интервала температур с достаточной степенью точности может быть применена формула γ = γо exp(α·t), где γо и α – постоянные величины для данной жидкости.

До напряжённости Е > 100 – 1 000 кВ/см ток подчиняется закону Ома, а затем закон Ома нарушается, начинается процесс ионизации.

Электропроводность твёрдых диэлектриков.

Полная проводимость твёрдого диэлектрика, соответствующая сопротивлению его изоляции, складывается из
объёмной
и
поверхностной
проводимостей. Такое разделение вызвано тем, что поверхность диэлектрика, работающего в загрязнённой атмосфере промышленных предприятий, адсорбирует воду, пыль, газы и другие вещества, тем самым сильно снижая полное сопротивление диэлектрика.

Объемная

электропроводность твёрдых диэлектриков обуславливается передвижением как ионов самого диэлектрика, так и ионов примесей. Температурная зависимость удельной проводимости твёрдого диэлектрика с примесями имеет вид

γ = A1 exp + A2 exp,

где А1 и W1 – параметры, характеризующие примесную проводимость;

А2 и W2 – параметры, характеризующие собственную проводимость;

k – постоянная Больцмана; Т – абсолютная температура.

В сравнительно слабых полях (до напряжённости Е1) проводимость не зависит от напряжённости электрического поля, соблюдается закон Ома. В сильных полях начинается ударная ионизация электронов, и проводимость резко возрастает.

У гигроскопичных материалов объёмная проводимость зависит от влажности. Наличие в них влаги, даже в ничтожных количествах, резко увеличивает проводимость (уменьшает сопротивление). У некоторых диэлектриков, не обладающих объёмной влагопоглощаемостью, объёмная проводимость не зависят от влажности (например, у керамики).

Поверхностная

электропроводность определяется способностью поверхности диэлектрика адсорбировать загрязняющие компоненты. Особенно сильно на электропроводность влияет влага. Иногда достаточно тончайшего слоя влаги на поверхности, чтобы существенно уменьшить удельное поверхностное сопротивление ρs.

Все твёрдые диэлектрики можно разделить на гидрофильные и гидрофобные. У гидрофобных материалов поверхностное сопротивление мало зависит от влажности. У гидрофильных материалов влага распределяется тонким непрерывным слоем по всей поверхности, в ней растворяются другие загрязнения, и удельное поверхностное сопротивление резко снижается.

Полярные диэлектрики характеризуются более низкими значениями удельного поверхностного сопротивления, заметно уменьшающимися во влажной среде. Особенно резкое понижение удельного поверхностного сопротивления можно наблюдать у полярных диэлектриков, частично растворимых в воде, у которых на поверхности образуется плёнка электролита. Кроме того, к поверхности полярных диэлектриков лучше прилипают различные загрязнения, также приводящие к снижению удельного поверхностного сопротивления.

Диэлектрическими потерями

называют энергию, рассеиваемую в единицу времени в диэлектрике при воздействии на него электрического поля и вызывающую нагрев диэлектрика.

Диэлектрические потери в диэлектрике можно характеризовать рассеиваемой мощностью, которая определяется по формуле

P = U2·ωC·tgδ,

где ω – угловая частота (ω = 2πf); C – емкость диэлектрика; U – напряжение, прикладываемое к диэлектрику; tgδ – тангенс угла диэлектрических потерь.

На рис.4 приведена схема замещения и векторная диаграмма диэлектрика с потерями. Углом диэлектрических потерь

называют угол, дополняющий до 90о угол сдвига фаз φ между током и напряжением в емкостной цепи.

Рис. 4. Схема замещения а) и векторная диаграмма б) диэлектрика

с потерями

Виды диэлектрических потерь. Диэлектрические потери по их особенностям и физической природе можно подразделить на четыре основных вида:

1) потери, обусловленные поляризацией;

2) потери, обусловленные сквозной электропроводностью;

3) ионизационные потери;

4) потери, обусловленные неоднородностью структуры.

Диэлектрические потери, обусловленные поляризацией

. Из всех видов поляризации с потерями наиболее часто в диэлектриках встречаются дипольная и ионно-релаксационная. У них есть общие закономерности:

а) tgδ при определенной частоте f1 имеет максимум;

б) у tgδ наблюдается также максимум при некоторой температуре t1, характерной для данного диэлектрика.

В схеме замещения эти виды потерь хорошо описываются цепочкой из емкости C и сопротивления r (рис. 4,a).

Диэлектрические потери, обусловленные сквозной электропроводностью

, в схеме замещения хорошо описываются сопротивлением R

(рис. 4,a). Они не зависят от частоты:

P = U2/R.

Так как сопротивление R зависит от температуры, то и потери от нее также зависят. Они возрастают с температурой по экспоненциальному закону:

P = A·exp(–b/T),

где A и b – постоянные материала.

Тангенс δ в этом случае может быть вычислен по формуле

tgδ = , (1)

где f – частота напряжения, Гц; ρ – удельное сопротивление, ;

Ионизационные диэлектрические потери

. Эти потери свойственны газообразным диэлектрикам. Они появляются, если напряжение, приложенное к диэлектрику, превысит критическое значение Uкр, при котором начинаются ионизационные процессы. До напряжения Uкр диэлектрические потери практически равны нулю, а затем они резко увеличиваются, и их можно оценить по приближенной формуле

где A – постоянный коэффициент, f – частота поля.

Ионизационные потери возникают также в жидких и твердых диэлектриках в газовых пузырьках и включениях.

Диэлектрические потери, обусловленные неоднородностью структуры

.
Они наблюдаются в слоистых диэлектриках: бумаге, пропитанной маслом, в пористой керамике, текстолите, стеклотекстолите и т. д. Ввиду разнообразия структуры неоднородных диэлектриков общей формулы расчета диэлектрических потерь не существует.
Диэлектрические потери в газах

. Диэлектрические потери в газах при напряженностях поля, лежащих ниже значения, необходимого для развития ударной ионизации молекул газа, очень малы. В этом случае газ можно практически рассматривать как идеальный диэлектрик. Источником диэлектрических потерь газа может быть только электропроводность, так как ориентация дипольных молекул газов при их поляризации из-за больших расстояний между молекулами не сопровождается диэлектрическими потерями.

Но так как у газов электропроводность очень мала, то угол диэлектрических потерь ничтожно мал. Величину tgδ можно определить по формуле (1). Для газа tgδ ≈ 4·10–8.

При напряженностях поля больше Eкр в газе начинается ионизация, и потери резко возрастают.

Диэлектрические потери в жидких диэлектриках.

Среди жидких диэлектриков следует отдельно рассматривать неполярные и полярные.

В неполярных

жидкостях диэлектрические потери обусловлены только электропроводностью. У чистых жидких диэлектриков электропроводность мала, поэтому малы и диэлектрические потери. Можно рассчитать tgδ по формуле (1). Например, для нефтяного конденсаторного масла получим tgδ ≈ 0,001. Диэлектрические потери у неполярных диэлектриков зависят от температуры, так как с увеличением температуры уменьшается удельное сопротивление жидкого диэлектрика. У неполярного диэлектрика tgδ с ростом частоты уменьшается. А диэлектрические потери не зависят от частоты.

В полярных

жидкостях потери обусловлены двумя причинами:

а) электропроводностью; б) дипольной поляризацией.

Потери, вызванные электропроводностью, зависят только от температуры. Для дипольной поляризации tgδ имеет максимум при некоторой температуре t1. Если теперь учесть оба вида потерь и просуммировать обе зависимости, то получим график, показанный на рис.5,а. Влияние частоты f на tgδ и рассеиваемую мощность показано на рис.5,б

Рис.5. Влияния температуры а) и частоты б) на потери в полярном

жидком диэлектрике

Диэлектрические потери в твёрдых диэлектриках.

В твёрдых диэлектриках возможны все виды поляризации и потерь. Для выяснения общих закономерностей твёрдые диэлектрики делят на следующие группы.

1. Диэлектрики молекулярной структуры:

а) неполярные, б) полярные.

2. Диэлектрики ионной структуры:

а) плотной упаковки, б) неплотной упаковки.

3. Сегнетоэлектрики.

4. Диэлектрики неоднородной структуры.

Неполярные

диэлектрики обладают ничтожно малыми диэлектрическими потерями, и их применяют в качестве высокочастотных диэлектриков. Тангенс δ для них можно рассчитать по формуле (1). Диэлектрические потери у неполярных диэлектриков не зависят от частоты. При увеличении температуры уменьшается удельное сопротивление диэлектрика, а это приводит к увеличению тангенса диэлектрических потерь.

Изменение tgδ от температуры и частоты в полярных

диэлектриках

такое же, как и для жидкого полярного диэлектрика.

В твёрдых веществах ионной структуры с плотной упаковкой ионов

только два вида поляризации: электронная и ионная. В этих диэлектриках диэлектрические потери весьма малы. При повышенных температурах в таких веществах увеличиваются потери от сквозной электропроводности. С ростом частоты tgδ уменьшается, как и у неполярных диэлектриков, так как активный ток остаётся постоянным, а реактивный увеличивается.

В твёрдых веществах ионной структуры с неплотной упаковкой ионов

имеет место значительная ионно–релаксационная поляризация, поэтому наблюдаются закономерности изменения tgδ от температуры и частоты, характерные для дипольной поляризации.

Здесь два вида потерь:

а) потери, вызванные передвижением слабосвязанных ионов. Они рассматриваются как потери, обусловленные электропроводностью, возрастающие с температурой и почти не зависящие от частоты (tgδ уменьшается с ростом частоты);

б) потери, вызванные релаксационной поляризацией, у которых tgδ зависит от температуры и частоты.

Для большинства видов электрокерамики количество ионов, участвующих в релаксационной поляризации, непрерывно возрастает с температурой, поэтому максимум tgδ отсутствует и температурная зависимость tgδ подобно неполярным диэлектрикам в первом приближении имеет экспоненциальный характер.

Особенностью сегнетоэлектриков

является то, что в них самопроизвольная (спонтанная) поляризация проявляется в определённом температурном интервале, вплоть до точки Кюри. Диэлектрические потери в сегнетоэлектриках мало изменяются с температурой в области спонтанной поляризации и резко падают при температуре выше точки Кюри, когда доменная структура разрушается.

Зависимости tgδ от температуры и частоты в диэлектриках неоднородной структуры

очень сложные и определяются как суммы зависимостей составляющих.

ЛЕКЦИЯ №6

Пробой диэлектриков

Общая характеристика явления пробоя

. Диэлектрик, находясь в электрическом поле, теряет свойства электроизоляционного материала, если напряжённость поля превысит некоторое критическое значение. Это явление носит название
пробоя диэлектрика
. Значение напряжения, при котором происходит пробой диэлектрика, называется
пробивным напряжением
Uпр, а соответствующее значение напряженности поля –
электрической прочностью диэлектрика
Eпр.

Основные виды пробоя следующие:

– электрический пробой;

– тепловой пробой;

– электрохимический пробой (электрическое старение).

Электрический пробой

вызывается ударной ионизацией электронами, возникающей в сильном электрическом поле и приводящей к резкому возрастанию плотности электрического тока.

Тепловой пробой

обусловлен прогрессивно нарастающим выделением теплоты в диэлектрике под действием диэлектрических потерь или электропроводности и приводящим к термическому разрушению диэлектрика.

Электрохимический пробой

обусловлен медленными изменениями химического состава и структуры диэлектрика, которые развиваются под действием электрического поля или частичных разрядов в диэлектрике, приводя к необратимому уменьшению сопротивления изоляции и пробою её при напряжённостях значительно меньших, чем электрическая прочность диэлектрика. Этот процесс также называется
электрическим старением
диэлектрика.

Пробой газа

. В газах возникает только электрический пробой. В воздушном промежутке вследствие радиоактивного и космического излучения всегда присутствует небольшое количество заряженных частиц. Электроны в электрическом поле разгоняются электрическим полем и приобретают дополнительную энергию:

W = g·Е·λ,

где g – заряд электрона, Е – напряженность поля, λ – средняя длина свободного пробега электрона до очередного соударения.

Если напряженность достаточна (то есть Е ≥ Епр), то возникает быстро нарастающий поток электронов, приводящий к пробою промежутка.

Пробивная напряжённость (Епр) газа зависит от многих факторов. Одним из важнейших факторов является вид поля. На рис.6. приведены зависимости пробивных напряжений от расстояния между электродами для трёх классических промежутков.

Электрическая прочность газа зависит также от плотности газа, которая является функцией давления и температуры.

Рис. 6. Зависимость электрической прочности газа от формы электродов и

расстояния между ними: 1– остриё-плоскость; 2 – остриё-остриё;

3 – шар-шар

Пробой жидких диэлектриков.

Теория пробоя жидких диэлектриков не так хорошо разработана, как для газов. В жидких диэлектриках механизм пробоя и пробивное напряжение зависят от чистоты диэлектрика.

Различают три степени чистоты:

1) диэлектрики содержат эмульсионную воду и твёрдые механические загрязнения;

2) технически чистые, диэлектрики практически не содержат эмульсионной воды и механических загрязнений;

3) особо тщательно очищенные, т. е. совершенно не содержат воды и механических загрязнений, а также хорошо дегазированы.

В особо тщательно очищенных жидких диэлектриках возникает только электрическая форма пробоя. Плотность жидкости существенно больше плотности газа, поэтому в них значительно меньше длина свободного пробега электронов (λ), а значит существенно выше пробивная напряжённость.

В электроэнергетике обычно используются технически чистые жидкие диэлектрики, в которых в незначительных количествах возможны примеси. Особенно сильно снижает электрическую прочность жидкого диэлектрика эмульсионная вода, находящаяся в нем даже в небольшом количестве. Пробой увлажнённых жидкостей происходит следующим образом. Капельки эмульсионной воды в электрическом поле поляризуются, втягиваются в пространство между электродами, деформируются и, сливаясь, образуют мостики с малым электрическим сопротивлением, по которым и происходит разряд. Образование мостиков приводит к значительному снижению прочности масла.

Пробой твердых диэлектриков

. В твёрдых диэлектриках возможны все виды пробоя. Каждый из указанных видов пробоя может иметь место для одного и того же диэлектрика в зависимости от характера электрического поля (постоянного или переменного, импульсного, низкой или высокой частоты), а также от наличия в диэлектрике примесей и дефектов.

Чисто электрический пробой

имеет место, когда исключено влияние электропроводности и диэлектрических потерь, обуславливающих нагрев материала, а также отсутствует ионизация газовых включений. Электрический пробой протекает очень быстро за время, меньшее 10-7–10-8 секунд, и по своей природе является чисто электронным процессом, т. е. происходит ударная ионизация атомов электронами и образование лавин. У твёрдых диэлектриков длина свободного пробега электронов меньше, чем у жидких, поэтому для получения необходимой энергии ионизации (W = g·Е·λ ≥ΔW) нужно увеличить напряжённость поля.

Тепловой пробой

возникает в том случае, когда количество тепловой энергии, выделяющейся в диэлектрике за счёт диэлектрических потерь, превышает количество тепловой энергии, которая может рассеиваться в данных условиях. При этом нарушается тепловое равновесие, а процесс приобретает лавинообразный характер и заканчивается обугливанием, расплавлением, прожогом и т. д.

Процесс электрохимического пробоя

развивается в электрических полях с напряжённостью, значительно меньшей, чем электрическая прочность диэлектрика. Одна из разновидностей электрохимического пробоя –
ионизационный
пробой.

Некоторые твёрдые диэлектрики и системы изоляции обладают известной пористостью. Допустим, в бумажно-масляной изоляции после заливки масла остались газовые (воздушные) пузырьки. Распределение напряжённости между масляной изоляцией Ем и воздушными пузырьками Ев не равномерное:

,

т. е. к воздушному пузырьку прикладывается напряжённость примерно в 2,2 раза больше, чем к маслу, а прочность воздуха много меньше

(Епр(воз) ≈ 30 кВ/см, Епр(м) ≈ 200 кВ/см). Это приводит к тому, что воздушный промежуток будет пробиваться несколько раз на каждой полуволне промышленной частоты. При каждом пробое происходит обугливание бумаги и разложение масла с увеличением воздушного пузыря.

Этот процесс получил название – частичный разряд

. Частичные разряды присутствуют во многих видах изоляции, при каждом пробое происходит незначительное снижение прочности изоляции, однако со временем идет накопление повреждения изоляции и снижение её прочности – старение изоляции.

В дальнейшем может произойти пробой изоляции при коммутационных перенапряжениях (во время включения или отключения электроустановок) или даже при номинальном напряжении.

Изготовить слоистую изоляцию без частичных разрядов практически невозможно. Поэтому в слоистой изоляции допускается такой уровень частичных разрядов, который бы обеспечивал достаточно большой срок службы (τ) изоляции (время жизни диэлектрика) до 20 лет.

ЛЕКЦИЯ №7

Физико-химические и механические свойства диэлектриков

Для диэлектриков наиболее важны следующие свойства:

1. Влажностные.

2. Тепловые.

3. Механические.

Влажностные свойства. Многие электроизоляционные материалы используются в условиях повышенной влажности воздуха, и вода может попадать на них, если электрооборудование не имеет герметичного корпуса, например, такого, как у конденсатора.

Относительной влажностью воздуха

называют выражаемое в процентах отношение

φ = 100,

где m – масса водяного пара в единице объема, г/м3; mнас – масса водяного пара в единице объема при насыщении, г/м3.

За нормальную влажность воздуха в нашей стране принята относительная влажность φ = 65 %. В воздухе с нормальной влажностью при 20 оС содержание водяных паров m = 11,25 г/см3.

Для предохранения поверхности электроизоляционных деталей от действия влажности их покрывают лаками, не смачивающимися водой.

Способность диэлектриков смачиваться водой характеризуется углом смачивания θ капли воды, нанесенной на плоскую поверхность тела

(рис. 7.) Чем меньше угол θ, тем сильнее смачивание. Для смачиваемых поверхностей угол θ < 90о, для несмачиваемых – θ > 90о.

Рис. 7. Капля жидкости на смачиваемой поверхности диэлектрика (а)

и на несмачиваемой поверхности (б)

При наличии в диэлектрике объёмной открытой пористости или при неплотной структуре влага попадает и внутрь диэлектрика. Если сухой диэлектрик поместить во влажный воздух, то он начинает поглощать влагу из воздуха. Причём влажность материала ψ будет повышаться, асимптотически приближаясь к равновесной влажности ψр, соответствующей данному значению влажности воздуха φ. У бумаги при относительной влажности воздуха φ = 65 % равновесная влажность ψр = 8 %.

Наиболее чувствительным параметром влаги у диэлектриков является тангенс диэлектрических потерь tgδ, он заметно возрастает с увлажнением материала, изменяется и удельное сопротивление ρ.

Влагопроницаемость

– это способность материалов пропускать сквозь себя пары воды. Количество влаги m, проходящее за время τ сквозь участок поверхности S слоя изоляционного материала толщиной h под действием разности давлений водяных паров p
1
и p
2
с двух сторон слоя, находим по следующему выражению:

m = П·(p1 – p2)·S·τ/h,

где П – влагопроницаемость данного материала. В системе СИ она измеряется в секундах.

Тепловые свойства диэлектриков

. К ним относятся нагревостойкость, холодостойкость, теплопроводность и тепловое расширение.

Нагревостойкость

– это способность диэлектрика выдерживать воздействие повышенной температуры в течение времени, сравнимого со сроком нормальной эксплуатации, без недопустимого ухудшения его свойств. Срок службы изоляции τ связан с абсолютной температурой Т следующей зависимостью (рис. 8): lnτ = AT-1 + B, где А и В – величины постоянные для данного материала и данных условий старения изоляции.

Рис. 8. Срок службы изоляции в зависимости от температуры

ГОСТ 8865–70 предусматривает в соответствии с рекомендациями Международной электротехнической комиссии (МЭК) разделение электроизоляционных материалов на классы нагревостойкости (Y, A, E, B, F, H, C).

Холодостойкость

– это способность изоляции выдерживать воздействие низких температур (например, от –60 до –70 оС) без недопустимого ухудшения её свойств. При низких температурах, как правило, электрические свойства изоляционных материалов улучшаются. Однако многие материалы, гибкие и эластичные в нормальных условиях, при низких температурах становятся весьма хрупкими и жёсткими, что создаёт затруднения для работы изоляции.

Теплопроводность

– это один из видов переноса теплоты от более нагретых частей к менее нагретым, приводящего к выравниванию температуры материала. Теплопроводность материалов характеризуют коэффициентом теплопроводности γт, входящим в уравнение Фурье:

Pт = γт ΔS,

где ΔРт – мощность теплового потока, проходящего сквозь площадку ΔS, нормальную к потоку; – градиент температуры.

Тепловое расширение

диэлектриков оценивают температурным коэффициентом линейного расширения (), измеряемым в К-1:

Из за большого объема этот материал размещен на нескольких страницах: 2

Получить текст

Виды диэлектрических потерь

В зависимости от электрических свойств различных видов диэлектриков различают следующие виды диэлектрических потерь, сопровождающихся нагревом диэлектрика:

  • ионизационные потери, наблюдаемые в газах;
  • релаксационные потери в жидких (вязких) диэлектриках, в результате релаксационной поляризации;
  • рассеяние в веществах, имеющих дипольную поляризацию;
  • поляризационное рассеивание в веществах, имеющих сквозную электропроводность;
  • высокочастотные резонансные потери;
  • диэлектрические потери, вызванные неоднородностью структуры твердых диэлектриков.

Диэлектрические вещества по-разному ведут себя при различных температурах, при постоянном или переменном токе. Максимумы потерь происходят при достижении определённого порога температуры. Этот порог индивидуален для каждого вещества. Тангенс угла δ зависит также от приложенного напряжения (рис. 4).


Рис. 4. Зависимость тангенса угла от напряжения

Диэлектрические утери твёрдых веществ

У твёрдых веществ есть особый ряд характеристик. Например, они различаются по составу, структуре и поляризации, благодаря которым и возникают диэлектрические потери. Для диэлектриков, обладающих надёжностью и хорошим качествам, используют:

  1. Серу.
  2. Парафин.
  3. Полистирол.

Существуют и диэлектрики со сквозной проводимостью электричества. К ним относят:

  1. Кварц.
  2. Соль.
  3. Слюду.

Керамические и мраморные диэлектрики, будучи кристаллическими, являются характерными примерами данных значений. В них есть примесь полупроводников.

Они имеют отличительные свойства: потери диэлектрики будут зависеть от условий окружающей среды. Значения величины могут измениться от влияния окружающих факторов.

Чем измерить?

Рассчитывать потери диэлектриков по формуле не очень удобно. Часто величину tg производители определяют опытным путём и указывают на упаковках или в справочниках.

Существуют специальные измерительные приборы, такие как «ИПИ – 10» ( или измеритель «Ш2», позволяющие с высокой точностью определить уровень рассеивания в диэлектриках либо найти тангенс угла рассеяния. Устройства довольно компактны и просты в работе. С их помощью можно исследовать свойства твёрдых и жидких веществ на предмет диэлектрических потерь.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]